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Abstract: Background: In advanced Parkinson’s disease, the pedunculopontine nucleus region is
thought to be abnormally inhibited by gamma-aminobutyric acid (GABA) ergic inputs from the
over-active globus pallidus internus. Recent attempts to boost pedunculopontine nucleus function
through deep brain stimulation are promising, but suffer from the incomplete understanding of
the physiology of the pedunculopontine nucleus region. Methods: Local field potentials of the
pedunculopontine nucleus region and the globus pallidus internus were recorded and quantitatively
analyzed in a patient with Parkinson’s disease. In particular, we compared the local field potentials
from the pedunculopontine nucleus region at rest and during deep brain stimulation of the globus
pallidus internus. Results: At rest, the spectrum of local field potentials in the globus pallidus
internus was mainly characterized by delta-theta and beta frequency activity whereas the spectrum
of the pedunculopontine nucleus region was dominated by activity only in the delta and theta band.
High-frequency deep brain stimulation of the globus pallidus internus led to increased theta activity
in the pedunculopontine nucleus region and enabled information exchange between the left and
right pedunculopontine nuclei. Therefore, Conclusions: When applying deep brain stimulation in
the globus pallidus internus, its modulatory effect on pedunculopontine nucleus physiology should
be taken into account.

Keywords: deep brain stimulation; pedunculopontine nucleus; globus pallidus internus;
Parkinson’s disease; local field potentials

1. Introduction

Akinetic axial symptoms such as postural instability and gait disorders (PIGD) are among
the most disabling features of Parkinson’s disease (PD) and significantly affect quality of life [1].
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Initial PIGD often respond to levodopa and deep brain stimulation (DBS) of the subthalamic nucleus
or the globus pallidus internus (GPi). Since these strategies eventually become less effective during
the course of the disease [2], low-frequency DBS of the pedunculopontine nucleus (PPN) region
has been suggested [3]. Although promising in larger clinical studies [4–7], outcomes of PPN-DBS
vary. The optimal implantation and stimulation parameters are still under discussion [8] due to
the comparatively low number of implantations and the complexity of PPN anatomy, physiology,
and pathophysiology.

The PPN region is a key structure in locomotion and its degeneration occurs in PD [9]. PPN region
damage in animals or human stroke patients can cause PIGD phenotypes. A unilateral lesion can
often be compensated after short periods of time but bilateral lesions, e.g., following toxic or vascular
lesions [10,11], are persistent. In PD with PIGD, pathologically increased GPi-activity is supposed to
cause an over-inhibition of the PPN region via GABAergic projections and current therapies attempt
to augment the PPN region activity through low frequency DBS [12–14].

However, despite its central role in DBS strategies for the PPN region, the mechanism of aberrant
GPi-mediated PPN inhibition in PD with PIGD presently relies only on indirect evidence, and available
physiological data in primates are limited to a single MPTP-treated macaque [15]. Here, we present
electrophysiological data of a PD patient which demonstrate that high-frequency GPi-DBS augments
PPN region theta activity.

2. Methods

Patient’s Clinical Data and Surgery

The patient was a 65-year-old male with a nine year history of idiopathic Parkinson’s disease
(IPD). He met the UK Brain Bank Criteria [16] by displaying hypokinesia accompanied by left side
dominant rigidity and resting tremor. Additionally, he presented with dystonic symptoms of his
left arm and upper trunk. The remaining neurological exam was normal. Diagnosis of IPD was
confirmed by pathological dopamine transporter (DaT)-Scan, a significant (40%) improvement during
levodopa challenge and reduced 131I-meta-iodobenzylguanidine (MIBG)-single photon emission
tomogram (SPECT). Cerebral magnetic resonance imaging (MRI), Dopamine-(D2)-receptor-SPECT,
neurophysiological diagnostics, and cerebrospinal fluid (CSF) analyses were normal.

