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Abstract

Purpose: PET measures of amyloid and tau pathologies are powerful biomarkers for the 

diagnosis and monitoring of Alzheimer’s disease (AD). Because cortical regions are close to 

bone, quantitation accuracy of amyloid and tau PET imaging can be significantly influenced by 

errors of attenuation correction (AC). This work presents an MR-based AC method that combines 

deep learning with a novel ultrashort time-to-echo (UTE)/Multi-Echo Dixon (mUTE) sequence for 

amyloid and tau imaging.

Methods: Thirty-five subjects that underwent both 11C-PiB and 18F-MK6240 scans were 

included in this study. The proposed method was compared with Dixon-based atlas method as 

well as other magnetization-prepared rapid acquisition with gradient echo (MPRAGE)- or Dixon- 

based deep learning methods. The Dice coefficient and validation loss of the generated pseudo-CT 

images were used for comparison. PET error images regarding standardized uptake value ratio 

(SUVR) were quantified through regional and surface analysis to evaluate the final AC accuracy.

Results: The Dice coefficients of the deep learning methods based on MPRAGE, Dixon and 

mUTE images were 0.84 (0.91), 0.84 (0.92), and 0.87 (0.94) for the whole-brain (above-eye) bone 
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regions, respectively, higher than the atlas method of 0.52 (0.64). The regional SUVR error for the 

atlas method was around 6%, higher than the regional SUV error. The regional SUV and SUVR 

errors for all deep learning methods were below 2%, with mUTE-based deep learning method 

performing the best. As for the surface analysis, the atlas method showed the largest error (> 

10%) near vertices inside superior frontal, lateral occipital, superior parietal and inferior temporal 

cortices. The mUTE-based deep learning method resulted in the least number of regions with error 

higher than 1%, with the largest error (> 5%) showing up near the inferior temporal and medial 

orbitofrontal cortices.

Conclusion: Deep learning with mUTE can generate accurate AC for amyloid and tau imaging 

in PET/MR.

Keywords

PET/MR; Attenuation correction; Deep learning; Convolutional neural network; UTE/Multi-Echo 
Dixon

INTRODUCTION

Amyloid deposits and tau neurofibrillary tangles (NFTs), the two neuropathological 

hallmarks of Alzheimer’s disease (AD), accumulate decades before neurodegeneration 

and symptomatic onset and are essential signs for early AD diagnosis. Positron emission 

tomography (PET) is a powerful imaging tool that has been used to identify and visualize 

amyloid deposits and progression for over a decade [1, 2]. Recently, high-affinity radiolabels 

have also been successfully developed for PET imaging of tau NFTs [3, 4]. For both 

amyloid and tau PET imaging, accurate quantification of the regional cortical uptake is 

critical for the diagnosis and progression monitoring of AD.

Simultaneous PET/magnetic resonance (MR) have been readily used for neurological 

applications due to its functional and metabolic imaging capability from PET and MR, 

excellent soft tissue contrast from MR, as well as benefits in partial-volume and motion 

corrections. As MR signals arising from protons are not directly related to photon 

attenuation coefficients, no simple transforms can perform PET attenuation correction (AC) 

based on MR images. Because the cortical regions are close to the bone, quantitation 

accuracy of amyloid and tau imaging can be significantly compromised by AC errors in 

PET/MR. In addition, standardized uptake value ratio (SUVR), a metric widely used for 

assessment in amyloid and tau PET imaging, can be easily affected by AC errors since 

the cerebellum cortex (i.e., reference region widely used to calculate SUVR) is close 

to complicated bone structures (e.g., mastoid process) of the skull [5]. To leverage the 

quantitative merits of PET/MR for amyloid and tau imaging, accurate AC is indispensable.

Various methods have been proposed for AC in PET/MR [6, 7]. One category of methods 

segments MR images (e.g., T1-weighted, Dixon, or ultrashort time-to-echo [UTE]/ zero 

time-to-echo [ZTE] images) into different tissue types (i.e., water, fat and bone) and assigns 

attenuation coefficient to each tissue type to produce the attenuation map [8–13]. Another 

category of methods produces attenuation maps by non-rigidly registering MR images to 

atlas generated from populational computed tomography (CT) and MR image pairs [14–17]. 
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Machine learning and joint estimation methods have also been explored [18–21]. Recently, 

a UTE/multi-echo Dixon (mUTE) sequence-based method has been proposed to take full 

advantage of MR physics for AC [22]. The mUTE sequence integrates UTE for imaging 

short-T2 components (i.e., bone) and multi-echo Dixon for robust water/fat separation into 

a single acquisition, which enables a physical compartmental model to estimate continuous 

distributions of attenuation coefficients. However, deficiency exists in the abovementioned 

MR AC methods. For the segmentation-based method, segmentation errors were observed 

at boundaries between soft tissue, bone and air, especially near nasal and mastoid-process 

regions [23, 24]. The atlas-based method cannot account for pathological regions which are 

not part of the atlas, and is vulnerable to registration errors and time-consuming [10, 25]. 

