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Neuronal hyperexcitability often results from an unbalance between excitatory and
inhibitory neurotransmission, but the synaptic alterations leading to enhanced seizure
propensity are only partly understood. Taking advantage of a mouse model of
neocortical epilepsy, we used a combination of photoconversion and electron
microscopy to assess changes in synaptic vesicles pools in vivo. Our analyses
reveal that epileptic networks show an early onset lengthening of active zones at
inhibitory synapses, together with a delayed spatial reorganization of recycled vesicles
at excitatory synapses. Proteomics of synaptic content indicate that specific proteins
were increased in epileptic mice. Altogether, our data reveal a complex landscape of
nanoscale changes affecting the epileptic synaptic release machinery. In particular, our
findings show that an altered positioning of release-competent vesicles represent a novel
signature of epileptic networks.
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INTRODUCTION

Epilepsy is a disorder of the central nervous system that affects around 50 million people worldwide
and it is characterized by recurrent spontaneous seizures, that are the clinical manifestation of
an excessive hypersynchronous discharge of a population of neurons (Bromfield and Cavazos,
2006). Despite all the available treatments, one third of patient develop a drug-resistant form
of epilepsy (Kwan et al., 2011; Sharma et al., 2015). The propensity to develop seizures is due
to brain damage, in lesional epilepsy (Pitkänen and Immonen, 2014; Wasilewski et al., 2020;
Wie Børsheim et al., 2020), or to an altered synaptic function at excitatory and/or inhibitory
terminals, in non-lesional epilepsy (Wykes et al., 2012; Farisello et al., 2013; Corradini et al., 2014;
Ferecskó et al., 2015; Snowball et al., 2019). Specifically, chronic epilepsy is thought to result from a
synaptic reorganization that leaves permanent marks on cortical networks and may lead to network
dysfunction, cognitive deficits and impaired information processing (Pitkänen et al., 2013, 2015;
Holmes, 2015; Vannini et al., 2016). Epileptic networks display several modifications in synaptic
function and structure at the level of presynaptic boutons, post-synaptic structures, and the glial
processes enwrapping them (Bernard, 2010). In the presynaptic compartment, recent technological
advances have allowed a detailed characterization of the size and spatial organization of functional
vesicle pools. These parameters correlate with measures of synaptic strength and are altered
following plasticity-inducing stimuli (Rey et al., 2020). However, such ultrastructural readouts of
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synaptic function have not been applied thus far to the study of
epileptogenic modifications or their consequences.

The correct functioning of neuronal networks requires
precise modulation of excitatory and inhibitory activity (Xue
et al., 2014; Rossi et al., 2017; Rubin et al., 2017; Sohal
and Rubenstein, 2019). When network activity is tipped out
of balance, a number of cellular processes take place to re-
establish its normal function (Turrigiano, 2012). The processes
underlying homeostatic plasticity can affect cellular activity
and synaptic output (Wefelmeyer et al., 2016). Following a
perturbation, neurons attempt to restore their baseline firing
rates and dynamic range by regulating their intrinsic excitability,
probability of neurotransmitter release and neurotransmitter
receptor expression (Davis and Müller, 2015). Central synapses
have the ability to plastically adapt to new conditions by
dynamically scaling up and down their output. Such regulation
has been demonstrated to occur during development, sleep and
learning. However, much less is known about the mechanisms
of homeostatic scaling as a consequence of a pathological,
system-level perturbation in vivo (Turrigiano, 2008, 2012;
González et al., 2019).