The patient received bilateral GPi-DBS for the combined treatment of Parkinsonian motor
fluctuations and dystonic symptoms after seven years disease duration. Clinical outcome was
good (Unified Parkinson Disease Rating Scale (UPDRS) motor score [17]: GPi-OFF/Med-OFF 20,
GPi-ON/Med-OFF 12 points). During the next two years, gait disorder progressively deteriorated
and the patient developed freezing and frequent falls, refractory to optimized medical therapy [18],
and GPi-DBS. Thus, additional PPN surgery was proposed. The Otto-von-Guericke University Ethic’s
Board approved the study protocol, and the patient gave written informed consent.

To provide high resolution MR-images for planning the PPN related stereotactic trajectory a 3T
MRI was applied. The GPi electrodes had to be temporarily explanted as the DBS hardware had yet
to be MRI-certified. Despite optimized medical treatment [18], motor symptoms deteriorated after
explantation and the patient developed psychiatric co-morbidity with anxiety and agitation during
his OFF-states.

Four weeks later, bilateral DBS surgery of the GPi (Medtronic 3387) and of the PPN region
(Medtronic 3389) was simultaneously performed as previously described [19,20]. Five days after
implantation of the GPi- and PPN-leads, both targets were connected to two separate 2-channel
impulse generators (Medtronic, Activa-PC, Minneapolis, MN, USA).

As 1.5T was deemed insufficient to delineate the PPN when observing the manufacturers
limitation for the MRI scan (DBS-systems were not 3T MRI compatible), the electrode positions
were re-matched to the pre-operative MRI (Figure 1) based on intra-operative stereotactic X-rays
following an approach of Treuer et al. [21,22]: Pre-operative T1-weighted MRI and intra-operative CT
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images (after mounting the stereotactic frame before surgery onset) were registered using 13 anatomical
landmarks. Landmark-based registration was preferred over automated image registration because of
the maximization of mutual information as the averaged mapping error provides an intrinsic measure
for the accuracy of the procedure. Selected landmarks within the brainstem allowed for the evaluation
of potential differences between the mesencephalic angles in the MRI and CT scans that could result
from differences in patient positioning. Both the intra-operative CT scan and the following orthogonal
X-ray images were acquired with stereotactic image fiducials. Electrode positions in the acquired X-ray
images could thus be projected onto the CT-scan by stereotactic transformations [23].
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Figure 1. Anatomical positions of DBS electrodes. (A) Anatomical location of the GPi electrodes
as determined by intra-operative orthogonal x-ray imaging: in the lateral and frontal x-ray views,
the location of each contact used for stimulation or recording is marked by a red cross, as is the
corresponding location in the proton weighted MRI (from left to right). Orthogonal x-ray images and
intra-operative CT were acquired with stereotactic image fiducials allowing for transformation into a
common (stereotactic) coordinate system with a spatial mismatch between CT and x-ray coordinates
of less than 1 mm (unpublished data). MRI images were transformed into this coordinate system
by manual image registration to the CT data using anatomical landmarks. Contacts 0–2 of the left
electrode and contacts 0 and 1 of the right electrode were located within the ventro–postero–lateral
section of the respective GPi. Please note that LFP signals were recorded and analyzed both from
electrode pairs 0–1 and 2–3 (during contralateral stimulation); (B) Anatomical location of the PPN
electrodes: the PPN region is located lateral to the decussation of the superior cerebellar peduncles
(green) and the central segmental tract (blue) and medial to the lemniscal systems (yellow) (see Zrinzo
et al., 2008 for anatomical details). According to these landmarks, contacts 0–2 of the left electrode and
contacts 1 and 2 of the right electrode were located within the respective rostral PPN. Abbreviations:
CT: computer tomography, DBS: deep brain stimulation, GPi: globus pallidus internus, MRI: magnetic
resonance imaging, PPN: pedunculopontine nucleus region.

