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ABSTRACT Freshwater iron mats are dynamic geochemical environments with
broad ecological diversity, primarily formed by the iron-oxidizing bacteria. The
community features functional groups involved in biogeochemical cycles for iron,
sulfur, carbon, and nitrogen. Despite this complexity, iron mat communities pro-
vide an excellent model system for exploring microbial ecological interactions and
ecological theories in situ. Syntrophies and competition between the functional
groups in iron mats, how they connect cycles, and the maintenance of these com-
munities by taxons outside bacteria (the eukaryota, archaea, and viruses) have
been largely unstudied. Here, we review what is currently known about freshwater
iron mat communities, the taxa that reside there, and the interactions between
these organisms, and we propose ways in which future studies may uncover excit-
ing new discoveries. For example, the archaea in these mats may play a greater
role than previously thought as they are diverse and widespread in iron mats
based on 16S rRNA genes and include methanogenic taxa. Studies with a holistic
view of the iron mat community members focusing on their diverse interactions
will expand our understanding of community functions, such as those involved in
pollution removal. To begin addressing questions regarding the fundamental inter-
actions and to identify the conditions in which they occur, more laboratory cultur-
ing techniques and coculture studies, more network and keystone species analyses,
and the expansion of studies to more freshwater iron mat systems are necessary.
Increasingly accessible bioinformatic, geochemical, and culturing tools now open
avenues to address the questions that we pose herein.
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The freshwater iron mat environment epitomizes Darwin’s entangled bank (1),
with twisted stalks of oxidized iron forming around themselves into charismatic

orange mats (2). Iron mats are, as the name implies, comprised of iron oxyhydroxides,
the metabolic by-product of iron-oxidizing bacteria (FeOB). They are loosely associ-
ated, flocculent structures that can easily be disturbed by an increase in flow. These
ephemeral structures also exhibit an oxygen (O2) gradient (2), creating myriad niches.
While FeOB are diverse in iron oxidation mechanisms (3, 4), the ecology of the micro-
bial communities of freshwater iron mats formed by microaerophilic FeOB is the
focus of this review. Previous studies of iron mats have focused primarily on FeOB as
ecosystem architects, whereas the literature that focuses on the other organisms in
iron mats is sparse (5, 6). Here, we discuss the relationships formed between the
microaerophilic FeOB and the other microbial members of iron mats because they
drive biogeochemical cycling, ecological relationships, and evolution within these
systems. We aim to present the current status of what is known about freshwater
iron mat microbial communities and to use this framework to provide direction for
future studies.
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ENTANGLED ENVIRONMENTS AND GEOCHEMICAL NICHES

Iron mats formed by microaerophiles have been collected from groundwater seeps,
some as cold as 8°C (7), while others have been found in caves (8) or engineered water
systems (9). The variability among the freshwater environments where the microaero-
philic FeOB exist has been explored in other reviews, and these environments include
freshwater environments with FeOB that do not form “mats” (e.g., in the rhizosphere),
brackish and marine environments, acidic streams, and engineered systems (9–11). The
iron mats that are the focus of this review form in streams where there is a high influx
of reduced iron, usually from a groundwater seep, and where the oxic-anoxic interface
is near the mat surface, creating both oxic and anoxic microniches within the iron mat
(12). Our focus on freshwater iron mats in slow-flow creeks and streams allows us to
characterize with some specificity the physical and geochemical environments in
which the microbial community forms.

An intricacy of the iron mat environment is that of the physical conditions under
which the mat develops. One of these physical conditions is the rate of flow, which has
impacts on iron oxidation rates. In studies conducted at Ogilvie Creek, Meilleurs Bay,
Ontario, Canada, the presence of an established mat led to higher (1.706 0.20min21)
oxidation kinetics than the ferrous (reduced) iron (Fe21) oxidation kinetics that
occurred when the iron mat was artificially washed out (0.486 0.14min21) (13). This
result is perhaps made more interesting by the oxidation kinetics observed for an iron
mat formed in a slow-flow drainage channel, which was estimated (0.786 0.20min21)
to be less than half of that of the established mat in Ogilvie Creek, suggesting that oxi-
dation kinetics can be strongly influenced by rate of flow (14). Both studies were con-
ducted in the summer and showed mats dominated by sheaths, indicating that the
majority of iron oxidation was carried out by Leptothrix spp. It is as yet unknown how a
freshwater mat dominated by Gallionella spp., or another microaerophilic FeOB, would
compare, perhaps leading to variability in oxidation kinetics throughout the year, in
keeping with the ecological succession observed by Fleming et al. (15). However, it is
likely that a mat dominated by Leptothrix ochracea would have a higher rate of oxida-
tion, considering the rapid production of iron oxides by the species, which is much
faster than that of other FeOB (19mm min21 compared to 2mm h21) (2). We can draw
from this example that the dominant FeOB in the iron mat, as well as the geochemical
and physical conditions surrounding the mat, will influence the further ecology within
the system.