Here we took advantage of a well-characterized model
of chronic, focal epilepsy in the visual cortex (Mainardi
et al., 2012; Chang et al., 2018) to investigate synaptic
changes in hyperexcitable networks. Tetanus neurotoxin
(TeNT) is a metalloprotease that cleaves the synaptic protein
VAMP/synaptobrevin leading to the establishment of a focal
cortical hyperexcitability, with electrographic seizures that
persist for several weeks after TeNT wash out (Nilsen et al.,
2005; Jiruska et al., 2010; Mainardi et al., 2012; Vannini et al.,
2016; Snowball et al., 2019). Despite many studies characterizing
TeNT-induced epilepsy (i.e., seizures manifestation), very little
is known about the persistent synaptic changes that underpin
chronic, spontaneous seizures. The absence of neuronal loss
and gliosis, together with the persistence of spontaneous
seizures, chronically altered neural processing and structural
modifications of both dendritic spines and branches suggest
that synaptic modifications occur and last after TeNT clearance
(Mainardi et al., 2012; Vannini et al., 2016). Here, using FM1-
43FX and activity-dependent labeling of synaptic vesicles, we
simultaneously investigated function and ultrastructure of both
excitatory and inhibitory terminals, in acute and chronic phases
of TeNT-induced epilepsy. We combined this approach with
an unbiased measure of proteins content in the two phases of
hyperexcitability, isolating synaptosomes at different time points
after TeNT injection, and assessing by electrophysiological
recordings the impact of inhibiting Carboxypeptidase E (CPE),
upregulated in epileptic mice, on seizures occurrence.

MATERIALS AND METHODS

Animals and TeNT Injections
Adult (age > postnatal day 60) C57BL/6J mice used in this
study were reared in a 12 h light-dark cycle, with food and
water available ad libitum. All the experiments were performed
in compliance with the EU Council Directive 2010/63/EU on
the protection of animals used for scientific purposes and were

approved by the Italian Ministry of Health. TeNT (Lubio;
Lucerne, Switzerland; 0.1–0.2 ng) or RSA (Rat Serum Albumin)
solutions in PBS were intracranially injected into the primary
visual cortex (i.e., 0.0 mm anteroposterior, 2.7 mm lateral to the
lambda suture and at a cortical depth of 0.65 mm); of anesthetized
(ketamin/Xylazine 100–10 mg/Kg) mice. After surgery, a glucose
solution (5% in saline) was subcutaneously administered and
recovery of animals was carefully monitored. Paracetamol was
added in drinking water for 3 days. Additional details can be
found in Mainardi et al. (2012); Vallone et al. (2016), and Vannini
et al. (2016, 2017). No behavioral seizures are detectable in
those animals, as already reported in Mainardi et al. (2012) and
Vannini et al. (2016).

FM 1-43FX Injection and Visual
Stimulation
Control and epileptic mice, deeply anesthetized with urethane
(7 ml/kg; 20% solution in saline, i.p.; Sigma) and placed in
a stereotaxic apparatus, received an injection of FM 1-43FX
dye into the primary visual cortex, layers II–III (i.e., 0.0 mm
anteroposterior and 2.7 mm lateral to the lambda suture, 0.7 mm
depth). FM1-43FX is a non-permeable styryl dye that labels
the cell membrane. Once synaptic vesicles fuse with the cell
membrane, molecules of FM1-43FX diffuses laterally along the
membrane previously comprising the vesicle. As vesicles undergo
endocytosis, as part of their recycling, the dye is trapped inside
the recently released vesicles (Marra et al., 2014). Three minutes
later, animals were stimulated for 10 min with square-wave
gratings (1 Hz, 0.06 c/deg, contrast 90%) and flashes of light. All
visual stimuli were computer-generated on a display (Sony; 40 x
30 cm; mean luminance 15 cd/m2) by a VSG card (Cambridge
Research Systems). Mice, still under anesthesia, were kept in the
dark and perfused through the heart with a fresh solution of 6%
glutaraldehyde, 2% formaldehyde in PBS, as described in Jensen
and Harris (1989) right after the end of the visual stimulation.