3. Clinical Assessments

Core assessment program for surgical interventions (CAPSIT)-evaluation [24] was limited by the
patient’s psychiatric co-morbidity (see Methods) and reduced compliance: Pre-operatively, the patient
refused to pause medication. Postoperatively, an interruption of GPi-DBS was also not tolerated.
Therefore, single PPN-DBS was not employed. Conceivably, possible antagonistic effects of GPi-DBS
on PPN-DBS have not been investigated in the present electrophysiological design.

The preoperative UPDRS motor score in the best medical ON resulted in 22 points. Postoperatively,
GPi-DBS improved the UPDRS motor score to 17 points (Med-ON/GPi-ON/PPN-OFF) at three months.
Then, PPN-DBS was initiated with a 20 Hz frequency, pulse duration of 60 µs, and voltage of 2.0
at contacts 0 and 1 in bipolar mode (0–1+) at both sides. Twelve months after surgery, additional
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PPN-DBS improved gait scores (“timed up and go”-test: PPN-OFF 64 s/PPN-ON 28 s; Tinetti gait score:
PPN-OFF 12 points/PPN-ON 18 points), but the UPDRS motor score were rather increased (PPN-OFF
25 points/PPN-ON 29 points) and quality of life scores deteriorated when compared to the preoperative
baseline (SF 36 preoperative Med-ON 101/postoperative Med-ON/GPi-ON/PPN-ON 95).

4. Recordings, Analysis, and Statistics

DBS electrode leads were externalized for five days before generator implantation. On Day 2
post-surgery local field potentials (LFPs) were recorded (see Figure 2). The total recording session
extended over 15 min which were split into subsequent epochs of 40 s length with alternating active
(i.e., GPi-DBS ON) and baseline (i.e., DBS-OFF) conditions plus an approximate 10 s intermediate
period per epoch for switching the conditions. The session was started by a 60 s recording segment
at DBS-OFF, of which the last 40 s interval was taken as the baseline for all results observed at
DBS-ON conditions.

