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Abstract: This study was to investigate the bidirectional estrogen-like effects of genistein on murine
experimental autoimmune ovarian disease (AOD). Female BALB/c mice were induced by immunization
with a peptide from murine zona pellucida. The changes of estrous cycle, ovarian histomorphology were
measured, and the levels of serum sex hormone were analyzed using radioimmunoassay. Proliferative
responses of the ovary were also determined by immunohistochemistry. Administration of 25 or
45 mg/kg body weight genistein enhanced ovary development with changes in serum sex hormone
levels and proliferative responses. Meanwhile, the proportions of growing and mature follicles
increased and the incidence of autoimmune oophoritis decreased, which exhibited normal ovarian
morphology in administration of 25 or 45 mg/kg body weight genistein, while a lower dose (5 mg/kg
body weight genistein) produced the opposite effect. These findings suggest that genistein exerts
bidirectional estrogen-like effects on murine experimental AOD, while a high dose (45 mg/kg body
weight) of genistein may suppress AOD.
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1. Introduction

Premature ovarian failure (POF), also named premature ovarian insufficiency, results in the
dysfunction of the ovaries and consequent insufficiency of estrogen in women under the age of
40 [1]. Patients with POF suffer from anovulation, infertility and menopausal symptoms. POF has
been reported to play a causative role in many diseases, including osteoporosis, hypothyroidism,
Addison’s disease, and other auto-immune disorders. Statistically, the risk of POF for women under the
age of 40 is 1% and under the age of 30 is 0.1% [2–4]. Multicausal pathogenesis had been suggested in the
development of POF, such as genetic abnormalities, previous ovarian surgery, systemic chemotherapy
and radiotherapy, infections, enzymatic factors and autoimmune disease [5].

Autoimmune ovarian disease (AOD) is a chronic inflammatory disease. AOD was closely related
with lymphocytic infiltration of ovarian follicles in females with POF, which can be induced by
susceptible strains of animals via immunizing with zone pellucid (ZP) antigens and adjuvant [6–8].
The mammalian ZP is extracellular glycoprotein surrounding the oocytes and plays an important role
in spermatozoa–oocyte interaction and fertilization. Furthermore, ZP has been certified to affect the
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development of follicles. Many researches showed that the presence of antibodies in ZP antigens could
alter ovarian function and histology by interfering with cellular immune response [9–11].

There are many investigations that have evaluated the functions of phyto-oestrogens, including
isoflavones, coumestans and lignans. Soy isoflavones, particularly daidzein and genistein, are beneficial
for breast cancer, neuronal injury, prostate cancer, sexual dysfunction, osteoporosis and menopausal
symptoms [12,13]. The potential therapeutic benefits are derived from the estrogenic effect of soy
isoflavones [14–16]. Therefore, soy isoflavones could be used as safe, natural alternatives to traditional
hormonal therapies [17,18]. However, experimental evidences are controversial when the safety
and efficacy of dietary supplements containing soy isoflavones was regarded [19–22]. Recently,
a review summarized that the beneficial and harmful effects of phyto-estrogens may be related
to the exposure time, dosage and form in animals [13]. Genistein could stimulate the proliferation
of ERα-positive cells including MCF-7 and T47D cells, but did not stimulate the proliferation of
ERα-negative cells including MDA-MB-435 cells. While, another report gave the opposite result,
that genistein had an antiproliferative effect in MCF-7 breast cancer cells [23]. Seo et al. concluded that
the utilization of phytoestrogens in postmenopausal women might be detrimental [24].Thus, it appears
that more researches should be done to clarify the role of soy-based products in the reduction of
menopausal symptoms.

Genistein has been reported to bind to and signal through estrogen receptors, thereby making
the major site of estrogen receptors-ovary as the target tissue for genistein [25]. Therefore, in order to
investigate the role of genistein in experimental AOD, genistein was orally administered to mouse
during the acute stage of autoimmune oophoritis. Diverse techniques were employed to examine
the changes of estrogen-dependent target tissue and determine ovary and estrogenic levels in the
mouse serum.