Photoconversion and Electron
Microscopy Analysis
All the following procedures were made in the dark. The protocol
followed is described in detail in Marra et al. (2014). Briefly,
embedded in EPON, slices were collected with an ultramicrotome
serial sections (70 nm thickness) and placed in grids at RT.
Thereafter, sections could be viewed with a transmission electron
microscope fitted with a cooled CCD camera. Images were
acquired using local landmarks and analyzed using Image
J/Fiji (NIH) and a custom script in Python (Python.org). At
ultrastructural level, target synapses (visual cortex, layers II–III)
were randomly chosen and synaptic vesicles were scored based on
their vesicle luminal intensity using methods outlined previously
(Marra et al., 2014), image names were changed to ensure that
the experimenters were blind to the experimental condition
of each electron micrograph. A terminal was considered
inhibitory if no spine or postsynaptic density could be observed
in the middle section and in at least one of the adjacent
sections. As expected (Meyer et al., 2011; Tremblay et al., 2016;
van Versendaal and Levelt, 2016; Lim et al., 2018), inhibitory
terminals were estimated to be 15–25% of the total.
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Synaptosomes Extraction and Proteomic
Analysis
Synaptosomes were extracted using a slightly modified protocol
taken from Giordano et al. (2018). Visual cortices were gently
homogenized in 500 µl of ice cold homogenizing buffer (0.32
M sucrose, 1 mM EDTA, 1 mg/ml BSA, 5 mM HEPES pH
7.4, proteases inhibitors) and centrifuged 10 min at 3,000 g
at 4◦C; supernatant was recovered and centrifuged again for
15 min at 14,000 g at 4◦C. After discarding supernatant, the
pelleted synaptosomes were suspended in 110 µl of Krebs-
Ringer Buffer and 90 µl of Percoll (Sigma-Aldrich) were added.
A 2 min spin (14,000 rpm, 4◦C) was performed and enriched
synaptosomes were recovered from the surface of the solution
with a P1000 tip and resuspended in 1 ml of Krebs-Ringer
buffer. After an additional spin of 2 min (14,000 rpm, 4◦C),
the supernatant was discarded and the pellet resuspended in
20 µl of RIPA buffer.

Proteomics Sample Preparation and
Data Analysis
Trypsin/LysC mix Mass Spec grade was purchased from Promega
(Madison, WI). Tandem Mass Tags (TMT 10-plex) kits and
microBCA protein assay kit were purchased from Thermo Fisher
Scientific (Rockford, IL). All other reagents and solvents were
purchased from Sigma-Aldrich (St. Louis, MO). Synaptosomes
proteome extracts were quantified with a micro BCA protein
assay and aliquots of 3.5 µg of proteins were diluted to 40
µL of RIPA/Trifluoroethanol (TFE) 50/50. Paramagnetic beads
were added to each sample and further processed following a
modified SP3 protocol for ultrasensitive proteomics as previously
described (Pellegrini et al., 2019). Synaptosomes proteins were
reduced alkylated and digested with a mixture of trypsin/Lys-
C (1:20 enzyme to protein ratio). Digested peptides were
then quantified, and labeled with TMT 10-plex: samples were
block randomized1 over 5 TMT sets. Each TMT set included
two normalization channels for batch corrections built pooling
an aliquot from each digested synaptosome sample (Plubell
et al., 2017). TMT sets underwent high pH fractionation on
an AssayMap Bravo (Agilent technologies) and fractions run
on a nano-LC (Easy1000 Thermo Fisher Scientific) equipped
with a 50 cm EasySpray column and coupled with an
Orbitrap Fusion for MS3 analysis (Thermo Fisher Scientific).
Experimental details regarding sample fractionation and LC-
MS/MS runs have been already reported elsewhere (Pellegrini
et al., 2019). Data were analyzed using Proteome Discoverer
2.1. TMT data were normalized by internal reference scaling
(Plubell et al., 2017).

Electrophysiological Recordings and
Drugs Administration
Surgery was performed as described in Spalletti et al. (2017), but
the small craniotomy was centered at 3 mm lateral to Lambda
and performed in TeNT/RSA-injected hemisphere. Neuronal