Consider, for example, the dynamics of dissolved organic carbon (DOC) in iron mats,
which have been suggested to correlate with the dominant FeOB taxa in freshwater iron
mats, specifically with the occurrence of Leptothrix, as opposed to Gallionella spp., being
closely tied to the presence of higher levels of DOC (15). Because streams are sun
exposed, it has been postulated that the presence of DOC may vary due to photobleach-
ing, which would affect the concentration of DOC that is biologically available (15). This
is one of many examples of geochemical drivers of iron mat diversity that should be con-
sidered and applied to the ecological approach that we aim to present here.

Another example that harkens to a familiar concept in microbial ecology is the pres-
ence and biological availability of phosphorous in iron mats. Biogenically produced
iron oxides, sometimes referred to as bacteriogenic iron oxides (both use the acronym
BIOS) in the literature, have been previously shown to remove phosphorous from solu-
tion by adsorption in freshwater as well as other environments, such as marine waters
and soils (16–18). Interestingly, there is also evidence that DOC may adsorb to the surfaces
of BIOS as well, potentially competing with phosphorous (19, 20) for surface area. While
the geochemistry of the iron mat is certainly variable, as shown in the above examples of
phosphorous and DOC dynamics, in a freshwater iron mat there are two constants, dis-
solved oxygen and reduced iron (Fe21), with opposing gradients (Fig. 1). The geochemistry
of iron mats certainly impacts the survivability within the stream environment, especially
in the formed microniches. As explained here, there may at times be a paucity of
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biologically available DOC or phosphorous, which may easily lead to shifts in microbial ac-
tivity and presence.

IRON MATS: MORE THANMICROAEROPHILES

The flocculent iron mat often seems to elicit the question of who, or what, lives
here? Many functional groups of biogeochemical importance reside within the ochre-
ous confines of the mat (Fig. 1). One functional group that is undeniably present in all
neutral, freshwater iron mats is the microaerophilic FeOB. They are keystone taxa, a mi-
crobial taxa that exerts a considerable influence on the microbial community structure
irrespective of their abundance (21).

The microaerophiles capable of iron oxidation cluster in the class Betaproteobacteria
and include members of the genera Gallionella, Sideroxydans, Ferriphaselus, and
Leptothrix. Numerous papers have identified Gallionella ferruginea and Leptothrix ochra-
cea as the primary producers of iron oxyhydroxides in freshwater iron mats using 16S
rRNA gene microbial community profiling and characterization of the oxidized iron prod-
uct (2, 15, 22, 23). Gallionella spp. are known to form “stalks,” braided chains of iron at
the end of which cells rest, whereas Leptothrix spp. produce “sheaths,” tubular iron
within which the cells reside (2). Members of the genera Sideroxydans and Ferriphaselus
also produce the stalk structures, which has likely led to some issues of interpretation in
earlier studies that used stalks as definitive markers of Gallionella ferruginea’s presence.
Interestingly, studies of Gallionella and Leptothrix spp. have indicated that the two vary
in regard to the Fe21 and O2 niches that they inhabit, where Leptothrix ochracea has a
more flexible response to imperfect gradients (2). This, paired with their apparent domi-
nance in systems with higher concentrations of DOC, has led to the line of inquiry that
Leptothrix ochracea may be a mixotroph or heterotroph rather than an autotroph like
Gallionella ferruginea (15, 24). While the microaerophilic FeOB are undeniably the stars of

FIG 1 Artistic rendition of some of the notable functional groups present in the neutrophilic freshwater iron mat from eukarya, bacteria, archaea, and
viruses. Organisms have been drawn here in their hypothesized niche space based on known functions and abiotic factors, such as sunlight, dissolved
oxygen (O2), and dissolved ferrous iron (Fe21). Notably, for example, the presence of bacteriophages in the mat and their placement therein are entirely
hypothetical, as there is as yet no literature on the niche spaces inhabited by these community members. There are also missing abiotic factors (e.g.,
organic carbon, nitrogen, phosphorous), which certainly impact the microbial community composition within the iron mat in low-flow streams but are
not consistent between mats.
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the show in freshwater iron mats, there is still more to the story of iron oxidation than
that which lies within the micro-oxic region.

Beyond the primary FeOB colonizers, other microbial taxa can be found in the iron
mat community. Nitrate-reducing iron-oxidizing bacteria (NRFeOB) functionally exist
within the iron mat, though it has been posited that many of these mixotrophic organ-
isms do not actively oxidize iron; instead, they produce a chemical reaction with their
metabolic by-products (25). Still, a chemical mechanism of iron oxidation would likely
lead to competition between the nitrate-reducing iron-oxidizing bacterial genera Acidovorax,
Aquabacterium, and Thiobacillus, which have been identified as present in freshwater neutral
iron mats via clone libraries (6, 26, 27). Notably, the nitrate-reducing genera identified from
clone libraries were all from the class Betaproteobacteria, whereas organisms classified as
NRFeOB in other classes were not identified. This is unsurprising, as the average size of clone
libraries from iron mats was 97 and Alphaproteobacteriamade up an average of;9% of the
clone libraries, when reported (6, 26–30). The other major iron oxidizers, the photoferro-
trophs, are also Alphaproteobacteria (3). This bias may possibly be due either to selection
choices made by experimenters when sampling or to biases that were perpetuated in clone
libraries. Regardless, these results indicate that there is perhaps much to be gained from
using methodologies that can incorporate greater proportions of the present microbial
community.

