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Purpose: The hypoxic microenvironment is involved in the tumorigenesis of ovarian
cancer (OC). Therefore, we aim to develop a non-invasive radiogenomics approach to
identify a hypoxia pattern with potential application in patient prognostication.

Methods: Specific hypoxia-related genes (sHRGs) were identified based on RNA-seq of
OC cell lines cultured with different oxygen conditions. Meanwhile, multiple hypoxia-
related subtypes were identified by unsupervised consensus analysis and LASSO–Cox
regression analysis. Subsequently, diversified bioinformatics algorithms were used to
explore the immune microenvironment, prognosis, biological pathway alteration, and drug
sensitivity among different subtypes. Finally, optimal radiogenomics biomarkers for
predicting the risk status of patients were developed by machine learning algorithms.

Results: One hundred forty sHRGs and three types of hypoxia-related subtypes were
identified. Among them, hypoxia-cluster-B, gene-cluster-B, and high-risk subtypes had
poor survival outcomes. The subtypes were closely related to each other, and hypoxia-
cluster-B and gene-cluster-B had higher hypoxia risk scores. Notably, the low-risk
subtype had an active immune microenvironment and may benefit from
immunotherapy. Finally, a four-feature radiogenomics model was constructed to reveal
hypoxia risk status, and the model achieved area under the curve (AUC) values of 0.900
and 0.703 for the training and testing cohorts, respectively.

Conclusion: As a non-invasive approach, computed tomography-based radiogenomics
biomarkers may enable the pretreatment prediction of the hypoxia pattern, prognosis,
therapeutic effect, and immune microenvironment in patients with OC.
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INTRODUCTION

Ovarian cancer (OC) has the highest mortality rate among
gynecologic cancers. Surgery and platinum-based chemotherapy
are the mainstays of care for individuals with OC (1). Meanwhile,
immunotherapy is a promising treatment option for various
cancers, and it has improved the quality of life of certain OC
patients (2). However, immunotherapy in OC still faces
challenges, such as drug resistance and the lack of preoperative
non-invasive predictive tools (3).

Hypoxia impacts the tumor microenvironment (TME) (4),
angiogenesis, immunosuppression, and immune evasion (5).
The hypoxic microenvironment regulates carcinogenesis,
radiotherapy, and chemotherapy resistance (6). Based on the
above evidence, a positive response to immunotherapy may
depend on immune regulation within the TME. In recent
years, this theory has been proven by a series of fundamental
research. For example, intratumor tissue-resident memory T
cells (TRM) were found to express PD-1 and LAG-3, and the
triggering of inhibitory receptors may lead to dysfunction that
may limit the effectiveness of TRM in inhibiting tumor growth
(7). The attenuation of NRF1 degradation in hypoxic
circumstances may impede tumor-associated macrophage
polarization (8). Therefore, a comprehensive analysis of
immunological characteristics due to hypoxia is a priority to
improve treatment with immune checkpoint inhibitors (ICIs).

At present, a large number of studies have revealed the genesis of
cancer through omics analysis. In lung cancer, key genes for disease
progression were identified by various bioinformatics methods (9).
Interestingly, cancer cell lines can also be identified by the
incremental feature selection method (10). For OC, the ceRNA
network was constructed, and novel insights of the regulatory
mechanisms among mRNAs, lncRNAs, and miRNAs were
provided (11). However, in most omics analyses, these studies did
not focus on the combination of imaging data and sequencing data.
Computed tomography (CT) is part of the standard of treatment
and is used as a “road map” to guide debulking surgery and assess
chemotherapy response in patients with OC (12). CT imaging-
based radiomics allows for the translation of images into thousands
of features followed by subsequent model building to improve
prognostic prediction (13). Radiogenomics is a new cross-
disciplinary research combining radiomics with genomics (14). In
kidney cancer, it was shown that VHL mutations are significantly
associated with well-defined tumor margins and nodular tumor
enhancement (15). T2-derived texture metrics from the whole-
tumor are used to assess response in therapy (16). Interestingly,
radiogenomics can identify the landscape of m6A methylation
modification in bladder cancer (17). Because of the intratumor
heterogeneity in advanced ovarian cancer with peritoneal
carcinomatosis, methods for assessing tumor heterogeneity using
Abbreviations: OC, ovarian cancer; sHRGs, specific hypoxia-related genes; AUC,
area under the curve; TME, tumor microenvironment; ICIs, immune checkpoint
inhibitors; CT, computed tomography; CLOVAR, Classification of Ovarian
Cancer; DEGs, differentially expressed genes; MsigDB, Molecular Signatures
Database; TCGA, The Cancer Genome Atlas; PCA, principal component
analysis; TIDE, tumor immune dysfunction and exclusion; TCIA, The Cancer
Imaging Archive; ROI, region of interest.
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radiogenomics are needed to analyze whole-tumor heterogeneity
rather than single biopsy sampling (18).