Accuracy of the joint-estimation method depends on time-of-flight (TOF) resolution and its 

computational complexity is another concern. For the mUTE sequence, parameter estimation 

based on the physical compartmental model is complicated and nontrivial.

Recently, deep learning has shown promising results for synthetic data generation. Various 

studies based on convolutional neural networks (CNNs) have been proposed for pseudo-CT 

generation, and showed better results compared to conventional methods for the brain [26–

33], pelvis [34, 35], and whole-body [36] regions. Specifically, our group has developed 

a novel Group-Unet structure [28] which can efficiently handle scenarios with multiple 

network-input channels [28] and utilize network parameters more efficiently, compared to 

the popular U-net structure [37]. However, the deep learning methods were mostly assessed 

using 18F-FDG datasets. It is unclear how could these methods work for amyloid and tau 

PET imaging, which has higher accuracy demand for PET AC along with the need of 

comprehensive regional and pixelwise analysis. In addition, existing deep learning methods 

used Dixon/T1-weighted MR images as the network input. It is unclear whether using more 

AC-specific MR images as the network input can generate improved results.

In this work, we propose a new deep learning-based AC method, CNN-mUTE, for amyloid 

and tau imaging by leveraging physics information from the mUTE sequence and the 

efficiency of Group-Unet in handling multiple input channels of mUTE MR images. The 

performance of the proposed method was evaluated using in vivo imaging data acquired 

from thirty-five subjects that underwent both 11C-PiB and 18F-MK6240 scans. We compared 

the performance of the proposed method with Dixon-based atlas method available in clinical 

PET/MR scanners, as well as deep learning-based AC methods that use T1-weighted image 

and Dixon as network input. Freesurfer [38] was used to derive accurate personalized brain 

masks to evaluate regional errors related to amyloid and tau imaging. Surface analysis was 

additionally performed to understand errors for the whole cortical regions.

MATERIALS AND METHODS

Participates

Thirty-five subjects (three patients with mild-cognitive impairment and thirty-two 

cognitively healthy volunteers, 19 males and 16 females, 68.6±11.6 years old [range 47–86]) 

recruited for Harvard Aging Brain Study (HABS) were scanned under a study protocol that 

was approved by Massachusetts General Hospital (MGH) Institutional Review Board (IRB). 

Written informed consent was obtained from all subjects before participation in the study.
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MR acquisition

MR acquisitions were performed on a 3T MR scanner (MAGNETOM Trio, Siemens 

Healthcare, Erlangen, Germany) using body coil for transmission and 12-channel head 

coil for reception. T1-weighted anatomical images were acquired using magnetization­

prepared rapid acquisition with gradient echo (MPRAGE) sequence. 3D mUTE sequence 

(Supplementary Fig. 1) [22] was used to acquire Dixon and mUTE images, with the 

following imaging parameters: image size = 128×128×128, voxel size = 1.875×1.875×1.875 

mm3, hard radiofrequency (RF) pulse with flip angle = 15° and pulse duration = 100 

μs, repetition time (TR) = 8.0 ms, maximum readout gradient amplitude = 19.57 mT/m, 

maximum readout gradient slew rate = 48.9 mT/m/ms, and acquisition time = 52 s. The final 

reconstruction from the mUTE sequence resulted in seven images: one UTE image and six 

multi-echo Dixon images with corresponding echo times (TEs) of 0.07, 2.1, 2.3, 3.6, 3.7, 

5.0, and 5.2 ms, respectively.

PET acquisition

Two separate PET/CT examinations were performed for each subject on a whole-body 

PET/CT scanner (Discovery MI, GE Healthcare, Milwaukee, Wisconsin, USA): one is 

amyloid PET imaging by the administration of 11C-PiB and the other is tau PET imaging 

based on 18F-MK-6240. For amyloid imaging, the imaging protocol consisted of 555 MBq 

bolus injection of 11C-PiB followed by a dynamic scan over 70 min. PET Data from 55–60 

min post injection were used for evaluation. For tau imaging, the imaging protocol consisted 

of 185 MBq bolus injection of 18F-MK-6240 followed by a dynamic scan over 120 min. 