Today, it is possible to use amplicon sequencing for microbial community profiling,
which has aided in the detection of nondominant FeOB and other taxa. Of the current
studies that incorporate iron mat 16S rRNA gene environmental sequencing, most did
not report the full community profile or mention Alphaproteobacteria in their results or
discussions (15, 22, 31, 32). Only one reported the incidence of Alphaproteobacteria,
with an average 9% makeup of Alaskan iron mat communities (22). While this propor-
tion may seem remarkably low, the sample collection for this study was conducted
with great care to include only the leading edge of the iron mat, as the authors were
interested primarily in the microaerophilic FeOB that are in greater abundance there
(22), which likely led to lost data with regard to the presence of members of the
Alphaproteobacteria that were greater in depth within the iron mat. While appropriate for
studies focused on FeOB, experimental designs such as this have likely led to undersam-
pling outside the Betaproteobacteria within iron mat communities, potentially leading to
biases in our holistic understanding of the iron cycle within the iron mat.

Iron mats feature niches available to organisms other than FeOB, too, which affect
where in the iron mat these other organisms are found. Some of the more notable, if
understudied, organisms include the predatory bacteria, sulfur-cycling organisms, and
methane-cycling organisms (Fig. 1). The predatory bacteria, Bacteriovorax spp., have
been identified in freshwater iron mats using bacterial clone sequences (4, 6) and likely
have a role in maintaining relative abundances in the ecology of the iron mat. Sulfur-
oxidizing bacteria (e.g., Sulfuricurvum spp.) (6, 27), sulfate-reducing bacteria (e.g.,
Desulfobacteraceae) (29), and methanotrophs (e.g., Methylophilaceae) (6) have also
been identified using clone libraries. Notably, these include anaerobes and aerobes,
possibly competing with the FeOB for niche space or participating in a variety of cryp-
tic nutrient cycles (e.g., carbon, sulfur, nitrogen, phosphorous). It is notably difficult to
maintain the structure of an iron mat during sampling, as the flocs are loosely associ-
ated and vulnerable to disturbance, and so it is as yet unknowable where exactly in
the iron mat each of these organisms would be observed. Here, we present hypotheses
based on a general knowledge of the organisms’ oxygen sensitivity, dissolved Fe21

requirements, and photosynthetic capabilities based on the availability of sunlight
(Fig. 1). Future studies should aim to maintain the structure of iron mats and study
these functional groups in situ to tease out their specific niches in the mat.

WHY ARE MICROBIAL INTERACTIONS IN IRONMATS IMPORTANT?

Microbial relationships are important to the functioning of aquatic environments
(33) and biogeochemical cycles (34–37) and in providing colonization resistance
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against invaders, protecting vulnerable habitats. Microbial communities can be classi-
fied using measures of their environmental, functional, and genotypic complexity (38).
Using these classifiers for the iron mat community, we can identify knowledge gaps
and build a road map for addressing them.

Functional complexity includes considerations of whole-community functions, such
as resource use and trade-offs, which create spatial and temporal structural dynamics
in microbial communities (39). FeOB alone have been found to be important to the
iron cycle (40) via their biological mediation of iron oxidation, which outpaces rates of
chemical oxidation in microaerophilic environments (36). However, the functional com-
plexity within the iron mat is reliant upon other microbial guilds, such as the iron-reducing,
sulfur-oxidizing, and methanogenic bacteria. How these relationships potentially impact
iron cycling has previously been reviewed (41). Because microbial interactions are time-
sensitive (42), the variation over time adds another layer of functional complexity to micro-
bial communities, especially those that may have seasonal dynamics (15). Interestingly,
many of the functional guilds within the iron mat community are anaerobic, possibly lead-
ing to costless metabolic byproducts, so defined as they do not cause a fitness cost to the
producer, driving interactions among community members, as this is a trend among anae-
robes (43). For example, the iron-reducing bacteria, as a metabolic by-product, produce
Fe21, which is then available to other community members or the rapid cycling of sulfate
and sulfur by sulfate-reducing and sulfur-oxidizing bacteria, similar to that in the above-
described example. Through these machinations, the iron mat community presents a
plethora of potentially tied functions and elemental cycles, which in turn makes it a great
model not only for microbial ecologists but also for biogeochemists.

Of further importance is the sometimes-cryptic biogeochemical cycling that occurs
within these communities. For example, a recent study of freshwater sediment cable
bacteria that perform electrogenic sulfide oxidation found that the activity of these
organisms enhanced sulfate reduction rates (44). Previously, these effects had not
been observed, as this cycling is typically unobservable in situ, as they do not lead to
an overall increase of sulfate or sulfide concentrations. This example illustrates a com-
monly observed phenomenon, where the fitness of individuals in a community rely
not only on environmental conditions but also on the other members of the popula-
tion (45). Similarly, there may be many cryptic cycles ongoing in iron mat communities
that are not readily observable by traditional chemical measures, such as cycling
between FeOB and iron-reducing bacteria (FeRB) or between methanogens and meth-
anotrophs. Using methods of detection, such as 16S rRNA sequencing, is often the
only way to hypothesize that such cryptic cycles may be occurring, ultimately leading
to experimental setups that may parse out these cryptic relationships.