2. Results

2.1. Regularization of the Estrous Cycle by Oral Administration of Genistein

The estrous cycles of normal female mice were regular and lasted 4–6 days: proestrus and
metestrus for 1 day, estrus and diestrus for 1–2 days. Irregular cycles occurred before amenorrhea
happened which is the character of POF. The patterns of estrous cycles were categorized based
on an increasing degree of abnormality from I to IV, as per the standard in the report given by
Bagavant et al. [26].

As shown in Figure 1, estrous cycle patterns changed during genistein administration.
Normal estrous cycles (category I) were 85% of the mice in control group (C); however, only 15%
of mice in the model group (M) were in normal cycles. The numbers of mice in normal cycles in
C and M groups were significantly different (p < 0.01). In contrast, the estrous cycles of mice in
genistein and estradiol groups were more regular. It was observed that 30% (low-dose of genistein
(5 mg/kg body weight) therapeutic group (GL group)), 45% (moderate-dose of genistein (25 mg/kg
body weight) therapeutic group (GM group)), 60% (high-dose of genistein (45 mg/kg body weight)
therapeutic group (GH group)), 40% (estradiol (1 mg/kg body weight) therapeutic group (E group)) of
mice cycled normally, respectively. The numbers of mice in normal estrous cycles in the GH group
were significantly higher than those in the M group (p < 0.05). Furthermore, fewer mice in the GH
groups showed no cycles (category IV) (15%) than those in the M group (75%, p < 0.01). The E group
tended also to have more mice with regular cycles (40%) and shortened estrus (40%) compared to the
C group (5%).
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Figure 1. Effects of genistein on estrous cycle patterns of BALB/c female mice. Four patterns of 
abnormal estrous cycles were graded in an increasing order of abnormality (I–IV) as follows: I: 
normal; II: regular cycles with a shortened estrus; III: irregular cycles with a prolonged diestrus and 
normal or prolonged estrus; IV: no cyclicity. C: control group; M: model group; GL: low-dose of 
genistein (5 mg/kg body weight) therapeutic group; GM: moderate-dose of genistein (25 mg/kg body 
weight) therapeutic group; GH: high-dose of genistein (45 mg/kg body weight) therapeutic group; E: 
estradiol (1 mg/kg body weight) therapeutic group. 

2.2. Estradiol Increased While Those that Are Follicle-Stimulating Hormone and Luteinizing Hormone 
Decreased after Oral Administration of Genistein 

For women with amenorrhea, it would be reasonable to measure basal follicle-stimulating 
hormone (FSH) and estradiol (E2) concentrations on at least two occasions if the value of FSH is at  
all elevated [27]. In addition, luteinizing hormone (LH) and FSH value >30 IU/L, and levels of E2  
<50 pg/mL are typical for women with absent or nonfunctioning follicles. 

As shown in Table 1, the levels of FSH and LH increased significantly, but E2 decreased 
significantly in the M group compared to the C group (p < 0.05) in the 1st, 20th, 30th, and 50th day. 
After administration of genistein, the levels of FSH and LH decreased and E2 enhanced to different 
extents on the 1st, 20th, 30th, and 50th day. For instance, the levels of FSH reduced by 3%, 23% and 
28% in GL, GM and GH groups compared to the M group on the 50th day, respectively. The 
decrease in GM and GH groups was significantly different (p < 0.05), while in GL group there was 
no significant difference. Also, the changes of LH were similar to the FSH. However, the levels of E2 
increased by 37%, 37% and 46% in GL, GM and GH groups compared to the M group on the 30th 
day, respectively. The enhancement of E2 in the GH group was significantly different (p < 0.05).  
In addition, the levels of prolactin (PRL) increased and the levels of testosterone (T) decreased  
in administration of genistein groups compared to M group with no significant difference (p > 0.05). 
Meanwhile, FSH and LH reduced and E2 enhanced in the E group during administration  
of estradiol. 

Table 1. Levels of sex hormone in mouse serum. 