Hence, there have been many studies focusing on radiogenomics
in ovarian cancer in recent years, but they mainly focused on the
prediction of Classification of Ovarian Cancer (CLOVAR) (19) and
BRCA mutations (20). Thus, we aimed to develop a radiogenomics
approach to reveal the hypoxia pattern and immunological
characteristics of patients with OC.

In this research, we collected the genomic data of 630 OC
patients and then constructed three types of subtypes using
hypoxia-related genes or hypoxia pattern regulator expression.
We assessed the predictive value of the hypoxia subtypes and
correlated it with TME. In addition, we developed a nine-gene
next-generation sequencing panel for clinical application, and it
may represent different hypoxic statuses. As for radiomics, a CT
imaging signature based on the nine-gene panel classification
was obtained using the radiomics algorithm. In a word, our
findings revealed the critical role of hypoxia in TME and
immunotherapy for OC patients. Most importantly, the CT
imaging-based radiogenomics signature can make non-invasive
predictions prior to treatment.
METHODS

Datasets and Data Preprocessing
The workflow of the study is depicted in Figure 1. We downloaded
six samples from the GSE66894 dataset (21), namely, normoxia-
cultured SKOV3 cell line samples (GSM1633848, GSM1633849,
and GSM1633850) and hypoxia-cultured cell line samples
(GSM1633857, GSM1633858, and GSM1633859). For hypoxia
treatment, SKOV3 cells were exposed to 0.5% oxygen for 16 h.
Subsequently, we used the limma package (22) for the analysis of
differentially expressed genes (DEGs), and |log fold change| >1 and
adj. p-value <0.05 were set as the thresholds (23). Meanwhile, 1,694
genes identified in previous literature were used as HRGs from the
Molecular Signatures Database (MsigDB) (24). Specific hypoxia-
related genes in OC were screened by the overlap of the HRGs and
the DEGs. In addition, RNA sequencing profiles and clinical data of
patients with OC are available from The Cancer Genome Atlas
(TCGA) (25) and Gene Expression Omnibus (GEO) databases (26),
and mutational data of patients with OC were obtained only from
the TCGA database. We excluded samples with no survival
information and those sequenced repeatedly for the same patient.
Finally, 374 patients in the TCGA-OV cohort and 260 patients in
GSE32062 were retained for subsequent analysis. It is worth noting
that FPKM data were converted to transcripts per kilobase million
(TPM) data. Batch effects between these cohorts were removed
using the sva package. In addition, The mRNA stemness score
(RNAss) of OC cases in TCGA was acquired from previous
studies (27).

Unsupervised Clustering Analysis
ConsensusClusterPlus package (28) was used to perform
unsupervised clustering analysis for the classification of
patients with OC. As for the clustering of hypoxia-related
subtypes and gene-related subtypes, the parameters were set to
March 2022 | Volume 13 | Article 868067
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reps = 1,000 and pitem = 0.8 based on related gene expression
(29). Principal component analysis (PCA) (30) and Kaplan–
Meier analysis (log-rank test) were performed to identify
whether different subtypes were relatively independent in
prognosis and heterogeneity.

Immune Cell Infiltration Analysis
We simultaneously used diversified algorithms (TIMER (31),
CIBERSORT (32), quanTIseq (33), MCP-counter (34), xCell
(35), EPIC (36), and ssGSEA (37)] to estimate the abundances
of immune cells or score of immune function in each OC sample.
The ESTIMATE algorithm (38) was utilized to assess the overall
state of the TME (immune score, stromal score, and tumor
purity). Immune checkpoint-related gene and human leukocyte
antigen (HLA) gene expressions were compared in different risk
groups. In addition, the tumor immune dysfunction and
exclusion (TIDE) algorithm (39) was used to assess the
immunotherapy response of different patients.