Genotypic complexity, used here to describe the overall genetic diversity in the mi-
crobial community, is the iron mat black box. As DNA yields are often low from iron
mat communities, the full genotypic complexity of these communities has rarely been
realized. Among the drivers of genotypic complexity are the presence of keystone taxa
and keystone guilds (21), such as the FeOB themselves, which are responsible for niche
partitioning (4). Iron mats create niche spaces available to other functional guilds due
to the opposing gradients of oxygen and reduced iron, setting the stage for the rela-
tionships that we will discuss here. According to a study of seasonal changes along a
freshwater first-order stream in Boothbay Harbor, ME, the keystone taxa within the
FeOB changes temporally, with the dominant iron oxidizers shifting from Gallionella
spp. early in the year (April) to Leptothrix spp. in the summer (June) (15). This specific
trend may not hold true for all iron mat communities, especially iron mat communities
in geographical locations not affected by snowpack and subsequent snow melt, which
impacts O2 dissolution in the water column. However, common to all iron mats,
beyond the opposing Fe21 and O2 gradients, are environmental factors such as waste-
water runoff, nutrient loading, and flow; these factors are all often variable in the urban
environments where many mats are located. How these factors may, independent of
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season, impact the dominant FeOB and, perhaps subsequently, the colonization by
other functional guilds is as yet unclear.

Each of these classifiers of complexity (environmental, functional, and genotypic) in
the community can affect the others. For instance, as the global climate changes, the
microbial diversity in many types of communities has experienced shifts in response
(46). This change in the environmental complexity, where typical conditions are no lon-
ger typical, has led to shifts in the observed functional and genotypic complexity.
Ostensibly, this changes the rates of mortality within the communities that are sensi-
tive to the removal of keystone species, colonization by invasive species, and global cli-
mate change (47). The iron mat community may be more impervious to the effects of
global climate change than many other microbial communities given that the FeOB
appear to be adapted to temperate conditions, as in the study in Boothbay Harbor,
ME, where the mats are not present in the winter (15); however, the freshwater com-
munities associated with iron mats may still be at risk. As mentioned previously, one of
the possible drivers of available DOC in streams with iron mats is photobleaching. This
particular condition can be attenuated with an increase or decrease in rainfall, which
correlates with an increased or decreased albedo, respectively, changing the rate at
which DOC is photobleached. Changing weather patterns may also lead to saltwater
intrusion in iron mat sites that are upstream of estuaries, one example being the fresh-
water mat upstream of brackish waters in the Sheepscot River, ME, study (23). Sites
such as these are vulnerable to increased intrusion due to drought and sea level rise.
Changes on a global scale can certainly have local-scale effects that even the fresh-
water iron mat may experience, leading to shifts in the microbial make-up and function
of these ecosystems.

SYNTROPHY: COMMUNITY ASSEMBLY, STRUCTURE, AND FUNCTION

The study of syntrophic relationships between microbes in iron mat communities
lies primarily in theory (48), but many important findings from synthetic microbial com-
munities can be applied toward the study of in situ microbial communities, such as
that of the iron mat. For example, two cocultured organisms, Xanthomonas retroflexus
and Paenibacillus amylolyticus, developed phenotypes that enhanced their ability to
grow in a biofilm together (49). It is likely that similar adaptations, i.e., the bolstering of
survival traits, may occur in natural environments, including the iron mat. It is, how-
ever, more tractable to study how the cooccurrence and cooperation between micro-
bial groups may drive community structure of established communities (50).

Cooperation is an important driver of community function, especially under envi-
ronmental stress. It has been observed that generalists, when facing lost advantage
due to perturbation, will increase syntrophic processes (51). Syntrophic relationships
can also be important for the function of microbial communities in carrying out biode-
gradation pathways. Using stable isotope probing, syntrophic relationships leading to
the removal of hydrocarbons have been identified between iron-reducing bacteria and
sulfate-reducing bacteria (SRB), as well as methanogens and acetate oxidizers (52–56).
These relationships are of particular interest, as they involve functional groups present
in the iron mat system. Such cooperative relationships between microbes may have
global import in the form of connecting biogeochemical cycles, potentially extending
to many of the Earth’s biogenically controlled cycles (57), including sulfur (7, 23, 58),
nitrogen (8, 30), manganese (59), and carbon (5, 6, 8).