1www.sealedenvelope.com

activity was recorded with a NeuroNexus Technologies 16-
channel silicon probe with a single-shank (A1x16-3mm-50-
177) mounted on a three-axis motorized micromanipulator and
slowly lowered into the portion of visual cortex previously
injected with TeNT or RSA solution. The tip of the probe
was positioned at the depth of 1 mm so that the electrode
contacts (spaced by 50 microns) sampled activity from all cortical
layers. Before the beginning of the recording, the electrode
was allowed to settle for about 10 min. Local Field Potentials
(LFP) signals were acquired at 1 kHz and bandpass filtered
(0.3–200 Hz) with a 16-channel Omniplex recording system
(Plexon, Dallas, TX). Local Field Potentials (LFP) were computed
online and referred to the ground electrode in the cerebellum.
In order to verify whether interacting with Carboxypeptidase
E (CPE) would change epileptic activity, we topically applied
over the craniotomy 2 µL of PBS containing 25 µM of 2-
guanidinoethylmercaptosuccinic acid (GEMSA; Sigma-Aldrich)
without removing the electrode. Neural signals were acquired at
regular time intervals up to 30 min after GEMSA delivery to verify
the effect and the penetration of the drug in the cortical layers.
At the end of the experiment animals were sacrificed. Data were
analyzedanalysed offline with NeuroExplorer software (Plexon
Inc., United States) and with custom made Python interfaces2.
Movement artifacts were removed offline. The coastline analysis
was calculated as the sum of the absolute difference between
successive points (Wykes et al., 2012).

Statistical Analysis
Statistical analysis was performed with Graph Pad (version
8) except for proteomics analysis, in which we used Perseus.
Normality of distributions was assessed with D’Agostino test and
appropriate test was chosen accordingly.

RESULTS

Ultrastructural Investigation of Synaptic
Vesicle Function in Hyperexcitable
Networks
Our studies included three groups of C57BL/6 mice with
injections into the primary visual cortex (V1): a control group
injected with vehicle (Control), an Acute epileptic group tested
10 days after TeNT injection in V1 and a Chronic epileptic
group tested 45 days after TeNT injection in V1. Synaptic vesicles
from three animals in each of these groups were labeled by
infusing FM1-43FX in the visual cortex while presenting a series
of visual stimuli (Figure 1A). After fixation, photoconversion
and processing for electron microscopy, we were able to label
individual vesicles at excitatory (asymmetrical) and inhibitory
(symmetrical) synapses (Figure 1A). This approach allowed us
to identify individual synaptic vesicles, released and recycled
in the presence of FM1-43FX, as having an electron dense
lumen, while non-released vesicles present a clear lumen and
a darker membrane (Marra et al., 2012). First, we investigated
the length of the active zone as a readout of synaptic activity

2http://python.org/
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FIGURE 1 | Ultrastructural and functional changes at presynaptic terminals of TeNT-injected mice. (A) Diagrammatic representation of labeling protocol. Visual
cortices from mice in Control, Acute, and Chronic groups were infused with FM1-43FX during visual stimulation. Brains were rapidly fixed and sliced to allow
photoconversion of FM1-43FX signal before processing for electron microscopy. Individual presynaptic terminals were classified as excitatory (asymmetrical
synapses, red) or inhibitory (symmetrical synapses, blue); size, position and numbers of active zone (AZ, yellow), non-released vesicles (open circles) and released
vesicles (black circles) were analyzed (scale bars 100 nm). (B) Left: Active zone (AZ) length in Control (gray), Acute (orange), and Chronic (blue) epileptic mice at
excitatory synapses; no differences between the groups (Kruskal-Wallis test, p = 0.10). Distribution, median and quartiles shown for each group; Control n = 41;
Acute n = 46; Chronic n = 118. Right: Active zone (AZ) length in Control (gray), Acute (orange), and Chronic (blue) epileptic mice at inhibitory synapses
(Kruskal-Wallis test, p < 0.01, Control vs. Acute p < 0.01, Control vs. Chronic p > 0.05, Chronic vs. Acute p < 0.01). Distribution, median and quartiles shown for
each group; Control n = 15; Acute n = 14; Chronic n = 29. (C) Left: Released fraction of synaptic vesicles (labeled vesicles/total vesicles) in Control (gray), Acute
(orange), and Chronic (blue) epileptic mice at excitatory synapses; no differences between the groups (Kruskal-Wallis test, p = 0.67). Distribution, median, and
quartiles shown for each group; Control n = 47; Acute n = 57; Chronic n = 118. Right: Released fraction of synaptic vesicles of Control (gray), Acute (orange), and
Chronic (blue) epileptic mice at inhibitory synapses (Kruskal-Wallis test, p < 0.05, Control vs. Acute p < 0.05, Control vs. Chronic p < 0.01, Chronic vs. Acute p >

0.05). Distribution, median, and quartiles shown for each group; Control n = 16; Acute n = 16; Chronic n = 30.