Only data from 85–90 min post injection were evaluated. For both amyloid and tau imaging, 

PET images were reconstructed using the ordered subset expectation maximization (OSEM) 

algorithm with point spread function (PSF) modeling with two iterations and sixteen subsets. 

The voxel size was 1.17×1.17×2.80 mm3 and the image size was 256×256×89. The same 

CT imaging protocol was used for both amyloid and tau imaging, with tube peak voltage = 

120 kVp, tube current time product 30 = mAs, in-plane resolution = 0.56×0.56 mm2, and 

slice-thickness = 1 mm.

Neural network details

For the Unet structure [37], the feature size after the first convolutional module needs 

to be enlarged to fully utilize the input information from multi-contrast MR images or 

neighboring slices, which increases the total number of parameters dramatically. In this 

work, Group-Unet structure was employed to efficiently handle scenarios with multiple 

network-input channels [28] and to utilize network parameters more efficiently, based on the 

assumption that when the network goes deeper, the spatial information becomes discrete and 

the traditional convolution module can be replaced by the group convolution module [39]. 

Details of the Group-Unet structure are shown in Supplementary Fig. 2.

To construct the training pairs, MR images were registered to CT images through rigid 

transformation using the ANTs software [40]. Random rotation and permutation were 

performed on the training pairs to avoid over-fitting. When random rotation was applied, 

interpretation was performed with the voxel size and image size fixed. Though image 

resolution will be compromised a little due to the interpretation operation, this will not be 
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a problem for attenuation map generation as the attenuation map does not have complicated 

structures as nature images. The Group-Unet employed in this work was based on 2D 

convolutions, instead of 3D convolutions, to reduce the GPU memory usage and training 

parameters, and hence was a 2D network. As PET AC is based on 3D CT images, the 

network outputs were further combined to construct 3D pseudo-CT images. To reduce the 

axial aliasing artefacts, four neighboring slices were supplied as the additional network 

input [41]. With Dixon and MPRAGE images as the network input, the input channel was 

5 (neighboring slices); with mUTE images as the network input, the input channel was 

5 (neighboring slices) × 7 (number of images). As a result, two network structures were 

needed due to the varying of network input channels. The only difference between the two 

networks was the number of input channels (5 vs. 35). Other settings of the network, e.g. 

number of features after each convolution, were the same. The training parameters were 6.02 

million and 6.03 million for the network with 5 input channels and the network with 35 

input channels, respectively.

The training objective function was based on the L1-norm loss calculated between the 

pseudo and the ground-truth CT images. The network was implemented in TensorFlow 1.14 

with the Adam optimizer. The learning rate and the decay rates of the default settings in 

TensorFlow were used. Five-fold cross-validation was utilized to make full use of all the 

data. The batch size was set to 30, and 600 epochs were used as the training cost function 

becomes steady after 600 epochs. The training time running 600 epochs was 6.7 hours based 

on the Nvidia GTX 1080 Ti GPU.

Pseudo-CT image analysis

To evaluate the quality of generated pseudo-CT images, we first calculated the relative 

validation loss of the CT images as

Relative validation loss = CTgenerated − CT truth
CT truth

, (1)

where CTtruth is the ground-truth CT image and CTgenerated is the generated pseudo-CT 

image. As bone regions are close to the cortex, they were additionally quantified using the 

Dice coefficient. Regions with attenuation coefficient higher than 0.1083 cm−1 (200 HU 

unit) were classified as the bone area.

PET image analysis

To enable better registration between PET and MR images, the PET image of interest 

was first registered to the first 8-min frame of the dynamic scan, through which it was 

registered to the MPRAGE image based on rigid registration. Freesurfer was used for 

cortical parcellation based on the MPRAGE image to get the region of interests (ROIs) 

for amyloid and tau quantification. Based on the Braak staging [42], the cortical regions 

crucial to amyloid burden calculation [43, 44] —superior frontal, rostral anterior cingulate, 

posterior cingulate, precuneus, inferior parietal, supramarginal, medial orbitofrontal, middle 

temporal and superior temporal—were used as ROIs for amyloid quantification. As for 

the quantification of tau imaging, the early Braak stage-related cortices—hippocampus, 
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entorhinal, parahippocampal, inferior temporal, fusiform, posterior cingulate, lingual and 

insula—were employed as the evaluation ROIs. The ROIs for the amyloid imaging 

quantification were mostly near the upper regions of the brain, and the ROIs chosen for 

the tau imaging quantification were concentrated near the middle/inferior temporal regions. 