Syntrophic relationships between the marine FeOB and their community members
have been explored to greater depth than the relationships in the freshwater iron mat
have. Still, potential syntrophies have been postulated between the FeOB and cooccur-
ring functional groups, including SRB (7, 23) and oxygenic phototrophs (60). The
potential for connections extends outside FeOB; SRB and methanogens are well known
for their syntrophic capabilities (61–63). The methanogenic microbes involved in these
syntrophic interactions are reliant on other functional groups for electron donors, and
their syntrophs are typically H2 or formate scavengers that can switch to a sulfate
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reduction pathway, where they may begin competing for acetate, depending on the
carbon-to-sulfate ratios. Methanogens in anoxic cultures from a rice paddy field have
also been observed to build syntrophic interactions with FeRB that are facilitated by
iron oxide particles (64). The results of the study suggest that Geobacter spp. benefit
from increased growth, and the methanogen Methanosarcina spp. was able to increase
the rate of methanogenesis via an electromethanogenesis pathway (64). Microbial syn-
trophies in the iron mat likely play a large role in modulating the growth rate of organ-
isms in situ and studies designed to capture this would strongly contribute to the
literature.

Perhaps of greatest interest are the syntrophic relationships that may form between
the ecosystem architects and the community members. There are certainly well-known
examples of this, such as the syntrophy between FeOB and the iron-reducing bacteria,
reviewed elsewhere (65), but there are other, perhaps overlooked, possibilities that we
wish to present here. The syntrophy between FeOB and SRB, where the cooccurrence
is well established in the marine system, is likely mediated by the O2-Fe-H2S catalytic
cycle (66–68), where reduced iron and sulfate are produced from the reaction of oxi-
dized iron and hydrogen sulfide, making the microbial waste (oxidized iron and hydro-
gen sulfide) back into microbial food (reduced iron and sulfate) (Fig. 2A). The most
practical implication of this relationship is that the iron mat’s chemistry may feasibly
sustain both FeOB and SRB during times of low availability of either reduced iron or

FIG 2 Brief graphical summary of some of the potential relationships that may work to maintain the iron mat community. (A) Syntrophic relationships
have been proposed for functional groups that coexist within iron mat communities, for example, the potential relationship between microaerophilic
FeOB (e.g., Gallionella spp., Siderooxydans spp., Ferriphaselus spp., or Leptothrix spp.) and sulfate-reducing bacteria that have been identified in freshwater
iron mats via 16S rRNA sequencing (7, 23). (B) Competitions for niche space and resources is likely prevalent in the iron mat community, though how
this competition impacts growth rate is currently unknown. Here, the competition is between two different microaerophilic FeOB competing for Fe21

within their shared niche space; this competition is also augmented by the formation of Fe31 chemically, known as autocatalysis, the rate of which has
been previously investigated (117). (C) Predation within iron mat communities, particularly that of bacterivorous species, such as Bacteriovorax spp., has
not previously been considered as having a large impact; however, rates of predation may influence dominant taxa or the ecosystem architects, the
Gram-negative FeOB. (D) Two of the possible interactions between bacteriophages and their bacterial hosts, either as antagonists (e.g., cell lysis) or as
symbionts (e.g., metabolic regulation), that have been shown to modify local ecology. The study of bacteriophages within iron mats is a field as yet
unexplored.
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sulfate. While first observed in marine systems, the cooccurrence of FeOB and SRB has
been noted in freshwater systems as well (7, 23) and could be of great importance dur-
ing the establishment of iron mats, where the sediment community likely serves as a
microbial seedbank (23). This may potentially expand the range of environmental con-
ditions where iron mats can be formed and may add further stability to the iron mat
microbial community composition. Novel coculture conditions have been recom-
mended for marine FeOB and SRB (69), which may be applied to freshwater guilds, but
additional cultivation methods may be warranted for future growth-based studies of
these two guilds in controlled laboratory settings. While freshwater and marine FeOB
communities are disparate with regard to physical, chemical, and biological characters,
it may still be informative to draw upon the marine community for functional ideas; as
this example shows, there is much functional overlap between the two.

Of course, there are other potential syntrophies with FeOB that merit further inves-
tigation. FeOB may also form a syntrophic relationship with planktonic cyanobacteria
in the freshwater iron mats. While this has not been explored in freshwater iron mats,
it has been suggested under brackish conditions (60). In this instance, the cyanobacte-
ria may be protected from oxidative stress due to the presence of reduced iron species,
while the FeOB receive localized O2 produced by the phototrophs when bulk water O2

concentrations are too low (60). However, as with any syntrophic relationship, it is pos-
sible that this alliance may change in nature under different conditions. In this case, it
has also been observed that the growth of acidophilic FeOB in iron mats has been sty-
mied by the presence of cyanobacteria (70). This dynamic is likely due to the degassing
of O2 from acid mine drainage, leading to an increased organic carbon-to-O2 ratio from
the presence of photosynthetic organisms, which ultimately leads to greater competi-
tion between the FeOB and organisms bolstered by the increased organic carbon (70).
In a neutrophilic freshwater iron mat, it is likely that the increased O2 from the pres-
ence of phototrophic organisms would be of greater benefit, as with the brackish con-
ditions previously mentioned. This example demonstrates that not only marine, but
acidophilic, iron mats may be useful in hypothesis generation. However, the ultimate
test of these syntrophic relationships will come from further study in the freshwater
iron mat system itself.