independent of our labeling protocol (Harris and Weinberg,
2012). Surprisingly, we found an increase in the length of
inhibitory synapses’ active zone in the acute phase (Figure 1B),
normally associated with increased release. However, the released
fraction of inhibitory vesicles (number of released vesicles over
total number of vesicles) is reduced in animals injected with
TeNT (Figure 1C), shown to preferentially impair inhibitory
release (Schiavo et al., 2000). No differences in active zone length
and released fraction of vesicles were found at excitatory synapses
(Figures 1B,C). Interestingly, the total number of vesicles across
control and epileptic groups does not change significantly neither
at excitatory (Control: mean = 52.16, SD = 35.47, n = 49; Acute:
mean = 56.23, SD = 29.81, n = 59; Chronic: mean = 51.28,
SD = 19.39, n = 124; data not shown) nor inhibitory synapses
(Control: mean = 40.76, SD = 14.38, n = 17; Acute: mean = 54.33,
SD = 36.12, n = 18; Chronic: mean = 54.33, SD = 19.91, n = 30;
data not shown).

Changes in Docking and Positioning of
Activated Vesicles at Excitatory
Synapses in Chronic Epilepsy
After quantifying direct and indirect measures of vesicular
release, we examined the spatial distribution of released and
non-released vesicles within presynaptic terminals. We started
by analysing the released fraction in the docked and non-
docked populations of vesicles. As described before for excitatory
synapses (Marra et al., 2012), the Control group showed a