Focusing on those contact pairs which were clearly located in the GPi (Figure 1A) and PPN
region (Figure 1B), we report on the results observed at the bipolar contacts (bilateral GPi 0–1, left
PPN region 0–1, right PPN region 1–2). In addition, we analyzed the bipolar signals obtained at GPi
contacts 2–3 where DBS was applied. The LFPs were acquired using a Walter Graphtek FV 440 EEG
recorder. After anti-aliasing low-pass filtering at a 180 Hz cut off frequency, the signals were sampled
with 512 Hz and 16 bit resolution. Bipolar GPi–DBS effects (contacts 2–3+, 130 Hz, 4 V, 60 µs) are
reported throughout since the therapeutic window was optimal for these pallidal contacts at the time
of recording; notably, the contacts of the right pallidum are located at the border of the GPi and GPe
(globus pallidus externus). In addition, LFPs of the PPN region were recorded at a reduced GPi-DBS
pulse amplitude of 2 V in order to analyze a potential scaling effect of the pulse voltage. Epoch length
was 40 s per condition; patient was lying in the bed, awake with eyes open and not moving arms or
legs (controlled by the technician). During the recording sessions (off levodopa medication) motor
scores were not assessed to avoid artefact generation.
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Figure 2. Effect of notch filters to suppress power line and DBS related artefacts. (A) Power spectrum of
left PPN-LFP at base line (black line) with a simulated strong 130 Hz artefact (red line) superimposed.
After notch filtering at 50 Hz and 130 Hz, the corresponding components are suppressed (blue line),
the additional peak at 128 reflects environmental noise generated by surrounding medical equipment;
(B) The difference of the DIT in the two directions (i.e., DITD = DIT (PPNL → PPNR*) − DIT (PPNR*
→ PPNL*)). Blue: DITD between the PPN-LFPs (without the simulated 130 Hz artefact) after notch
filtering (50 Hz, 130 Hz). Red: DITD between the PPN-LFPs (both including superimposed simulated
130 Hz artefacts of equal strength) after notch filtering (50 Hz, 130 Hz). Abbreviations: DBS: deep brain
stimulation, DIT: directed information transfer, LFP: local field potentials, PPN: pedunculopontine
nucleus region (L = left, R = right, * denotes clinically more affected side).
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All data were notch-filtered (in order to suppress power line and DBS related artefacts,
Figure 2A,B) and divided into segments (2 s, non-overlapping) which were excluded from further
analysis if their mean absolute amplitude exceeded the tenfold standard deviation of the entire signal.
Power spectra were calculated (Hanning-tapered 2 s segments, overlap 50%; resolution 0.5 Hz) and
statistically assessed following the Welch procedure [25] (chi-square distribution, confidence limits
derived from the number of segments and the taper function applied, significance of differences
between DBS-OFF and DBS-ON spectra calculated by means of the DBS-OFF chi-square distribution),
adjusted for multiple comparisons both for frequencies and conditions by means of the false discovery
rate procedure [26], which was applied to the different frequencies and DBS conditions at the same
time. Potential causal interactions between signal pairs were assessed via directed information transfer
(DIT), also known as transfer entropy using the criterion of Cao to determine the appropriate delay and
setting the model order according to the first local minimum of the auto mutual information [27–30].
Since closed form statistical assessments do not exist for DIT, mean and standard deviation were
calculated from non-overlapping 2 s data segments. Before DIT estimation, all signals were filtered
with a 130 Hz notch filter (gain <−100 dB at 130 Hz) in order to suppress potential DBS related
artefacts. Potential harmonics were suppressed by the anti-aliasing low pass filter of 180 Hz preceding
the digitization. Confidence limits (95%) of the DIT estimate were determined through random
shuffling of the segment order in one of the signals (200 iterations) before DIT calculation, providing
empirical statistics under the null hypothesis. DIT values exceeding these limits were considered
significantly different from zero and were used in between-condition (e.g., DBS-ON/OFF) comparisons.
For these, DIT values were averaged for each signal pair over latency ranges at which at least one of
the two DIT values significantly differed from zero and were subjected to Wilcoxon’s two-sided rank
sum test between the two sets of 20 ‘raw’ DIT values from the non-overlapping 2 s data segments
(as described at the beginning of this paragraph).

5. Results

In the absence of stimulation, the GPi LFP spectrum was characterized mainly by delta-theta and
beta frequency activity, with the right GPi (GPiR*; asterisk denotes correspondence to the patient’s
clinically more affected left body side throughout), demonstrating higher beta power (contacts 0–1:
11 . . . 14.5 Hz, p < 0.05; contacts 2–3: 7.5 . . . 30 Hz, p < 0.05), but less delta-theta power (contacts 0–1:
2.5 . . . 7.5 Hz, p < 0.05; contacts 2–3: 0.5 . . . 2.5 Hz, p < 0.05) when compared to the left GPi (GPiL)
(Figure 3A–D). Stimulation of either GPi did not modulate the LFP activity in the contralateral GPi.

In the PPN region, the LFP spectrum was mainly concentrated around the delta (1.5 . . . 3.0 Hz)
and theta frequencies (3.5 . . . 8.0 Hz). The left PPN region (PPNL) showed more delta frequency
activity in the range of 1.5 to 3.5 Hz (corresponding to the low frequency downward slope segment
in the spectrogram; p < 0.05) as well as higher theta power between 3.5 and 4.5 Hz (p < 0.05) when
compared to the contralateral right PPN region (PPNR*, Figure 3E,G) whereas PPNR* showed more
activity in the range of 6.5 to 8.5 Hz (p < 0.05).