Time/Day Group E2/pg·mL−1 LH/mIU·mL−1 FSH/mIU·mL−1 PRL/ng·mL−1 T/ng·mL−1

1st 

C 9.41 ± 0.45 30.15 ± 2.34 9.33 ± 1.01 9.28 ± 0.65 0.531 ± 0.062 
M 5.24 ± 0.90 a 36.51 ± 0.51 aa 9.90 ± 0.54 7.09 ± 0.65 0.544 ± 0.072 
GL 7.66 ± 0.36 31.41 ± 2.43 b 8.68 ± 0.71 7.07 ± 1.02 0.448 ± 0.045 
GM 8.39 ± 0.22 31.65 ± 2.07 b 7.15 ± 0.23 10.77 ± 0.20 b 0.514 ± 0.055 
GH 9.17 ± 3.15 b 34.23 ± 0.87 5.69 ± 1.71 aa,bb 8.48 ± 0.36 0.492 ± 0.021 
E 6.45 ± 0.79 32.02 ± 1.03 b 8.24 ± 0.52 8.74 ± 0.42 0.421 ± 0.018 

20th 

C 13.10 ± 8.57 31.50 ± 2.08 b 7.60 ± 1.86 b 9.01 ± 1.36 0.468 ± 0.006 
M 4.66 ± 0.56 aa 36.33 ± 1.41 10.05 ± 1.11 7.45 ± 0.97 0.484 ± 0.020 
GL 9.09 ± 3.27 29.80 ± 1.94 bb,c 7.57 ± 0.92 9.36 ± 1.39 0.463 ± 0.046 
GM 5.21 ± 0.85 aa 36.39 ± 1.83 a 8.96 ± 0.66 8.43 ± 1.08 0.432 ± 0.042 

Figure 1. Effects of genistein on estrous cycle patterns of BALB/c female mice. Four patterns of
abnormal estrous cycles were graded in an increasing order of abnormality (I–IV) as follows: I: normal;
II: regular cycles with a shortened estrus; III: irregular cycles with a prolonged diestrus and normal
or prolonged estrus; IV: no cyclicity. C: control group; M: model group; GL: low-dose of genistein
(5 mg/kg body weight) therapeutic group; GM: moderate-dose of genistein (25 mg/kg body weight)
therapeutic group; GH: high-dose of genistein (45 mg/kg body weight) therapeutic group; E: estradiol
(1 mg/kg body weight) therapeutic group.

2.2. Estradiol Increased While Those that Are Follicle-Stimulating Hormone and Luteinizing Hormone
Decreased after Oral Administration of Genistein

For women with amenorrhea, it would be reasonable to measure basal follicle-stimulating
hormone (FSH) and estradiol (E2) concentrations on at least two occasions if the value of FSH is
at all elevated [27]. In addition, luteinizing hormone (LH) and FSH value >30 IU/L, and levels of
E2 < 50 pg/mL are typical for women with absent or nonfunctioning follicles.

As shown in Table 1, the levels of FSH and LH increased significantly, but E2 decreased
significantly in the M group compared to the C group (p < 0.05) in the 1st, 20th, 30th, and 50th day.
After administration of genistein, the levels of FSH and LH decreased and E2 enhanced to different
extents on the 1st, 20th, 30th, and 50th day. For instance, the levels of FSH reduced by 3%, 23% and
28% in GL, GM and GH groups compared to the M group on the 50th day, respectively. The decrease
in GM and GH groups was significantly different (p < 0.05), while in GL group there was no significant
difference. Also, the changes of LH were similar to the FSH. However, the levels of E2 increased by
37%, 37% and 46% in GL, GM and GH groups compared to the M group on the 30th day, respectively.
The enhancement of E2 in the GH group was significantly different (p < 0.05). In addition, the levels of
prolactin (PRL) increased and the levels of testosterone (T) decreased in administration of genistein
groups compared to M group with no significant difference (p > 0.05). Meanwhile, FSH and LH
reduced and E2 enhanced in the E group during administration of estradiol.

Table 1. Levels of sex hormone in mouse serum.