higher released fraction in the docked population, similar results
were found in the Acute group. Conversely, in the Chronic
group the released fraction was higher in the non-docked
population at excitatory synapses (Figure 2A). We also report
that inhibitory synapses have a higher released fraction in the
docked population, which does not seem to be affected by
the induction of epilepsy (Figure 2A). To gain insight on the
effect observed at excitatory synapses of the Chronic group,
we compared the distance of released and non-released vesicles
from the active zone (Figure 2B). We reasoned that if the
effect is specific to the ability of released vesicles to dock, their
position within the terminal should not be affected. We examined
the cumulative fraction of the distance of released and non-
released vesicles from their closest point on the active zone. At
excitatory synapses, in Control and Acute groups the released
vesicle population are closer to the active zone compared to the
non-released population. However, in the Chronic group released
excitatory vesicles do not show a spatial bias toward the active
zone, that was instead observed in the other groups (Figure 2B).
At inhibitory synapses, the distances of vesicular populations
to the active zone has a different pattern, with no difference
between released and non-released population in Control and
Acute groups and with a spatial bias of released vesicles toward
the active zone in the Chronic group (Figure 2B). As a visual
representation of the distribution of released vesicles at excitatory
and inhibitory across the three conditions, we generated 2D
histograms of the distribution of released vesicles within spatially
normalized terminals, with the center of the active zone at the
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FIGURE 2 | Changes in released vesicles’ docking and spatial organization in chronic phase of epilepsy. (A) Ratio of released vesicles in the docked and undocked
population. Left: Diagram and legend for each pie chart. Top: Excitatory synapses’ ratio of released vesicles (darker) in docked (inner pie chart) and undocked
population (outer pie chart) in Control (gray), Acute (orange), and Chronic (blue) groups. Only the Chronic group shows a significant difference from expected
frequencies based on control observation (Chi-squared test: p < 0.001). Bottom: Inhibitory synapses’ ratio of released vesicles (darker) in docked (inner pie chart)
and undocked population (outer pie chart) in control (gray), acute (orange), and chronic (blue) groups. (B) Distance of released or non-released vesicles to the closest
point on the active zone. Left: Diagram representing of how distance measures were taken at each synapse. Top: Sigmoid fit and 95% confidence interval of
cumulative fraction of distance between released and not-released synaptic vesicles to the active zone at excitatory synapses in Control (gray), Acute (orange), and
Chronic (blue) epileptic mice. Bottom: Sigmoid fit and 95% confidence interval of cumulative fraction of distance between released and not-released synaptic
vesicles to the active zone at inhibitory synapses in Control (gray), Acute (orange), and Chronic (blue) epileptic mice. Paired t-test, Excitatory synapses: Control mice
p = 0.0002 (n = 40), Acute mice p = 0.0006 (n = 41), Chronic mice p = 0.298 (n = 112). Paired t-test, Inhibitory synapses: Control mice p = 0.06 (n = 14), Acute mice
p = 0.135 (n = 13), Chronic mice p = 0.001 (n = 28). (C) 2D histograms of released vesicles distribution at excitatory (top) and inhibitory (bottom) synapses across
the three conditions with active zone at the origin of the XY plane. Control (gray), Acute (orange), and Chronic (blue). Each synapse was spatially normalized (X- and
Y-axis) and frequency is plotted on the Z-axis. Scale bars: 0.1 normalized size X and Y; 0.1 fraction Z-axis.
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FIGURE 3 | Proteomics analysis of synaptosomes reveal an increase of proteins involved in vesicular positioning. (A,B) Differentially expressed proteins in Control vs.
Acute (A) and Chronic epileptic phase (B). Volcano plots are built plotting average ratio of TeNT vs. corresponding control against their t-test log P-values;
significance thresholds: FDR > 0.05 and fold change > 0.6. Proteins significantly upregulated in Acute and Chronic tetanic animals are highlighted, respectively, in
orange and light blue; proteins significantly downregulated are in dark gray. Proteins abbreviations are Dkk3, Dickkopf-related protein 3; Sema4a, Semaphorin 4A;
Cpe, carboxypeptidase e; Chgb, chromogranin b; Syt5, synaptotagmin5; VAMP1, Vesicle-associated membrane protein 1; VAMP2, Vesicle-associated membrane
protein 2; C1qc, Complement C1q C Chain. (C) Proportion of presynaptic terminals containing Dense Core Vesicles in different non-overlapping sampled areas of
Control (gray; n = 20), Acute (orange; n = 29), and Chronic (blue; n = 15) groups. No differences between groups (One Way ANOVA, p = 0.2869). Data are
represented as mean ± SEM. Inset, a representative image of Dense Core Vesicles. (D) Right: Distribution of distances of non-released vesicles from active zone at
excitatory synapses in Chronic (gray; n = 2140), Acute (orange; n = 2503), and Chronic (blue; n = 5705) groups (One-way ANOVA; F = 238.15, p < 0.0001, Control
vs. Actute: p < 0.0001; Control vs. Chronic: p < 0.0001). Left: Distribution of distances of non-released vesicles from active zone at inhibitory synapses in Chronic
(gray; n = 543), Acute (orange; n = 717), and Chronic (blue; n = 1520) groups (F = 75.57, p < 0.0001, Control vs. Actute: p < 0.0001; Control vs. Chronic: p > 0.05).

origin of the X-axis (Figure 2C). This representation shows a
clear broadening of the distribution of released excitatory vesicles
in the chronic phase.

Upregulation of Synaptic Proteins
Involved in Vesicle Positioning in Acute
and Chronic Epilepsy Phases
To better understand molecular changes taking place in epileptic
synapses, we performed an in-depth proteomic analysis of visual
cortex synaptosomes. The expression profile of 1991 synaptic
proteins extracted from animals in the acute and chronic phase
of epilepsy was compared with controls. Using a fold change
cut-off of 0.6, we found a total of 70 regulated proteins (51
proteins upregulated and 19 downregulated; Figures 3A,B). As
expected following TeNT injection, the Acute group showed a
significant downregulation of VAMP1 and VAMP2 (Mainardi
et al., 2012; Vannini et al., 2016). Interestingly, a few synaptic
proteins remained upregulated at both stages of epilepsy,
suggesting that one single TeNT injection is sufficient to induce
persistent plastic changes. Proteins involved in synthesis of
regulatory peptides, WNT pathway, immune response and