By evaluating the AC quality of both amyloid and tau imaging, the performance of different 

AC methods was examined for most of the cortex regions.

Compared to amyloid deposits which are more heterogeneously and randomly distributed, 

the pathway of tau NFTs is more precise. Resolving the topographic patterns of tau retention 

in PET can enable better disease monitoring, which makes surface analysis a necessary 

addition to regional analysis for tau imaging. In this work, we have performed additional 

surface analysis for tau imaging to comprehensively evaluate and understand different AC 

methods. The surface map of the PET error image was generated for each tau-imaging 

dataset and was registered to the FSAverage template in Freesurfer to construct the averaged 

surface map.

For both regional and surface analysis, the relative PET error was used and calculated as

PETerror = PETpseudoCT − PET trueCT
PET trueCT

, (2)

where PETpseudoCT and PETtrueCT refer to the reconstructed PET images with AC using 

the pseudo-CT images generated from different MR AC methods and the ground-truth CT 

image, respectively. For regional analysis, PETpseudoCT and PETtrueCT indicates the mean 

values inside the specified ROI. For surface analysis, PETpseudoCT and PETtrueCT indicates 

the values at the vertices. With respect to the global PET analysis, Bland-Altman plots 

were drawn for both amyloid and tau imaging regarding SUVR to understand PET-error 

distributions of different methods.

Comparison methods

One popular method available in clinical PET/MR scanners is the Dixon image-based atlas 

method [45]. This method is denoted as Atlas-Dixon and is adopted for comparison in 

this work. For the deep learning-based approach, apart from the proposed CNN-mUTE 

method, we have tested two other cases with different MR images: MPRAGE and Dixon 

images were used as network input for additional comparison, which are denoted as CNN­

MPRAGE and CNN-Dixon, respectively.

RESULTS

Pseudo-CT analysis

Fig. 1 shows one example of the generated pseudo-CT images using different methods 

along with the ground-truth CT image. All deep learning methods generated more accurate 

bone distributions compared to the Atlas-Dixon method, with CNN-mUTE revealing the 

most accurate bone details. For all thirty-five datasets, the relative validation loss and the 

Dice coefficients of the bone regions are shown in Table 1. As observed from the table, 

deep learning methods showed higher quantification accuracy compared to the Atlas-Dixon 
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method. CNN-MPRAGE and CNN-Dixon showed similar performance and CNN-mUTE 

showed higher quantification accuracy compared to both CNN-MPRAGE and CNN-Dixon, 

regarding both relative validation loss and Dice coefficients.

Reginal and global PET analysis

We have embedded the generated pseudo-CT images into PET image reconstruction to 

evaluate PET AC accuracy. Fig. 2 shows one amyloid-imaging example of the PET errors 

(PETpseudoCT − PETtrueCT, unit: SUV) using different methods of the same subject as shown 

in Fig. 1. The CT/pseudo-CT images and the reconstructed PET images were also presented 

in the figure to better observe the source of errors. PET error images from the datasets with 

the largest and the smallest PET regional relative errors using the proposed CNN-mUTE 

method are shown in Supplementary Fig. 3 and Supplementary Fig. 4, respectively. These 

correspond to the best and worst cases using the proposed CNN-mUTE method. From these 

three examples, we can observe that the PET errors from the deep learning methods were 

smaller than those from the Atlas-Dixon method, especially alongside the bone regions.

Fig. 3 shows the regional PET analysis based on all thirty-five subjects from the amyloid­

imaging dataset regarding SUV and SUVR. Fig. 4 shows the same analysis based on the 

tau-imaging dataset. The regional errors from all deep-learning methods were smaller than 

2% for both amyloid and tau imaging. Although the SUV error in some cortex regions, 

e.g. hippocampus and posterior cingulate, were relatively small (e.g., lower than 2%) for 

the Atlas-Dixon method, those small-SUV-error cortex regions displayed much larger error 

for SUVR since the error in the cerebellum was significant (e.g., around 6%). As SUVR 

is the metric widely used for amyloid and tau imaging, the Atlas-Dixon method may cause 

significant errors for amyloid and tau imaging quantification.