Time/Day Group E2/pg·mL−1 LH/mIU·mL−1 FSH/mIU·mL−1 PRL/ng·mL−1 T/ng·mL−1

1st

C 9.41 ± 0.45 30.15 ± 2.34 9.33 ± 1.01 9.28 ± 0.65 0.531 ± 0.062
M 5.24 ± 0.90 a 36.51 ± 0.51 aa 9.90 ± 0.54 7.09 ± 0.65 0.544 ± 0.072
GL 7.66 ± 0.36 31.41 ± 2.43 b 8.68 ± 0.71 7.07 ± 1.02 0.448 ± 0.045
GM 8.39 ± 0.22 31.65 ± 2.07 b 7.15 ± 0.23 10.77 ± 0.20 b 0.514 ± 0.055
GH 9.17 ± 3.15 b 34.23 ± 0.87 5.69 ± 1.71 aa,bb 8.48 ± 0.36 0.492 ± 0.021
E 6.45 ± 0.79 32.02 ± 1.03 b 8.24 ± 0.52 8.74 ± 0.42 0.421 ± 0.018

20th
C 13.10 ± 8.57 31.50 ± 2.08 b 7.60 ± 1.86 b 9.01 ± 1.36 0.468 ± 0.006
M 4.66 ± 0.56 aa 36.33 ± 1.41 10.05 ± 1.11 7.45 ± 0.97 0.484 ± 0.020
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Table 1. Cont.

Time/Day Group E2/pg·mL−1 LH/mIU·mL−1 FSH/mIU·mL−1 PRL/ng·mL−1 T/ng·mL−1

20th

GL 9.09 ± 3.27 29.80 ± 1.94 bb,c 7.57 ± 0.92 9.36 ± 1.39 0.463 ± 0.046
GM 5.21 ± 0.85 aa 36.39 ± 1.83 a 8.96 ± 0.66 8.43 ± 1.08 0.432 ± 0.042
GH 4.67 ± 0.45 aa 32.56 ± 2.19 b 6.84 ± 0.26 bb 8.25 ± 0.67 0.479 ± 0.026
E 4.79 ± 0.14 aa 34.72 ± 3.98 8.71 ± 0.30 9.39 ± 0.74 0.457 ± 0.045

30th

C 4.32 ± 0.37 30.61 ± 0.37 8.36 ± 0.92 8.56 ± 1.23 0.397 ± 0.192
M 3.01 ± 0.45 a 36.87 ± 0.56 aa 10.32 ± 0.12 a 8.44 ± 0.75 0.437 ± 0.016
GL 4.13 ± 0.22 32.35 ± 1.31 b 8.89 ± 0.23 8.56 ± 0.52 0.414 ± 0.013
GM 4.13 ± 0.81 36.73 ± 2.57 aa 8.65 ± 0.42 7.23 ± 0.02 c 0.449 ± 0.028
GH 4.38 ± 0.57 b 31.93 ± 0.90 b 7.50 ± 0.19 b 8.59 ± 0.39 0.691 ± 0.234 a,c

E 4.29 ± 0.16 b 34.05 ± 0.61 8.48 ± 0.91 9.87 ± 1.20 0.399 ± 0.035

50th

C 4.42 ± 0.32 30.23 ± 1.62 9.02 ± 0.36 10.21 ± 1.31 0.470 ± 0.043
M 3.03 ± 0.75 a 34.65 ± 0.91 a 11.35 ± 0.44 a 7.52 ± 0.34 a,c 0.486 ± 0.018
GL 4.93 ± 0.78 b,c 31.50 ± 1.96 b 10.97 ± 0.93 8.76 ± 0.38 0.471 ± 0.010
GM 4.54 ± 0.35 b 30.15 ± 1.28 b,c 8.78 ± 0.29 b 7.78 ± 0.32 a,c 0.461 ± 0.032
GH 3.84 ± 0.24 34.68 ± 1.43 a 8.14 ± 0.77 bb 8.86 ± 0.56 0.469 ± 0.025
E 3.51 ± 0.13 33.65 ± 1.16 9.34 ± 0.41 b 9.98 ± 0.91 0.448 ± 0.019

All data are presented as mean ± S.D. a: p < 0.05 compared to the control group; aa: p < 0.01 compared to the
control group; b: p < 0.05 compared to the model group; bb: p < 0.01 compared to the model group; c: p < 0.05
compared to the estradiol group. C: control group; M: model group; GL: low-dose of genistein (5 mg/kg
body weight) therapeutic group; GM: moderate-dose of genistein (25 mg/kg body weight) therapeutic group;
GH: high-dose of genistein (45 mg/kg body weight) therapeutic group; E: estradiol (1 mg/kg body weight)
therapeutic group.