GPiL-DBS led to a marked increase in theta activity in PPNL in the lower theta band (3.5 . . .
4.5 Hz, p < 0.05; Figure 3G). Interestingly, GPiR* stimulation induced a very similar theta power
increase in PPNL at 4.0 to 4.5 Hz (p < 0.05; Figure 3H). Spectral activity in PPNR* (Figure 3E,F), in
turn, was not affected by either GPiL-DBS or GPiR*-DBS, except for a slight decrease at 4.0 to 4.5 Hz
(p < 0.05; Figure 3E) during GPiL-DBS. GPiL-DBS at a reduced amplitude (2 V) induced a less clear, yet
significant (p < 0.05) increase around 4.5 Hz in PPNL (Figure 3G) with no modulation of that spectral
peak in PPNR* (Figure 3E). Stimulation at 2 V of GPiR* caused a slight but non-significant increase
around 4.5 Hz in the PPNL (Figure 3H) and no increase in the PPNR* (Figure 3F).
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Figure 3. Effects of GPi-DBS on LFP spectra. Statistical significance levels of differences were derived
by comparing the DBS on-spectra to the chi-square distribution assumed for the base line (DBS-OFF)
spectra (see Welch, 1967). Significant differences are marked by a ‘#’ indicating a significance level
of p < 0.05. (A–D) No spectral changes were observed in GPiR* or GPiL (neither at contacts 0–1 nor
2–3) during DBS of the contralateral GPi; (E,F) A slight but significant decrease was observed in the
lower theta band in PPNR* during GPIL-DBS but no spectral change was observed in PPNR* during
GPiR*-DBS; (G,H) DBS of either GPiL (left) or GPiR* (right) led to increased activity in the lower theta
band in PPNL. Abbreviations: DBS: deep brain stimulation, GPi: globus pallidus internus (L = left,

R = right, * denotes clinically more affected side), LFP: local field potentials, PPN: pedunculopontine
nucleus region (L = left, R = right, * denotes clinically more affected side).
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Furthermore, directed information exchange between the recorded regions was assessed. During
DBS-OFF, no significant exchange of information was observed between PPNL and PPNR*. GPi-DBS,
however, induced a significant flow of information from PPNL to PPNR*, spanning a latency range of
4 . . . 23 ms (GPiL-ON, Figure 4A) and 15 . . . 35 ms (GPiR*-ON, Figure 4B). There was no significant
difference in the degree of coupling depending on the side of GPi-stimulation (difference GPiL-ON
minus GPiR*-ON 6= 0 for latencies of 4 . . . 35 ms, p > 0.10). This means that the LFP recorded in the
two PPN regions did not influence each other during DBS-OFF whereas during DBS-ON the PPNL to
some extent guided the activity in the PPNR*, but not vice versa.
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Figure 4. Effects of GPi-DBS on information exchange. Data are presented as differences in directed
information transfer (DIT), i.e., values greater or smaller than zero indicate opposite directions of
information flow as indicated on the diagrams, and DIT magnitude gives the amount of information
exchanged in bits. Shaded areas give the 95% confidence interval of the DIT estimates after
time-shuffling one of the two signals (leading to zero coupling), i.e., only DIT values outside the
CI can be considered significantly different from zero. (A,B) While no exchange of information is
observed between both PPNs during DBS-OFF, DBS of either GPiL or GPiR* induces a significant
flow of information directed from PPNL to PPNR*. Abbreviations: CI: confidence interval, DBS: deep
brain stimulation, DIT: directed information transfer, GPi: globus pallidus internus (L = left, R = right,
*denotes clinically more affected side), PPN: pedunculopontine nucleus region (L = left, R = right,
*denotes clinically more affected side).

6. Discussion

The PPN plays a key role for locomotion and underlies strong afferent influences from the GPi
as suggested by preclinical and clinical data, for instance, unilateral pharmacological PPN lesion in
rats showed that outflow from the ventral pallidum to the PPN mediated locomotor activity [31–33].
Furthermore, in a non-human primate model of PD, an increased inhibitory (GABAergic) activity from
the GPi was interpreted to inhibit the PPN [34]. Bilateral PPN lesion by MPTP intoxication induced
balance and posture abnormalities in older monkeys. In healthy human subjects, functional MRI
studies demonstrated that activity of the mesencephalic locomotor region (MLR) including the PPN
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was modulated by gait imagination [35]. The current literature suggests theta oscillations (sometimes
classed as alpha due to overlapping definitions) as hallmarks of PPN region activity in PD. The portion
of theta has also been shown to correlate with gait performance [36].