Fig. 5 shows the Bland-Altman plots for tau imaging regarding SUVR. Based on the 

distributions, we can see that the deep learning-based methods showed narrower error 

ranges compared with the Atlas-Dixon method. The error ranges from CNN-MPRAGE and 

CNN-Dixon were similar, and CNN-mUTE method showed relatively smaller error range 

compared to both CNN-MPRAGE and CNN-Dixon. The same trend was also observed from 

the Bland-Altman plot for amyloid imaging regarding SUVR presented in Supplementary 

Fig. 5.

PET surface analysis

Fig. 6 shows the averaged surface map for PET SUVR error of different AC methods for tau 

imaging. The Atlas-Dixon method showed the largest error (e.g., >10%) at vertices inside 

superior frontal, lateral occipital, superior parietal and inferior temporal cortices. The deep 

learning methods showed smaller error compared with the Atlas-Dixon method for almost 

all regions. For the deep learning methods, relatively high error (e.g., >5% ) was shown in 

some vertices near medial orbitofrontal and inferior temporal cortices. CNN-mUTE showed 

the least number of vertices with errors larger than 1%, followed by CNN-Dixon and 

CNN-MPRAGE.
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DISCUSSION

Compared to other PET applications, amyloid and tau imaging rely more on SUVR-based 

cortical quantification, which is significantly impacted by the accuracy of pseudo-CT bone 

map and the PET quantification in the cerebellar cortex. For tau imaging, in addition to 

regional analysis, evaluation of pixel-wise tracer distribution as well as the topographic 

patterns are necessary for better disease monitoring and early diagnosis. In this regard, 

specific evaluations of deep learning-based AC methods for amyloid and tau imaging 

are necessary. In this work, we have performed AC for amyloid and tau imaging using 

the proposed CNN-mUTE method, and compared it with deep learning methods based 

on Dixon and MPRAGE as well as the vendor-available Atlas-Dixon method through 

detailed regional and surface analysis. Results showed that for SUVR quantification, the 

Atlas-Dixon method showed relatively large errors. The deep-learning methods resulted 

in lower quantification error compared to the Atlas-Dixon method in both regional and 

surface analyses. Specifically, the proposed CNN-mUTE method provided better PET AC, 

in comparison to CNN-MPRAGE and CNN-Dixon methods. This is likely due to the 

abundance in physical information contained in the multi-contrast images from mUTE, 

which consist of perfectly registered UTE images for bone imaging and multi-echo Dixon 

images for robust water/fat separation. Our previous work has shown that a physical model 

can be derived to map the mUTE images to continuous attenuation coefficient distributions 

of bone, fat and water [22]. However, obtaining the model parameters requires solving a 

nonlinear estimation problem at each voxel, which becomes challenging in the presence 

of severe B0 and B1 inhomogeneities. Combining the mUTE-based AC method with deep 

learning further improves the accuracy and robustness of AC in PET/MR. All these results 

indicate that deep learning-based AC is a powerful technique to predict the attenuation 

map from MR images for amyloid and tau imaging, which can be further improved when 

network input is fed with more information of direct physical meaning.

The Group-Unet utilized in this work was developed to efficiently utilize multiple network 

inputs based on supervised learning [28]. We also developed a 3D Cycle-GAN network 

which did not need paired CT-MR images and can thus relax the training-data collection 

requirements [46]. Results presented in [46] showed that 3D Cycle-GAN was better than 

Dixon-based segmentation and atlas methods, and its performance was a little inferior to 

Group-Unet (Dice coefficient of the bone region was 0.76 for Group-Unet and 0.74 for 

Cycle-GAN). Because Cycle-GAN does not utilize the strong pixel-to-pixel loss from paired 

data, the results of Cycle-GAN are still very promising, especially for applications where 

registration or obtaining paired data is difficult. For this work, as paired CT-MR images 

were available, Group-Unet was preferred because of its better performance. In addition, 

the mUTE sequence generated multiple MR images. If Cycle-GAN was used, one of the 

generator networks need to synthesize multiple pseudo-MR images from one CT image, 

which might not be easy to train as it is a one-to-many mapping. Based on the consideration 

of network performance and training difficulty, Group-Unet was employed in this work.

As shown by Fig. 3 and Fig. 4, the cerebellar cortex can be largely influenced by the 

inaccuracy of bone in the pseudo-CT map,. This can be a problem especially for amyloid 

and tau imaging as SUVR, instead of SUV, is widely employed in amyloid and tau imaging 
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to approximate the distribution volume ratio (DVR). The SUVR thresholds are often adopted 

to separate subjects into different clinical groups in amyloid and tau imaging. We noticed 

that the PET error maps for SUV and SUVR are quite different when Atlas-Dixon method 

was used for AC. Initially, we hypothesized that SUVR error may be smaller than SUV error 

as the errors in the cortex regions and the cerebellar cortex may cancel out. Results in this 

work demonstrated that this is not the case, as the error distribution for the cerebellar cortex 

and other cortices can be quite different. Deep learning-based AC methods can generate 

better bone maps near the cerebellar cortex and can greatly improve the overall SUVR 

quantification.