2.3. Decreased Morbidity of Oophoritis after Oral Administration of Genistein

When mice were immunized with ZP3, inflammation developed in the ovarian and in the growing
and mature follicles. Moreover, some ovaries exhibited a significant loss of growing and mature
follicles. As shown in Figure 2A, the ratio of growing follicles reduced significantly in the M group
on day 78 compared to the C group (Figure 2c). The numbers of atretic and primordial follicles in the
M group were increased (p < 0.05) relative to mice in the C group on day 78 (Figure 2a,b). The loss
of follicles was concomitant with a decrease in corpora lutea [28], indicating that ovarian function
was disrupted. Following exposure to genistein and estradiol, the ratio of atretic and primordial
follicles decreased, and growing and mature follicles increased compared to the M group, respectively.
Moreover, the changes in follicles ratio of every stage in the GM and GH groups were significantly
different compared with the M group (p < 0.05). While there was no difference in the ratios of atretic,
growing and mature follicles between the M group and GL group (p > 0.05). However, the changes of
follicles showed no difference between mice administration of genistein and estradiol (p > 0.05).

The oophoritis on an increasing severity from 1 to 4 was shown in Figure 2B. The oophoritis
morbidity was 15% in the C group; however, 90% of the mice in the M group had oophoritis.
The oophoritis morbidity in the GL, GM and GH groups was 70%, 55% and 45%, respectively.
The oophoritis morbidity decreased significantly in the GL, GM and GH groups compared to the
M group (p < 0.01). While the oophoritis morbidity in the E group was 35%, which declined significantly
compared to the M group (p < 0.01). However, the mice with oophoritis in the GM and GH groups
were focused on the level 1 and 2, while for mice in the GL group, they were mainly on level 4, which is
similar to the M group.



Int. J. Mol. Sci. 2016, 17, 1855 5 of 11
Int. J. Mol. Sci. 2016, 17, 1855 5 of 11 

 
Figure 2. The follicles ratio of every stage and oophoritis morbidity in the ovary. (A) The follicles 
ratio of every stage (a: atretic follicles; b: primordial follicles; c: growing follicles; d: mature follicles); 
(B) Autoimmune oophoritis was classified according to increasing severity from 1 to 4, 0: normal 
with no oophoritis. * p < 0.05 compared to control group; ┼ p < 0.05 compared to the model group;  
╪ p < 0.01 compared to the model group. 

2.4. Proliferative Responses of the Ovary 

The proliferation rate of the ovary follicles was determined by using an immunohistochemical 
staining of proliferating cell nuclear antigen (PCNA) protein (Figure 3), which was an accessory 
protein to δ polymerase, and was closely related to DNA replication, DNA repair and cell cycle 
progression [29]. Thus, PCNA was considered as a marker for the ovarian follicle growth. For all 
groups, the expression of PCNA-positive (brown in color) was visible not only in the follicles, but 
also in the stroma. Comparing to the C group, the strength and density of PCNA expression were 
much higher and mainly on the follicles in the M group. For mice exposure to genistein and 
estradiol, the expression of PCNA was focused on the follicles and changed differently in ovaries of 
mice in different groups. As shown in Figure 3, the strength and density of PCNA-positive 
expression in the E2 and GM groups were similar to the M group, while for the GL group the 
strength and density of PCNA-positive were significantly higher than that in the M group. 

Figure 2. The follicles ratio of every stage and oophoritis morbidity in the ovary. (A) The follicles
ratio of every stage (a: atretic follicles; b: primordial follicles; c: growing follicles; d: mature follicles);
(B) Autoimmune oophoritis was classified according to increasing severity from 1 to 4, 0: normal with
no oophoritis. * p < 0.05 compared to control group; † p < 0.05 compared to the model group; ‡ p < 0.01
compared to the model group.