COMPETITION AND PREDATION: NICHE PARTITIONING AND COMMUNITY
COMPOSITION

Competition and predation, much like syntrophic relationships, are difficult to study
in situ; however, these questions are arguably more tractable in a simplified commu-
nity, such as those in a freshwater iron mat, given the complexity in, for example, soil
systems. It has been noted that competition can increase microbial diversity by com-
petitive exclusion and negative frequency-dependent selection (71). Similar controls
are exerted by predation; in a controlled experiment, it was observed that some typi-
cally rare taxa (e.g., Comamonadaceae) in a model bacterial community had the high-
est abundance when the protistan predators were removed (72). It has also been sug-
gested that functional redundancy is, at least in part, maintained by competition and
predation (73). These observations may have interesting implications for the interpre-
tation of relative abundance, often used to reconstruct community structure, in fresh-
water iron mat communities.

One of the most obvious competitions in iron mat communities is that between the
microaerophilic FeOB themselves. Those most often studied are Leptothrix ochracea
and Gallionella spp. While these organisms have been shown to coexist in some iron
mats (2, 28), they have also been shown to have an almost mutual exclusivity based on
current environmental conditions (15), indicating that these organisms share the same
niche space and may be competing at the microscopic level (Fig. 2B). However, it is
easily forgotten that in these same freshwater environments, there are other organisms
competing for reduced iron, namely, the photoferrotrophs (37, 74–76) and the NRFeOB.
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Competition among microbial taxa that utilize the same resources is likely to occur
in freshwater iron mats. In a study of coastal iron cycling communities in near-shore
marine environments of Aarhus Bay, Denmark, Laufer et al. observed microaerophilic,
nitrate-reducing, and phototrophic FeOB coexisting in two different sediment types
(77). In a stark difference from what has been observed in a study of iron mats (5), the
sediment communities of FeOB observed were not stratified according to O2, Fe21, or
light conditions (77). The authors postulate that this was due to physical turbulence
and bioturbation in the marine sediments, which would be less effectual on a typical
iron mat. However, this study suggests that the shared niche spaces of the three types
of iron oxidizers in freshwater iron mats, where low-flow streams are less turbulent,
may lead to heretofore-unobserved competition between the groups; certainly more
studies are warranted.

Other functional groups, the methanotrophs and methylotrophs (5, 6, 8), may also
compete with the microaerophilic FeOB for the available oxygen in the iron mats (5).
Quaiser et al. found methane-oxidizing bacteria to be a significant proportion of the
iron mat microbial communities (5), suggesting that this competition may be wide-
spread and drive oxygen cycling in the mat. This interaction has not been well studied,
and the notable organisms have likely been undersampled in clone libraries, given that
they are not Betaproteobacteria.

The role of predation in altering the biogeochemical potential of the microbial com-
munity is likely large, but as yet, no studies of predation in the iron mats have been
conducted. Notably, Bacteriovorax spp. have been identified in iron mat communities
(4, 6) and are known to prey on Gram-negative bacteria (78), possibly shaping the iron
mat community (whose architects, the microaerophilic FeOB, are notably Gram nega-
tive) (Fig. 2C). Predation by bacterivorous species is typically indiscriminate and has
been found to significantly alter relative community compositions (79, 80). This may
have important implications for any applied uses of iron mat communities, especially
in the transfer of iron mat seed banks to novel locations with higher or lower bacteriv-
orous species incidences than in situ.

EUKARYOTES, VIRUSES, AND ARCHAEA, OH, MY?

What roles do microeukaryotes, viruses, and archaea play in iron mat microbial
communities? The other branches of life are not only largely missing from the iron mat
literature, they have often been overlooked in studies of all environments (81, 82).
Microeukaryotes and archaeal iron mat constituents rarely appear in the literature (5,
6). One study identified nine archaeal phylotypes (6), and another reported sequencing
two archaeal transcripts (5). Microeukaryotes identified from iron mat transcripts were
associated mostly with freshwater grazing species (e.g., Tetrahymena spp.) (5), which
have previously been observed to have a role in increasing bacteriophage and bacte-
rial encounters by accumulating both in their phagocytotic vesicles (83). Clearly, the
role of microbes other than bacteria in the iron mat should not be brushed off as ancil-
lary. Microeukaryotes have also been shown to modify the community structure and
abundances in bacterial communities, as predation can lead to a rarity of fast-multiply-
ing bacterial taxa in situ (72). This predation by microeukaryotes may be especially rele-
vant to iron mat communities, where one of the keystone taxa, Leptothrix ochracea,
has a rapid doubling time of 5.7 h (24), which may lead this organism to be underrepre-
sented in community sequences. Rare bacterial species in an environment may have
invested less in defenses against grazing with bacterial phenotypes such as cell size
and cell wall structure (84) and instead may have invested more in quick replication
(72). This response to predation can also lead microbial communities to upregulate
bioremediation processes (85), which may prove an essential element to the applica-
tion of iron mat communities to polluted environments. Microeukaryotes, it should be
noted, do not parody bacterial community members in community structure shifts.
While there can be temporal structure and functional change (86), microeukaryotes are
more likely to respond to deterministic processes in marine ecosystems, unlike bacteria
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and archaea, which appear to respond more strongly to stochastic processes (87). This
trend has been hypothesized to be driven by strong adaptation capabilities in prokar-
yotes; alternatively, environmental factors that have the most relevant impact on pro-
karyotic community members are not being measured (87). In studies of iron mats, it
may be of use to use microeukaryotes as “canaries in the coal mine” to identify the rel-
ative stress (i.e., deterministic processes) that the community is facing. For example,
facing ecological severity from the Deepwater Horizon oil spill, microbial communities
increased in bacterial dominance over archaea and microeukaryotes (88). The role of
microeukaryotes in the freshwater iron mat is largely unexplored, but the datum that is
available points to ecologically relevant roles within the ecosystem.