membrane-trafficking were upregulated in hyperexcitable mice
(i.e., Dickhopf related protein 3, Complement component
1q, Synaptotagmin 5, Semaphorin 4a, Carboxypeptidase E -
CPE, Chromogranin B). The upregulation of neuropeptides
was in line with previous reports (Vezzani and Sperk, 2004;
Kovac and Walker, 2013; Clynen et al., 2014; Dobolyi et al.,
2014; Nikitidou Ledri et al., 2016). These data prompted
us to quantify the incidence of Dense Core Vesicles (DCV)
in synaptic terminals. To this aim, we performed electron
microscopy on samples collected from control and experimental
animals and found no difference in the number of DCV
across the three conditions (Figure 3C). However, we found
a tightening of synaptic vesicle clusters at excitatory synapses
in both the Acute and Chronic groups and at inhibitory
terminals in the Acute group (FigFigure 3D). We limited our
analysis to non-released vesicles, whose position is less likely
to have been affected by recent recycling. Since the increase
in CPE levels did not affect DCV incidence and given the
changes in synaptic vesicles clustering at excitatory terminals
in epileptic mice, we speculated that CPE might principally
act through the pathways involved in vesicles organization
(Ji et al., 2017).
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FIGURE 4 | Acute inhibition of Carboxypeptidase (CPE) decreases hyperexcitability in TeNT-injected mice. (A) Left: diagram of experimental design: a 16-channel
silicone probe was used to record LFP in different layers of the primary visual cortex, channels were analyzed in three groups according to their recording sites in
relation to the surface of the cortex: the five most superficial, the five deepest, and the six intermediate channels. GEMSA was applied locally to inhibit CPE activity.
Right: Examples of LFP traces obtained with a 16-channels probe from the visual cortex of an Acute epileptic mouse. (B) LFP traces of an Acute epileptic mouse
before (baseline, top) and after GEMSA administration at two different time points: early (5–10 min) and late (10–20 min). (C) Coastline analysis of LFP signals
recorded before (baseline) and after GEMSA administration at early and late time points. The analysis was differentially performed for superficial (left, red),
intermediate (middle, green), and deep (right, blue) channels (Two-way ANOVA, Channel factor p > 0.05, Time factor p < 0.001; Baseline vs. Early: p < 0.01,
Baseline vs. Late: p < 0.001, Early vs. Late: p < 0.001, n = 4). The mean, SEM, and value of individual recordings are shown for each group. ***p < 0.001.

Acute Carboxypeptidase E Inhibition
Reduces Seizure Activity in Epileptic
Mice
Based on the indication that CPE is upregulated in TeNT-
injected mice, and given its potential involvement in vesicle
positioning (Ji et al., 2017), we decided to perform in vivo
electrophysiological recordings in acute epileptic mice before
and after pharmacological inhibition of CPE. We performed
local field potential (LFP) recordings using a 16-channel silicon
probe, spanning the whole cortical thickness in awake epileptic
mice. Recording channels were divided in superficial (channels
1–5), intermediate (6–11), and deep (12–16) according to their
position in the primary visual cortex. After baseline recording of
seizures, we topically administered on the visual cortex GEMSA,
a CPE inhibitor (Figures 4A,B). The recording sessions following
GEMSA administration showed a significant decrease in LFP
coastline (Figure 4C), indicating that CPE inhibition reduces
indicators of seizure activity in epileptic mice.

DISCUSSION

This study provides new insights into functional and
ultrastructural synaptic changes in epileptic neuronal networks.
Using a well-established model of epilepsy, we observed

differential regulation of vesicular positioning and active
zone size at excitatory and inhibitory synapses (Figures 1, 2).
We identified a homeostatic increase in active zone length
specifically at inhibitory synapses, consistent with previous
reports and previous findings that GABA release is preferentially
impaired by TeNT (Schiavo et al., 2000; Ferecskó et al.,
2015). These early changes at inhibitory synapses are also
consistent with previous observations made in the acute
phase, when TeNT catalytic activity can still be detected
(i.e., 10 days after TeNT-injection) (Mainardi et al., 2012;
Vannini et al., 2016). We suggest that active zone length
at inhibitory synapses is homeostatically upregulated in an
attempt to restore baseline GABAergic release in spite of
TeNT activity. We speculate that the lengthening of inhibitory
active zones is later “discarded,” as a homeostatic mechanism,
given its inability to overcome TeNT-induced reduction
in vesicle release, as demonstrated by the reduced ratio of
released GABAergic vesicles in both Acute and Chronic
groups (Figure 1B).