Construction and Validation of the
Nine-Gene Panel
Firstly, prognostic genes (p-value < 0.05) were screened using
univariate Cox regression analysis in all hypoxia pattern-related
regulators. Next, least absolute shrinkage and selection operator
(LASSO) regression analysis and multivariate Cox regression
analysis (stepwise method) were used to identify genes involved
in a panel. We used the appropriate l and Akaike information
criterion (AIC) to control robustness in the model. All the above
modeling processes were carried out in the TCGA-OV cohort.
The hypoxia risk score was calculated as follows:

o
n

i=1
coefficienti*expressioni

where coefficient is the regression coefficient in multivariate Cox
regression analysis, and expression is the RNA expression of each
selected gene. Considering that we used the TCGA-OV cohort as
the training cohort, we calculated hypoxia risk scores in the
Frontiers in Immunology | www.frontiersin.org 3
validation cohort (GSE32062) with the same formula.
Subsequently, we divided all patients into high- and low-risk
groups with the median score in the TCGA cohort. Finally, PCA,
ROC, Kaplan–Meier, and Cox regression analyses were used to
validate the prognostic value of the nine-gene panel in each cohort.

Comparison Between the Nine-Gene Panel
and Other Signatures
Zhang et al. identified a glycolysis-related gene signature for OC
patients (40). Zhou et al. identified a DNA methylation-driven
gene signature (41). Moreover, Zheng et al. developed a risk
stratification system based on glycolysis-related lncRNAs (42).
Each signature’s risk score was determined using normalized
expression values and coefficients from references. On the basis
of the TCGA-OV cohort in our study (374 patients), the C-
indexes of the models were estimated and compared.

Functional Enrichment Analysis
Specific hypoxia-related genes were enriched in ClueGO of the
Cytoscape software (43). The thresholds were set by default in the
software. Meanwhile, we used gene set (c2.cp.kegg.v6.2.symbols)
for running GSVA analysis in different hypoxia-related clusters
(33). An adjusted p-value <0.05 was regarded as statistically
significant. As for the hypoxia pattern regulators, Gene
Ontology (GO) (44) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) (45) functional enrichment analyses were
conducted. The thresholds were p-value <0.05 and q-value <0.05.

Drug Sensitivity Analysis
The pRRophetic package worked by utilizing gene expression
and drug sensitivity data in cancer cell lines, and then the models
were applied to the gene expression data from primary tumor
biopsies (46). We used the above method to calculate the IC50
values of different samples.

Mutation Analysis
We used the MutSigCV package (47) to select oncogenes with
higher mutation frequencies than the background and
FIGURE 1 | The workflow of the study.
March 2022 | Volume 13 | Article 868067
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subsequently used the maftools package (48) to display the
mutation waterfall figure in different groups. In addition, we
used this formula (total mutation frequency/38) to estimate the
tumor mutational burden (TMB) score of each sample.

Radiomics Analysis in Computed
Tomography Imaging
A total of 97 contrast-enhanced CT images of the abdomen and
pelvis were selected from the Cancer Imaging Archive (TCIA)
(49), which were matched with the TCGA-OV samples. The
study eventually included 59 samples (inadequate image quality
was excluded).

Considering the characteristics of the pelvic masses, we used
arterial phase data from enhanced CT for the study. Manual
segmentation was performed using ITK-SNAP in the cross-
sectional layer of the largest tumor region. All patients were
selected for repeat region of interest (ROI) segmentation 30 days
after the initial segmentation, which was performed by different
radiologists. The diversity in voxel sizes leads to variations in feature
values, so for reconstruction with different voxel sizes, we used a
voxel size resampling strategy to select reproducible image features:
spline interpolation resamples all images to the same 1 × 1mmpixel
size. In addition, the voxel intensities within the ROI are discretized
into a limited intensity range of 64 bins. Ultimately, we extracted
806 radiomics features from the ROI of each OC patient using
PyRadiomics (V 2.0.0) (50). Original texture features were extracted
from the texture features, shape-based features, gray-level co-
occurrence matrix features, gray-level run-length matrix features,
gray-level size zone matrix features, and gray-level difference matrix
features. The repeatability of the retrieved characteristics from the
two radiologists was validated using the intraclass correlation
coefficient (ICC). In the succeeding studies, only characteristics
with an interreader ICC >0.75 were included. Using nine-gene panel
as a classifier, we established radiogenomics prediction models
based on radiomics features from the ROI. We randomly selected
40 cases as the training dataset, and the remaining 19 cases were
used as the testing dataset. The best AUC value in the testing dataset
was utilized as the selection criterion to identify the best technique
to develop the final model after we employed different
dimensionality reductions and machine learning approaches for
imaging genomics model construction. The above modeling
processes were implemented using FeAture Explorer Pro (V
0.4.4) (51).