In the present patient, the LFPs were recorded in the rostral PPN region (Figure 1B). We observed
dominating theta-alpha activity, which is in line with the results of Androulidakis et al. [37], but in
contrast to Tattersal et al. [38] and Thevathasan et al. [36] both reporting dominant beta activity in
the rostral and stronger alpha activity only in the caudal PPN. One explanation of this discordance
could be the cellular diversity of the PPN region, which may be even more pronounced by neuronal
degeneration within the PPN after longer disease duration [39,40]. PD accompanied by dystonic
symptoms in the present patient may have further contributed to the electrophysiological differences
when compared to Tattersal and Thevathasan. Since a degeneration of the PPN region may correlate
with symptom severity [41], the higher theta in PPNL (compared to PPNR*) at resting state might
reflect the lateralization of clinical symptoms in our patient.

Importantly, we saw a further elevation of PPNL theta during GPi-DBS. This finding might
provide a neurophysiological support for the hypothesis that GPi changes PPN activity in PD, since
modulation of the GPi via high-frequency DBS influenced PPN theta pattern.

Our observation that PPNL frequency changes could be induced by GPi-DBS on either side
is consistent with the fact that up to 20% of GPi to PPN region projections cross the midline [42].
Conversely, the absence of changes in PPNR* by GPi-DBS may be related to the more advanced clinical
symptoms at the left side and corresponding degree of degeneration and was compatible with our
finding of reduced PPNR* theta at the baseline. Differences in electrode position were less likely since
we exclusively included in our analysis those electrode pairs which were clearly located inside the
respective structure (Figure 1B). A significant (GPiL-DBS) and a slight yet non-significant (GPiR*-DBS)
frequency increase around 4.5 Hz in the PPNL region during GPi-DBS with reduced amplitude at
2 V was in contrast to the assumption that this modulation just reflects confounding effects like
alertness and was in line with the clinical most effective window, which was observed at 4 V at the
time of recording.

GPi-DBS also enabled the flow of information from PPNL to PPNR*, which could constitute an
electrophysiological correlation of the PPN regions hitherto unexplained capability for functional
compensation after unilateral damage, and further highlights the importance of GPi-mediated PPN
over-inhibition in PD [10,13,14]. Combining our transfer entropy results with physiological studies [43]
and recent reports on PPN connectivity in PD by diffusion tensor imaging [44], these compensational
mechanisms are more likely to be mediated by indirect pathways rather than by direct connections
between the left and right PPN regions.

One major limitation of the present data relates to the determination of the anatomical localization
of the activated stimulation field, which represents a general challenge in DBS studies [45]. It is possible
that GPe-border-instead of GPi-stimulation may partially account for the observed effects. Importantly,
due to its electrophysiological focus, the present case report did not elucidate any clinical implications
on PPN-DBS. Our conclusion that counteracting GPi’s influence on PPN region via GPi-DBS augments
PPN region theta activity was based on data from a single patient, requiring future studies to confirm
the present anecdotal evidence by increasing the number of PPN region-recordings in PD patients.
This needs further investigation, if the modulation of the rostral PPN-activity related to GPi-DBS
indicates an advantageous or deleterious influence on gait performance, i.e., the development of
gait disorder by high frequency GPi-DBS has been reported in clinical studies in PD as well as in
dystonia [46,47].

However, according to a recent review, only four further patients with combined PPN- and
GPi-DBS have been reported in the literature, and electrophysiological data have been reported from
only one patient so far [48]. Thus, the present analysis offers a useful contribution to recent discussions
surrounding the existence of a ‘dominant’ PPN region and its clinical significance for future DBS
therapies [49].
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