Ultrastructural changes of release competent vesicle
positioning at excitatory synapses can only be detected at a
later stage. In the chronic phase, excitatory terminals contained
a smaller proportion of docked release-competent vesicles,
consistent with the reported loss in spatial bias. A similar spatial
reorganization of release competent vesicles can be achieved
pharmacologically by stabilizing actin, leading to a slower
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release rate during 10 Hz stimulation (Marra et al., 2012), its
opposite, a tightening of synaptic vesicles, can be observed
following Long-Term Potentiation in slices (Rey et al., 2020).
Here, we report that spatial organization of release-competent
synaptic vesicles can be modulated in vivo. During the chronic
phase, released glutamatergic vesicles are positioned farther
away from the active zone, potentially to limit their re-use
during high-frequency activity. This loss of spatial bias may
reduce the likelihood of generating spontaneous discharges
in hyperexcitable networks. While a direct measure of the
functional impact of this spatial reorganization is not possible
with currently available methods, we can speculate that the
reduction of released vesicles at the active zone of excitatory
synapses may fit with the models of occupancy and two-step
release proposed over the years by the Marty’s lab (Trigo et al.,
2012; Pulido et al., 2015; Pulido and Marty, 2017; Miki et al.,
2018). Interpreted in the light of Marty’s work, excitatory
synapses in the chronic phase, although not changing in release
fraction, may have a broader range of release latencies due to a
reduction in occupancy at rest (Pulido et al., 2015; Pulido and
Marty, 2017; Miki et al., 2018). Thus, in chronic epileptic mice
the spatial organization of release-competent vesicles farther
from active zone may represent an attempt to homeostatically
reduce networks’ synchronicity without affecting the total
number of vesicles released. While not sufficient to block seizures
in TeNT epileptic model, this spatial rearrangement may account
for the reported reduction of seizures observed in the chronic
phase (Vallone et al., 2016; Vannini et al., 2016; Chang et al.,
2018). To dissect the molecular mechanisms underlying this
change in spatial bias, we performed an unbiased analysis of
synaptosomes content in the two different phases of epilepsy.
Unsurprisingly, we found upregulation of several proteins
involved in DCV trafficking as expected during intense synaptic
remodeling. However, we did not find any statistical differences
in the number of DCV present in the three experimental groups.
We focussed our study on CPE, a protein that is involved in
many different pathways, including neuropeptides’ synthesis
and WNT/BDNF signaling, that was also hypothesized to
regulate synaptic vesicles trafficking and positioning (Bamji
et al., 2006; Staras et al., 2010; Skalka et al., 2016). Although
the exact role of CPE is not completely clear, we reported
a reduced hyperexcitability of acute epileptic mice after the
administration of its inhibitor (Figure 4). We also showed
a tightening of synaptic vesicle clusters, measured from the
active zone (Figure 3D). Therefore, our loss of spatial bias in
recently released vesicles might happen on a background of
overall contraction of vesicular clusters. This observation offers
a possible interpretation for the effect of CPE inhibition on
epileptiform activity, that was electrophysiologically measured
in vivo (Figure 4). The mechanisms by which CPE inhibition
impacts on seizures remain to be fully clarified. CPE is involved
in several different biosynthetic and signaling pathways (i.e.,
WNT, BDNF) which may account for the anti-epileptic
effects. Moreover, CPE impact is likely to be indirect and very
hard to dissect in vivo. However, further studies on other
epileptic models are necessary to better elucidate CPE role
in epilepsy. Taken together, our results suggest a complex

landscape of molecular and ultrastructural changes evolving
over time, opening intriguing questions regarding the temporal
evolution of homeostatic changes in response to the induction
of hyperexcitability. It would be particularly interesting to
observe how homeostatic regulation of excitability adapts over
development, for example in a model of genetic epilepsy, where
epileptogenic factors are present since the very early formation
of the nervous system (Lignani et al., 2020). Since TeNT-induced
epilepsy is pharmacoresistant (Nilsen et al., 2005) and refractory
seizures represent a major unmet medical need, drugs acting on
CPE levels and other regulators of synaptic pools warrant further
investigation as possible therapeutic treatments in currently
intractable epilepsy.
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