Statistical Analysis
All statistical analyses were performed using the R software
(v.4.0.1) and Python (v.3.7.6). Detailed statistical methods for
transcriptome data processing are covered in the above section.
p <0.05 was considered statistically significant.
RESULTS

Specific Hypoxia-Related Genes in OC
Five hundred and ten DEGs were identified in the normoxia-
and hypoxia-cultured OC cell lines (Figures 2A, B and
Frontiers in Immunology | www.frontiersin.org 4
Supplementary File 1). Subsequently, we overlapped the
hallmark gene sets and the DEGs, and a Venn diagram showed
140 shared genes as sHRGs (Figure 2C). We performed ClueGO
analysis in Cytoscape software to verify whether 140 sHRGs were
associated with hypoxia-related metabolic processes. Not
surprisingly, the results showed that sHRGs were mainly
enriched in the proteasome and classical HIF-1 signaling
pathways (Figures 2D, E).

Our data showed that 140 sHRGs were identified in cell lines
and associated with hypoxia-related metabolic processes.

Characteristics of sHRG-Mediated
Hypoxia Patterns
Based on the expression of 140 sHRGs, patients with OC were
classified into two hypoxia patterns using unsupervised clustering
analysis, namely, hypoxia-cluster-A (352 patients) and hypoxia-
cluster-B (282 patients) (Figure 3A). PCA analysis revealed that
the above two patterns were relatively independent (Figure 3B).
Survival analysis showed that hypoxia-cluster-B had the worst
prognosis (Figure 3C). Moreover, we also plotted heat maps to
show the distribution of clinicopathological characteristics and
hypoxia patterns (Figure 3D). Subsequently, GSVA and ssGSEA
algorithms focused on biological processes and immune
microenvironment between the different hypoxia patterns. The
results showed that hypoxia-cluster-B was significantly
upregulated in most pathways and showed immune activation
characteristics, including the MAPK signaling pathway, Wnt
signaling pathway, ECM–receptor interaction, MDSC, and NK
cells (Figures 4A, B). Therefore, it is reasonable to assume
that hypoxia-cluster-B showed an immune-inflamed tumor
phenotype, and they may be the most responsive to
immunotherapy. If immunotherapy is applied routinely, it will
prolong the survival time in hypoxia-cluster-B. Although the
hypoxia patterns could differentiate clinical outcomes in patients,
the underlying regulators in these patterns are unknown. Hence,
we identified DEGs in different hypoxia patterns (Supplementary
File 2). The enrichment analysis of 770 regulators in different
hypoxia patterns was carried out in GO and KEGG analyses
(Figures 4C, D). Interestingly, the PI3K–Akt signaling pathway
was significantly activated, which may suggest that it may play a
key role in hypoxia-related metabolic processes in OC.

Our data showed that two hypoxia patterns were identified in
the meta cohort, and hypoxia patterns suggested different
immune phenotypes.

Identification of Hypoxia Pattern-Related
Regulator Subtypes
In the above section, we screened out 770 differential expression
genes in different hypoxia patterns to focus on their potential OC
mechanisms. Based on the expression of 770 regulators, patients
were classified into three subtypes using unsupervised clustering
analysis, namely, gene-cluster-A (248 patients), gene-cluster-B
(152 patients), and gene-cluster-C (234 patients) (Figure 5A).
PCA analysis revealed that the above three subtypes were
relatively independent (Figure 5B). Survival analysis showed
that gene-cluster-B had the worst prognosis (Figure 5C).
March 2022 | Volume 13 | Article 868067
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Interestingly, the heat map showed that most regulators were
significantly upregulated in gene-cluster-B than in the other
subtypes (Figure 5D). In addition, we also compared the
differential expression of 140 sHRGs in the three subtypes, and
excitingly, all sHRGs were significantly different (Figure 5E).

Our data showed that hypoxia pattern-related regulator
subtypes suggested another perspective on their critical
regulating role on the hypoxic microenvironment.

Identification of the Hypoxia Risk Score
for Each Patient With OC
Although the hypoxia patterns or regulator subtypes can predict
differences in survival and immune characteristics, molecular
Frontiers in Immunology | www.frontiersin.org 5
subtypes were studied based on patient populations. The above
method cannot accurately predict the hypoxia risk status of each
patient, so we evaluated individual patients based on the RNA
expression of the above regulators for clinical application with the
risk score. Firstly, regulators with p <0.05 from the univariate Cox
regression analysis (TCGA-OV cohort) were included in the LASSO
regression analysis (Supplementary File 3). Subsequently,
redundant regulators were removed by LASSO regression
(Figures 6A, B), and correlation coefficients were determined by
multivariate Cox regression analysis (stepwisemethod) (Figure 6C).
Finally, we developed a nine-gene panel calculating risk scores,
namely, TGFBI, GAS1, HRASLS2, ENHO, AHNAK2, MMP1,
C2orf88, FOXA2, and CXCL9. The formula for calculating the
A B