Returning to the prokaryotic organisms among the iron mat, there is also a scarcity of
information on the archaea present in freshwater systems. It is not clear what role the arch-
aea may play in the iron mats, as they currently represent a very small proportion of avail-
able iron mat community sequences (5, 6, 31, 32), often being identified secondarily only
through the use of bacterial primer sets. As this does not encompass the majority of the
archaeal diversity in the environment and likely in the iron mat, we conducted Illumina
MiSeq sequencing of seven freshwater iron mats from Greenville, NC, using the archaeal
primers A956F (TYAATYGGANTCAACRCC) and A1401R (CRGTGWGTRCAAGGRGCA) (89).
Sequences were processed using mothur (v 1.44.1) (90–92), and the MiSeq SOP was
accessed 13 April 2020 (https://mothur.org/wiki/miseq_sop/) to identify present taxa (97%
operational taxonomic unit [OTU] threshold). Graphs were generated using the phyloseq
package (93) in R v3.5.2.

Through the use of a targeted archaeal primer set, we were able to amplify a much
higher abundance and diversity of archaeal amplicon sequences than the proportions
previously reported. Among all seven of the iron mat communities included in this
analysis, there were 1,699 total archaeal OTUs identified, with an average of 400 arch-
aeal OTUs per mat, demonstrating that the archaeal diversity is higher than previously
shown. The most abundant phylum was Euryarchaeota (Fig. 3), which accounted for
43% of the total archaeal sequences. Eleven percent and 1% were Methanomicrobiales
and Methanobacteriales, respectively. Sequences of these methanogenic archaea were
found in all seven iron mats, suggesting that their widespread presence in the iron
mats may be important for the biogeochemical function of the iron mat community as
a whole and that further efforts should be made to recover more complete sequences
of archaeal community members from more diverse iron mats. Furthermore, cultiva-
tion and cocultivation techniques should be employed to further delve into the inter-
actions between archaea and bacteria in the iron mat.

Another area of study ripe for investigation is the role of bacteriophages in the iron
mat community. Viruses impact microbial communities through varied mechanisms,
with effects such as community turnover (94) and changing bacterial abundance and
function (95). Archaea and bacteria can also benefit from lateral gene transfer between
themselves, and this benefit can be mediated by viruses (94). Functional shifts can
occur due to the presence of auxiliary metabolic genes present in both lytic and lyso-
genic phages (Fig. 2D). These genes have been observed to modify host dynamics in
marine systems, with auxiliary metabolic genes modifying host metabolic needs or
redirecting all cellular energy toward phage replication; further details of these mecha-
nisms have been reviewed by Warwick-Dugdale et al. (96). As with microeukaryotes,
viruses result in top-down pressure in bacterial communities (97). Even a community
low in viral diversity can experience a large impact from viruses, given the variability in
host specificity (98). Viral community members may also help to maintain and shape
communities, even while in a steady state (84). Interestingly, in the first temporal study
of riverine viromes, conducted in three watersheds in British Columbia, Canada, the vi-
ral communities were distinct between sites, even those where the geographic dis-
tance was markedly close enough for the bacterial communities to be similar (99).
Notably, this study also found that the communities of both DNA and RNA viruses
were synchronous (99), possibly owing to more similar environmental conditions
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impacting viral community members that are not analogous in effect to bacterial com-
munity members. As yet there have been no similar studies conducted in iron mats,
but in seeking data from a related environment, in this case a river, we have aimed to
show the possibility for hypothesis generation from these data sets to be applied to
the iron mat system.

THE SOLUTION TO POLLUTION IS. . .IRON MATS?

Iron oxyhydroxides produced by FeOB have been studied for their abilities to com-
bat anthropogenic pollution by leaching heavy metals (20, 100–102), degrading aro-
matic carbons (8), adsorbing hydrophilic pesticides (103), and removing phosphorus
(16, 104, 105) from contaminated waters. The iron mat microbial community has a
diverse ability to degrade and transform these contaminants, ultimately affecting their
fate, but the presence of these contaminants will also be a stressor to the community
itself and its functioning. The iron oxides are known to remove phosphorous from solu-
tion and the biologically available pool through sorption mechanisms (16). Because of
this, biologically produced iron oxides have also been applied in remediation strat-
egies, where they similarly adsorb arsenic (106). However, few studies have addressed
the entire community involved, not only those bacteria identified as responsible for
contaminant degradation. By expanding studies to include a more holistic view of the
entire community (e.g., bacteria, eukaryotes, viruses, archaea) in the iron mat, we can
better understand how their complex interactions affect community functions, such as
contaminant degradation and transformation. For example, heavy metals and