For the surface maps of tau imaging shown in Fig. 6, we noticed that for the medial 

orbitofrontal cortex and the entorhinal cortex, the deep learning-based methods still showed 

relatively large errors (e.g., >5%), though smaller than those from the Atlas-Dixon method. 

We presume this is because the bone near the sinuses and the mastoid part of the temporal 

bone are much more complicated than the cranial bone, which could be more difficult to 

be accurately synthesized through MR images. As medial orbitofrontal cortex is one of 

the composite cortex regions for amyloid burden calculation [44], and inferior and middle 

temporal cortices are crucial for early-stage tau quantification [42], further improvements of 

MR AC are still needed for amyloid and tau imaging. In addition, due to limited datasets, 

validation datasets were not used during network training. The epoch number was fixed 

at 600 for all network training. This epoch-number choice is not optimal, which is one 

limitation of current study.

CONCLUSION

In this work, we have proposed an mUTE-based deep learning method for PET AC of 

amyloid and tau imaging. The performance of the proposed method was evaluated through 

regional and surface analyses on 11C-PiB and 18F-MK6240 datasets acquired on thirty-five 

subjects. Our results show that deep learning-based methods can generate accurate AC 

for SUVR quantification, with the proposed mUTE-based deep learning method achieving 

the best AC performance when compared to MPRAGE- and Dixon-based deep learning 

methods as well as the Dixon-based atlas method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Three views of the ground-truth CT and the generated pseudo-CT images of one subject 

using different methods: Ground-truth CT (first column), Atlas-Dixon (second column), 

CNN-MPRAGE (third column), CNN-Dixon (fourth column) and CNN-mUTE (fifth 

column).
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Fig. 2. 
Three views of the CT/pseudo-CT images, PET images (11C-PiB, unit: SUV) and the 

corresponding PET error images (PETpseudoCT − PETtrueCT, unit: SUV) for one subject. For 

each view, the first row shows the ground-truth CT image (first column) and the pseudo-CT 

images generated by Atlas-Dixon (second column), CNN-MPRAGE (third column), CNN­

Dixon (fourth column) and CNN-mUTE (fifth column), respectively; the second row shows 

the PET images reconstructed using the ground-truth CT image and different pseudo-CT 

images; the third row shows the corresponding PET error images for different methods.
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Fig. 3. 
Regional analysis for amyloid imaging based on the 11C-PiB dataset for SUV (left) and 

SUVR (right).
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Fig. 4. 
Regional analysis for tau imaging based on the 18F-MK6240 dataset for SUV (left) and 

SUVR (right).
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Fig. 5. 
Bland-Altman plots regarding tau imaging for (a) Atlas-Dixon, (b) CNN-MPRAGE, (c) 

CNN-Dixon and (d) CNN-mUTE methods. The x-axis stands for the mean value between 

the PET images reconstructed using the ground-truth CT and generated pseudo-CT (0.5 

∗ (PETpseudoCT + PETtrueCT), unit:SUVR). The y-axis stands for the difference between 

the PET images reconstructed using generated pseudo-CT and the ground-truth CT 

(PETpseudoCT − PETtrueCT, unit: SUVR).
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Fig. 6. 
The averaged surface maps of SUVR relative error for different methods: Atlas-Dixon (first 

column), CNN-MPRAGE (second column), CNN-Dixon (third column) and CNN-mUTE 

(fourth column). Only the right hemisphere of the surface map is shown. The color map 

range is from 1% to 10% in magnitude.
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Table 1.

Quantification of the generated pseudo-CT, regarding the validation loss and Dice coefficient of the bone 

regions.

Methods Relative validation loss (%) Dice of bone whole Dice of bone above eye Dice of bone below eye

Atlas-Dixon 28.72±0.02 0.52±0.06 0.64±0.08 0.19±0.07

CNN-MPRAGE 12.58±0.01 0.84±0.03 0.91±0.02 0.70±0.07

CNN-Dixon 11.44±0.01 0.84±0.03 0.92±0.02 0.68±0.06

CNN-mUTE 10.94±0.01 0.87±0.03 0.94±0.02 0.73±0.06
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