D

E

C

FIGURE 2 | Identification of sHRGs in ovarian cancer (OC). Heat map (A) and volcano plot (B) of differentially expressed genes (DEGs) in SKOV3 cell lines. (C) Venn
diagram of hallmark gene sets from the MSigDB and DEGs. (D) Pie chart of ClueGO analysis. (E) Network diagram of ClueGO analysis.
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hypoxia risk score is as follows: hypoxia risk score = (0.132009353 ×
expression level of TGFBI) + (0.131635755 × expression level of
GAS1) + (−0.106191762 × expression level of HRASLS2) +
(−0.163100133 × expression level of ENHO) + (0.145369988 ×
expression level of AHNAK2) + (−0.053663201 × expression level
of MMP1) + (−0.089183891 × expression level of C2orf88) +
(−0.055649255 × expression level of FOXA2) + (−0.194630892 ×
expression level of CXCL9).
Frontiers in Immunology | www.frontiersin.org 6
Considering that we used the TCGA-OV cohort as the training
cohort, we also calculated patients’ risk scores in the validation
cohort (GSE32062) with the same formula. Subsequently, we
divided all patients with OC into high- and low-risk groups with
the median score in the training cohort. To explore the relationship
between the three subtypes, namely, hypoxia patterns, pattern-
related regulator subtypes, and hypoxia risk group, we visualized
the relationship using the Sankey diagram (Figure 6D). The results
A B D

C

FIGURE 3 | The different hypoxia patterns in patients with OC. (A) Heat map of unsupervised clustering analysis. (B) Principal component analysis (PCA) analysis of
different hypoxia patterns. (C) Kaplan–Meier analysis of overall survival time in different hypoxia patterns. (D) Heat map of the distribution of clinicopathological
characteristics and two hypoxia patterns.
A B

DC

FIGURE 4 | The immunological and biological characteristics in different hypoxia patterns. (A) GSVA analysis in different hypoxia patterns using kegg.v7.4 gene sets.
(B) Box plot of immune cells in different hypoxia patterns. (C) Bubble plot of KEGG enrichment analysis. (D) Bubble plot of GO enrichment analysis. *p < 0.05, **p <
0.01, ***p < 0.001.
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A B D

E F

C

FIGURE 6 | Identification of the nine-gene next-generation sequencing panel. (A, B) Determination of the number of regulators using LASSO analysis. (C) Forest
plot of multivariate Cox regression analysis. (D) Sankey diagram of the three types of subtypes. (E) Analysis of differences in hypoxia risk score of different hypoxia
patterns. (F) Analysis of differences in hypoxia risk score of different hypoxia pattern-related regulator subtypes.
A B D

E

C

FIGURE 5 | Hypoxia pattern-related regulator subtypes. (A) Heat map of unsupervised clustering analysis. (B) PCA analysis of different gene subtypes. (C) Kaplan–
Meier analysis of overall survival time in different gene subtypes. (D) Heat map of distribution of clinicopathological characteristics and three gene subtypes. (E) Box
plot of 140 sHRGs in three subtypes. *p < 0.05, **p < 0.01, ***p < 0.001.
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showed that most patients with poor prognosis in molecular
subtypes were closely related to patients in the high-risk group. In
addition, the box plot confirmed our results that hypoxia-cluster-B
and gene-cluster-B had higher hypoxia risk scores (Figures 6E, F).

Our data showed that the nine-gene next-generation
sequencing panel may represent different hypoxic statuses and
be more convenient for clinical application.

Prognostic Value of Hypoxia Risk Score
Although a small portion of the sample was mixed, PCA analysis
demonstrated that hypoxic risk scores had a potential
classification ability for the TCGA cohort (Figure 7A) and the
GEO cohort (Figure 7D). Kaplan–Meier analysis showed that
survival time was significantly shorter in the high-risk group than
in the low-risk group (Figures 7B, E), which indicated that
hypoxia risk score has an excellent predictive value. Meanwhile,
the AUC values of the TCGA cohort (Figure 7C) and the GEO
cohort (Figure 7F) at 1, 3, and 5 years reached 0.672, 0.694, and
0.733 and 0.643, 0.693, and 0.717, respectively. To highlight the
predictive value of the hypoxia score, we compared another risk
score from references, such as glycolysis genes, DNAmethylation-
driven genes, and glycolysis-related lncRNAs. In 374 patients from
the TCGA cohort, the C-index value showed that hypoxia risk
score had the most robust predictive performance (Figure 7G). In
addition, we performed univariate and multivariate Cox
regression analyses of the hypoxia risk score and clinical
characteristics in different cohorts. The results showed that
hypoxia risk score is an independent prognostic factor in the
TCGA cohort (Supplementary Figures 1A, B) and the GEO
cohort (Supplementary Figures 1C, D). Finally, we plotted a
nomogram based on risk group and another significant factor in
multivariate Cox regression analysis (Supplementary Figure 1E).
The calibration curve showed that the prediction curves are close
to the standard curve in the TCGA cohort (Supplementary
Figure 1F) and the GEO cohort (Supplementary Figure 1G).
Frontiers in Immunology | www.frontiersin.org 8
Our data showed that hypoxia risk score had an excellent
survival prediction ability.