FIG 3 Archaeal 16S rRNA genes were sequenced from seven urban-area-impacted freshwater iron
mats in Greenville, NC. Six of the iron mats were sampled from Town Creek, and an outgroup
from Green Mill Run was included. The relative abundances of the phyla are represented here.
Euryarchaeota (blue) account for 43%, Crenarchaeota (green) account for 24%, and unclassified
Archaea (red) account for 33% of the total archaeal sequences from all seven iron mats.
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hydrocarbons can induce the formation of reactive oxygen species, which are toxic to
bacterial species (107), potentially leading to changes in the overall microbial commu-
nity in the affected iron mat. Responses of microbial communities to anthropogenic
stressors are dynamic (108) and highly context dependent (107). The responses of mi-
crobial communities depend on the pollutant, whether it be heavy metals, which often
lead to decreases in diversity (109, 110), or polycyclic aromatic hydrocarbons (PAH),
where communities may decrease (111, 112) or recover diversity after chronic stress
(113, 114).

Again, we see the importance of geochemical factors in the regulation of micro-
bial communities when we consider pollution. In the Yangtze Estuary in China, both
PAH and heavy metals are contaminating the estuarine sediment. Importantly, not
only were the PAH and heavy metals responsible for regulating the degradation
potential of the microbial community, but pH and salinity also played a role (107).
Environmental severity, as defined not only by the concentration of pollutants but
the surrounding environmental factors, plays a role in the degradation potential of
the microbial communities. Key to this study was that the microbes harvested natu-
rally occurred in the polluted area, and still, the environmental factors outside of pol-
lution had significant effects on the degradation potential (107). The functional
groups of the iron mat are commonly thought of as sensitive to oxidative-reductive
potential (ORP), dissolved O2, and physical factors (e.g., flow); how these niche-defin-
ing environmental cues interplay with contaminant presence in the iron mat to
impact the microbial community is an exciting new avenue for future research.

In urban environments, the presence of all of these contaminants in the same iron
mat would come as no great surprise, easily increasing the environmental pressure
experienced by the microbial communities of the iron mat. A focus exclusively on the
degradation potentials of these mats can obscure the importance of these stressors on
ecological networks in the iron mats and the role of keystone species. In a study of riv-
erine sediments from Suzhou, China, that were contaminated with hydrocarbons, the
keystone bacteria (e.g., Dechloromonas and Anaerolineaceae spp.) were able to facili-
tate interactions, even as the concentration of hydrocarbons increased (115), support-
ing the biodegradation of contaminants. As the hydrocarbon concentrations increased,
the strength of the species aggregations increased as measured using the Molecular
Ecological Network Analysis Pipeline, indicating a greater importance of keystone spe-
cies to environmental function (115).

Excitingly, functional groups found in the iron mat appear to have potential in the
removal of contaminants from waterways. In a study using isolated FeOB and SRB from
sewage sludge of Xiangtan City, China, cocultures were more effective at attenuating
antimony [Sb(V)] than isolates (116), indicating the importance of these interactions in
contaminant transformations and community function. Similar mechanisms likely play
out in iron mats, which are often found in urban environments, such as the North
Carolina Piedmont (20), that are prone to increased pollutants. Studies of these and
other urban iron mats may lead to the potential application of the holistic microbial
communities, not only the bacteria, toward the attenuation of PAH, heavy metals, or
other contaminants. Future avenues of research include using -omics techniques, in
situ observations, and culturing techniques to understand how microbial interactions
in the iron mat relate to contaminant remediation.

CONCLUDING REMARKS

Community sequencing, of both 16S rRNA genes and metagenomes, can be lever-
aged to understand the taxonomic and functional diversity within the iron mat. This
may be particularly useful where we do not yet have geochemical data and cryptic bio-
geochemical cycles may occur. While we have a strong foundation of knowledge of
the role of iron-oxidizing bacteria in the iron mats, there is still much to be garnered
from current and future data sets to expand sequencing and studies beyond these bac-
terial members to incorporate other functional guilds and microeukaryotic, archaeal,
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and viral members’ roles. We also hope to see an inclusion of network ecology approaches,
studies of indicator species, and the development of novel coculture techniques toward dis-
covering and understanding specific interactions within the iron mat community. Applying
these approaches may reveal much-needed information about other key taxa in iron mat
communities, perhaps also revealing some of the more cryptic relationships and
functional roles of these iron mat communities, such as contaminant degradation
in these environments. Many research directions remain in the field of iron mat mi-
crobial communities, including exploring viral and eukaryotic communities, compe-
tition and predation, syntrophic relationships, and the impacts of anthropogenic
stressors. While the iron mat is host to a great diversity, it is also simple in compari-
son to many other freshwater communities and provides an accessible model sys-
tem for testing ecological theories and interactions between the domains. Here, we
recommend that researchers strike while the iron is hot and work toward building a
greater knowledge base for this exciting community.
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