2.4. Proliferative Responses of the Ovary

The proliferation rate of the ovary follicles was determined by using an immunohistochemical
staining of proliferating cell nuclear antigen (PCNA) protein (Figure 3), which was an accessory
protein to δ polymerase, and was closely related to DNA replication, DNA repair and cell cycle
progression [29]. Thus, PCNA was considered as a marker for the ovarian follicle growth. For all
groups, the expression of PCNA-positive (brown in color) was visible not only in the follicles, but also
in the stroma. Comparing to the C group, the strength and density of PCNA expression were much
higher and mainly on the follicles in the M group. For mice exposure to genistein and estradiol,
the expression of PCNA was focused on the follicles and changed differently in ovaries of mice in
different groups. As shown in Figure 3, the strength and density of PCNA-positive expression in the
E2 and GM groups were similar to the M group, while for the GL group the strength and density of
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PCNA-positive were significantly higher than that in the M group. However, the expression of PCNA
in the GH group was similar to the C group and significantly lower compared to the M group.
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Figure 3. Photomicrograph of PCNA from growing follicles in each group. (A) Control group;  
(B) model group; (C) estradiol group; (D) low-dose genistein group; (E) moderate-dose genistein 
group; (F) high-dose genistein group. The expression of PCNA-positive was brown in color, while 
blue in color for PCNA-negative expression. Original magnification 400×. Fo: follicle; St: stroma;  
FA: follicle antrum. 

3. Discussion 

Autoimmune ovarian disease is a known cause of human premature ovarian failure. AOD 
induction by immunizing with ZP3, an ovary-specific glycoprotein, is simple and rapid. Also, the 
experimental murine model was developed in 1991 [30] and had been successfully exploited in 
investigating some fundamental issues of self-tolerance and autoimmune disease mechanisms [31]. 
The irregular estrous cycles, changes in endocrine hormone levels and high oophoritis morbidity in 
the M group indicated that the autoimmune ovarian disease model was successful. The influence of 
ZP3 on the ovarian lifespan might be a continuous process through the steady enhancement of FSH 
and LH and decline of E2. Therefore, the AOD model was widely used to investigate the therapeutic 
efficacy of materials for POF. 

In this study, the mice received the diet supplemented with genistein at different doses (5, 25,  
45 mg/kg body weight). The estrous cycle was convenient and useful for monitoring the health state 
of female mice. The results showed that the estrous cycles were more regular after administration of 
genistein and eatradiol relative to the M group. Genistein could improve the occurrence of irregular 
cycles, which was consistent with Zhuang et al. [32]. The levels of endocrine hormone were 
reported to influence the development of follicles. FSH and LH had a synergistic effect on 
regulating follicular development and differentiation, E2 was related to secretion of follicles. Our 
results found that consumption of genistein enhanced the E2 level and could attenuate the 
preovulatory surge of LH and FSH in GM and GH groups compared to the M group. However, 
there was no significant difference in the levels of FSH, LH and E2 in GL group compared to the M 
group. Furthermore, the level of PRL showed a decreasing tendency, while for level of T was an 
opposite tendency with no significant difference when compared to the M group. These results were 
proved by multiple studies that had documented the estrogenic activity of genistein which has an 
indirect effect on the hypothalamic-pituitary-gonadal axis [33–35]. Zin et al. [36] found that FSH 

Figure 3. Photomicrograph of PCNA from growing follicles in each group. (A) Control group;
(B) model group; (C) estradiol group; (D) low-dose genistein group; (E) moderate-dose genistein group;
(F) high-dose genistein group. The expression of PCNA-positive was brown in color, while blue in color
for PCNA-negative expression. Original magnification 400×. Fo: follicle; St: stroma; FA: follicle antrum.

3. Discussion

Autoimmune ovarian disease is a known cause of human premature ovarian failure.
AOD induction by immunizing with ZP3, an ovary-specific glycoprotein, is simple and rapid. Also,
the experimental murine model was developed in 1991 [30] and had been successfully exploited in
investigating some fundamental issues of self-tolerance and autoimmune disease mechanisms [31].
The irregular estrous cycles, changes in endocrine hormone levels and high oophoritis morbidity in
the M group indicated that the autoimmune ovarian disease model was successful. The influence of
ZP3 on the ovarian lifespan might be a continuous process through the steady enhancement of FSH
and LH and decline of E2. Therefore, the AOD model was widely used to investigate the therapeutic
efficacy of materials for POF.