Immunological Characteristics of Hypoxia
Risk Score
To comprehensively explore the relationship between different risk
groups and immune cell infiltration, we explored immune cell
infiltration based on the six algorithms. The heat map showed
immune cells with differential distribution in different algorithms
(Supplementary Figure 2). Interestingly, the low-risk group had
more abundant levels of antitumor immune cell infiltration, such as
NK cells, CD4+ T cells, CD8+ T cells, macrophages, and mast cells.
Not all patients in the TCGA-OV cohort received immunotherapy;
hence, we evaluated the ability of hypoxia risk score to predict
immunotherapy response and survival in the cohort treated with
anti-PD-L1 [IMvigor (52)]. As with the TCGA-OV cohort, patients
with high hypoxia risk score had worse OS in the IMvigor cohort
(Supplementary Figure 3A). Excitingly, in the complete remission
(CR) or partial response (PR) subgroup, patients typically had a
lower hypoxia risk score (Supplementary Figure 3B). We used the
ssGSEA algorithm to explore changes in immune function and the
ESTIMATE algorithm to explore changes in the immune
microenvironment (Figure 8A). We found immune function in a
more active state, higher immune score, and lower stromal score in
the low-risk group (Figures 8B, C). In addition, we also explored
immune checkpoint and HLA mRNA expression in different risk
groups. Most of the HLA and immune checkpoints were
upregulated in the low-risk group, such as PDCD1, CTLA4,
CD274, HLA-A, and HLA-F (Figures 8D, E).

Given that TMB and immunotherapy are strongly associated in a
study (53), we explored somatic mutation characteristics and TMB
status in different risk groups. Among the different risk groups, TP53,
TTN, and MUC16 were shared mutated genes (Figures 9A, B). In
the low-risk group, the samples had a higher rate ofmutation (94.85%
vs. 90.51%). Notably, the box plot showed that the low-risk group had
A B

D E F

G

C

FIGURE 7 | Survival analysis and model comparison of the hypoxia risk score. (A) PCA analysis in the TCGA cohort. (B) Kaplan–Meier analysis of different risk
groups in the TCGA cohort. (C) ROC curve of the 1-, 3-, and 5-year survival prediction in the TCGA cohort. (D) PCA analysis in the GEO cohort. (E) Kaplan–Meier
analysis of different risk groups in the GEO cohort. (F) ROC curve of the 1-, 3-, and 5-year survival prediction in the GEO cohort. (G) C-index of different risk scores.
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A B

D EC

FIGURE 8 | Characteristics of the immune microenvironment in different risk groups. (A) Heat map of the result of ssGSEA and ESTIMATE algorithm. (B) Analysis
of differences in the immune function of different risk groups. (C) Analysis of differences in TME score of different risk groups. (D) Analysis of differences in immune
checkpoint mRNA expression of different risk groups. (E) Analysis of differences in HLA mRNA expression of different risk groups. *p < 0.05, **p < 0.01, ***p < 0.001.
A B

D E F

C

FIGURE 9 | Mutation, TIDE, and stemness characteristics in different risk groups. (A) Frequency of somatic mutations in the high-risk group. (B) Frequency of
somatic mutations in the low-risk group. (C) Analysis of differences in TMB score of different risk groups. (D) Correlation analysis of hypoxia risk score with stemness
score. (E) Analysis of differences in TIDE score of different risk groups. (F) The distribution of immunological subtypes in different risk groups. **p < 0.001.
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a higher TMB score (Figure 9C). The cancer stemness theory posits
that stemness scores are a response factor in immunotherapy (54).
We found that as the hypoxia risk score increased, the stemness score
decreased (Figure 9D). Moreover, the TIDE algorithm was used to
evaluate the response to immunotherapy. The results showed that the
low-risk group had a lower TIDE score, as we predicted in the
IMvigor cohort, representing the possibility that the low-risk group
had a better response to immunotherapy (Figure 9E). Thorsson et al.
developed six immune subtypes across more than 10,000 tumor
samples comprising 33 diverse cancer types (55). Of these, three
immune subtypes can be annotated in the TCGA-OV cohort (231
patients), namely, Immune C1, Immune C2, and Immune C4. There
is no doubt that our risk groupings were distributed differently among
the different immunophenotypes (Figure 9F).

Our data showed new insights into the mechanisms
underlying tumor hypoxia risk score and immunotherapy.
The Role of Hypoxia Risk Score
in Chemotherapy
The IC50 values of six common chemotherapeutic medicines were
quantified in OC patients, namely, bleomycin (Supplementary
Figure 4A), cisplatin (Supplementary Figure 4B), paclitaxel
(Supplementary Figure 4C), docetaxel (Supplementary
Figure 4D), etoposide (Supplementary Figure 4E), and
gemcitabine (Supplementary Figure 4F). In detail, the IC50 levels
of bleomycin and docetaxel were significantly higher in the low-risk
group. In contrast, the IC50 levels of paclitaxel were significantly
higher in the high-risk group.
Frontiers in Immunology | www.frontiersin.org 10
Our data indicated that the low-risk group was more sensitive
to paclitaxel, while the high-risk group was more sensitive to
bleomycin and docetaxel.

Construction of Optimal
Radiomics Signatures
Based on the above results, the hypoxia risk score based on the nine-
gene next-generation sequencing panel had a possibility for clinical
application, but the method is still invasive. Hence, we used the
radiomics approach tomatch with different risk groups.We selected
40 cases as the training set and another 19 cases as the independent
testing set. Using the constructed different risk groups (high-risk
and low-risk) as a classifier, we extracted the radiomics features
from these CT images for the established radiogenomics signature.
A total of 1,008 models were constructed by combining different
methods (Supplementary File 4). We found that the combination
of the following methods had better AUC values: the Z-score
method for normalization (Figure 10A), the PCC method for
feature preprocessing (Figure 10B), the RFE method for
dimensionality reduction (Figure 10C), and the logistic regression
method for calculating coefficient (Figure 10D). Finally, we
obtained the following four features and coefficients for
constructing the optimal radiomics signatures (Figure 10E):
rad iomics score = (−1 .845017354 × CT_wave le t -
HHH_firstorder_Median) + (−1.58189802 × CT_wavelet-
HHL_glszm_SmallAreaLowGrayLevelEmphasis) + (1.130793547
× CT_wavelet-HLL_glszm_SmallAreaLowGrayLevelEmphasis) +
( 0 . 6 6 3 4 5 1 6 5 6 × C T _ w a v e l e t - L L L _ g l r l m _
LongRunLowGrayLevelEmphasis). Using the above radiomics
A B

D E
F

C

FIGURE 10 | The AUC values of different methods. (A) The AUC values of methods for normalization. (B) The AUC values of methods for feature preprocessing.
(C) The AUC values of methods for dimensionality reduction. (D) The AUC values of methods for generating the final signature. (E) LR regression coefficients and
features. (F) The AUC values of the testing set and the training set based on the optimal radiomics signature.
March 2022 | Volume 13 | Article 868067

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Feng et al. Radiogenomics Analysis in Ovarian Cancer
signature, the AUC values of the training set and the test set were
0.900 and 703, respectively (Figure 10F).

Our data showed that a novel non-invasive approach based
on CT biomarkers may enable the pretreatment prediction of
hypoxia risk in patients with OC.
DISCUSSION