In this study, the mice received the diet supplemented with genistein at different doses
(5, 25, 45 mg/kg body weight). The estrous cycle was convenient and useful for monitoring the health
state of female mice. The results showed that the estrous cycles were more regular after administration
of genistein and eatradiol relative to the M group. Genistein could improve the occurrence of irregular
cycles, which was consistent with Zhuang et al. [32]. The levels of endocrine hormone were reported
to influence the development of follicles. FSH and LH had a synergistic effect on regulating follicular
development and differentiation, E2 was related to secretion of follicles. Our results found that
consumption of genistein enhanced the E2 level and could attenuate the preovulatory surge of LH
and FSH in GM and GH groups compared to the M group. However, there was no significant
difference in the levels of FSH, LH and E2 in GL group compared to the M group. Furthermore,
the level of PRL showed a decreasing tendency, while for level of T was an opposite tendency with
no significant difference when compared to the M group. These results were proved by multiple
studies that had documented the estrogenic activity of genistein which has an indirect effect on the
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hypothalamic-pituitary-gonadal axis [33–35]. Zin et al. [36] found that FSH increased and LH decreased
in rats with 10 mg/kg body weight of genistein, FSH and LH both reduced in rats with 100 mg/kg
body weight of genistein. They concluded that post-weaning exposure to genistein could influence
development of the reproductive system through regulating hormones. Otherwise, the increase of
growing and mature follicles, decrease of antral and primordial follicles, and the decline of oophoritis
morbidity after administration of moderate and high dose of genistein indicated that genistein could
improve the inflammation response in ovary. Xiao et al. found that amniotic fluid stem cells could
prevent follicle atresia and sustain the healthy follicles in the ovary of mice which were induced POF
by chemotherapeutic drugs [37].

Genistein could have a proliferative or antiproliferative effect depending on the levels of
endogenous estrogen, life stage and tumor types. The physiologies such as development and
differentiation of ovary could be modified after dietary phytoestrogen exposure [38]. When genistein
effects relate to proliferation, it was meaningful to determine the expression profiles of proliferation
markers like PCNA [39]. In the ovary, the expression of PCNA may affect follicular growth by
regulating PCNA-dependent granulose cell proliferation in follicles [40]. In the present study,
PCNA was mainly expressed in the ovarian follicles. The expression of PCNA in the GH group
was similar to the C group and significantly lower compared to the M group. However, the expression
in the GL group was higher than the M group. Interestingly, the expressions of PCNA after exposure
to genistein were consistent with the histomorphological results regarding the follicular development.

4. Materials and Methods

4.1. Animals and Chemicals

One hundred and twenty female mice BALB/c (7–9 weeks) were obtained from the HFK
BIOSCIENCE Co., Ltd. (Beijing, China). Before starting the experiments, all the animals were housed
at an ambient temperature of 25 ± 2 ◦C, 12/12 h of light-dark cycle with ad libitum food and water for
1 week. After acclimation, a total of 120 mice were randomly divided into six groups (n = 20 per group):
C group, M group, GL group, GM group, GH group, and E group. All groups except for C group
received experimental AOD via immunization. In addition, there were not any estrogenic compounds
exposure in diet, caging and bedding during the period. Care and treatment of the animals were based
on approved protocols in accordance with the NIH guidelines (NIH Publication 85-23, 1996).

The murine ZP3 peptide was synthesized by an automatic peptide synthesizer, and with a purity
of more than 90% as determined by HPLC analysis. The amino acid composition was verified by amino
acid analysis and the amino acid sequence of the murine ZP3330–342 peptides was NSSSSQFQIHGPR.

Genistein was purchased from Ci Yuan Biotechnology Co., Ltd. (Shanxi, China) with a purity of
more than 98% as determined by HPLC analysis. Estradiol and rabbit anti-mouse PCNA, a primary
antibody, were obtained from Sigma (St. Louis, MO, USA). The goat anti-rabbit IgG secondary
antibody was obtained from Beijing Zhongshan Jinqiao Biotechnology Co., Ltd. (Beijing, China).
Other chemicals were of analytical grade and purchased from Zhongshan Jinqiao Biotechnology
Co., Ltd. (Beijing, China).