There is growing evidence that the hypoxia microenvironment
plays a key role in immune response and tumorigenesis on the basis
of dysregulated expression of hypoxia-related genes. Most previous
studies focused on single regulators about hypoxia in OC.
For example, hypoxia-inducible factor-1a (HIF-1a) has been
proven to play an important role in promoting OC
chemoresistance, tumor metastasis, and immunosuppression (56).
The high expression of maspin induced by hypoxia might be
associated with a poor prognosis of ovarian clear cell carcinoma
(57). More importantly, although some researchers have identified
hypoxia-related genetic signatures to improve the prognosis of
patients with ovarian cancer (58, 59), they neglected that specific
hypoxia-related genes in OC should be analyzed to construct a risk
signature. Hence, we performed the identification of specific hypoxia
regulators in OC based on cell lines treated with different oxygen
conditions. Subsequently, we established different hypoxia patterns
(hypoxia-cluster-A and hypoxia-cluster-B) and identified regulators
that may influence different hypoxia patterns. Moreover, we also
established different gene subtypes (gene-cluster-A and gene-cluster-
B) based on the expression of regulators. In immune analysis, we
revealed that hypoxia-cluster-B and gene-cluster-B correspond to the
immune-inflamed phenotype, which contains many antigen-
presenting cells that activate an adaptive immune response.
However, hypoxia-cluster-A and gene-cluster-A correspond to the
immune-excluded phenotype (60). To date, immunotherapy
outcomes in OC have been disappointing, likely due to the highly
immunosuppressive TME, low TMB, and low checkpoint expression
in patients with OC (61). Therefore, our study provides a novel
understanding of the OC microenvironment based on hypoxia. If
immunotherapy is applied routinely, it will prolong the survival time
in hypoxia-cluster-B and gene-cluster-B. Hence, these findings will
improve the future applicationofprecisepersonalized therapy forOC.

Although hypoxia patterns could differentiate clinical outcomes
and immune perturbations in OC patients, the underlying regulators
in different patterns are unknown. We found significantly altered
pathways in the enrichment analysis, including the MAPK signaling
pathway, Wnt signaling pathway, ECM–receptor interaction, and
PI3K–Akt signaling pathway. As a classic cancer pathway, these
pathways have been widely reported in ovarian cancer (62, 63).
However, our findings gave researchers a new direction in the future:
how does hypoxia interfere with TME in OC through the classic
cancer pathways?

Although the hypoxia patterns can predict differences in survival
and immune characteristics, molecular subtypes were studied based
on populations. The above method cannot accurately predict the
hypoxia risk status of each patient, so we used the RNA expression
of nine hypoxia pattern-associated regulators for clinical application
with hypoxia risk score. Most patients with poor prognosis in
Frontiers in Immunology | www.frontiersin.org 11
molecular subtypes were closely related to patients in the high-risk
group, and hypoxia-cluster-B and gene-cluster-B had higher
hypoxia risk score. Of the nine genes, some of them were shown
to be involved in the regulation of biological functions in ovarian
cancer, such as TGFBI which is involved in polyploid cell formation
and in response to paclitaxel (64); extracellular vesicles carrying the
MMP1 mRNA promoted peritoneal metastasis of ovarian cancer
(65). The FOXA2 protein was mainly positively expressed in the
nucleoplasm of OC cells and was associated with FIGO staging and
lymph node metastasis (66). Further analysis revealed that hypoxia
risk score could be used not only to predict the prognosis of patients
with OC but also to accurately distinguish different immunological
characteristics. In addition, HLA mRNA expression, immune
checkpoint mRNA expression, TMB, and stemness score were
significantly correlated with hypoxia risk score, indicating the
ability of the risk score to assess the effectiveness of
immunotherapy. We found that the low-risk group was more
sensitive to paclitaxel, while the high-risk group was more
sensitive to bleomycin and docetaxel. It follows that the
quantitative model can define the hypoxia status of each sample.
Thus, these results validate that the hypoxia-related model can be
conveniently used for clinical assessment.

>However, genomic models are invasive; therefore, we
developed a convenient method to predict hypoxic subtypes based
on CT imaging in our study. Although the sample size of OC in the
TCIA database is limited, we found the following combinations of
methods with better AUC values: the Z-score method for
normalization, the PCC method for feature preprocessing, the
RFE method for dimensionality reduction, and the logistic
regression method for calculating coefficient. Using the above
radiomics signature, the AUC values of the training set and the
test set were 0.900 and 703, respectively. There is extensive
heterogeneity at the genomic level in primary OC and peritoneal
implants, and single-site biopsy sequencing clearly does not meet
our requirements (67), at which point a radiogenomics approach
can provide a comprehensive assessment (68).

In brief, the current studies of radiogenomics in OC are minimal
and mainly plagued by time-consuming manual segmentation.
However, based on current artificial intelligence (AI) research on
other tumors (69), we speculate that radiogenomics in OC could be
used as novel biomarkers for drug selection and assessment of
immunological characterization in the future.
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differences in hypoxia risk score of different response.

Supplementary Figure 4 | Drug sensitivity analysis in different risk groups. (A)
IC50 levels of Bleomycin. (B) IC50 levels of Cisplatin. (C) IC50 levels of Paclitaxel.
(D) IC50 levels of Docetaxel. (E) IC50 levels of Etoposide. (F) IC50 levels of
Gemcitabine.

Supplementary File 1 | DEGs in normoxia and hypoxia cultured cell lines.
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