4.2. Estrous Cycle Staging

The estrous cycles were determined by examining vaginal smears. Then, the estrous cycles were
staged by vaginal cytological appearance, mainly on the proportions of leukocytes, nucleated epithelial
cells and cornified squamous epithelial cells. The vaginal smears were taken according to the published
method by Zhuang et al. [32].

4.3. Immunization and Induction of Genistein

Ultrafiltered ZP3 peptides solution (1 mmol) was emulsified in an equal volume of complete
Freund’s adjuvant (Mycobacterium tuberculosis, H37Ra strain; 0.16 mg/mouse). Mice were
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anesthetized by intraperitoneal injection (i.p.) of tribromoethanol. Each mouse except for C group
was immunized subcutaneously in both hind footpads and received 0.15 mL of the mixture that
contained 50 nmol of the peptides. After 14 days, 0.15 mL of the emulsion (1 mmol incomplete
Freund’s adjuvant and ZP3) was injected into each mouse in the same position. C group received
0.15 mL of double-distilled water each time. Genistein and estradiol were administrated by daily
gavage after the immunization (Figure 4: experimental study). Genistein was solubilized in DMSO to
yield final concentrations of 0.75, 3.75 and 6.75 mg/mL. The doses of genistein in GL, GM, GH groups
were 5, 25, 45 mg/kg body weight, respectively. Estradiol also was solubilized in DMSO solution
(0.15 mg/mL (1 mg/kg body weight)) and was used as a positive control. Mice were given the same
volume of DMSO in C group and M group. Mice were sacrificed on day 50 after treatment.
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4.4. Detection of Serum Sex Hormone by Radio Immunity

Blood samples were collected from mice on day 1, 20, 30 and 50 after immunization and
clotted at room temperature. Then, serum samples were obtained by centrifuging at 3287× g for
20 min, and frozen at −80 ◦C for analysis of sex hormones including E2, FSH, LH, PRL and T,
using a solid-phase RIA kit (Diagnostic Products, Beijing Sino-uk institute of Biological Technology,
Beijing, China). Aliquots of serum (300 µL or less) were assayed in sextuplicate.

4.5. Ovarian Histomorphology

At the end of the experimental period, animals were sacrificed. Ovaries were fixed in 10% formalin
for 24 h and embedded in paraffin. Serial sections (5 µm) were stained with hematoxylin and eosin.
Specimens were coded and examined by an independent observer who was blind to experimental
details. Oophoritis was classified in an increasing severity from 1 to 4 based on a previous report [41].

4.6. Immunohistochemistry Analysis

For an immunohistochemical analysis of PCNA expression in the ovary, tissues were fixed
in 10% formaldehyde solution and embedded in paraffin, blocked and cut into 5 µm sections.
After rehydration, protein epitope retrieved with Tris-EDTA (10 mmol; pH 9) for 12–17 h at 60 ◦C.
NOVA Detect Mouse Tissue Detection System protocol with specific primary antibodies against PCNA
was used to detect the ovarian PCNA expression.

4.7. Statistical Analysis

Results were presented as mean ± S.D. Student’s t-test, rank-sum test, and one-way ANOVA
were used for data analysis with SPASS 17.0 software (Version 17.0, Chicago, IL, USA). p < 0.05 was
considered significant.
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5. Conclusions

In conclusion, we demonstrated that orally administering moderate and high doses of genistein
successfully suppressed experimental AOD in mice in this study, as evidenced by normalization of
estrous cycle, decreasing levels of FSH and LH, increasing levels of E2 and alleviating abnormal ovarian
histomorphology, especially at high doses. However, a significant improvement was not attained
from low doses of genistein when compared to the M group. Comparing the serious side effects of
traditional hormonal therapies for POF, there is an urgent need for natural alternatives. Our results
proved that phytoestrogens such as genistein may be a promising, safe therapeutic agent for the
treatment of premature ovarian failure. Therefore, it is reasonable to carry out further clinical research
on genistein, its pharmacological dosage and weak effects for the treatment of POF.
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POF premature ovarian failure
ZP zona pellucid
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GM group moderate-dose of genistein (25 mg/kg body weight) therapeutic group
GH group high-dose of genistein (45 mg/kg body weight) therapeutic group
E group estradiol group
E2 estradiol
FSH follicle-stimulating hormone
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