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Modeling and simulation of the spatial 
population dynamics of the Aedes aegypti 
mosquito with an insecticide application
Monalisa R. Silva1,2,3, Pedro H. G. Lugão1,4 and Grigori Chapiro1,3*   Abstract 

Background:  The Aedes aegypti mosquito is the primary vector for several diseases. Its control requires a better 
understanding of the mosquitoes’ live cycle, including the spatial dynamics. Several models address this issue. How-
ever, they rely on many hard to measure parameters. This work presents a model describing the spatial population 
dynamics of Aedes aegypti mosquitoes using partial differential equations (PDEs) relying on a few parameters.

Methods:  We show how to estimate model parameter values from the experimental data found in the literature 
using concepts from dynamical systems, genetic algorithm optimization and partial differential equations. We show 
that our model reproduces some analytical formulas relating the carrying capacity coefficient to experimentally 
measurable quantities as the maximum number of mobile female mosquitoes, the maximum number of eggs, or 
the maximum number of larvae. As an application of the presented methodology, we replicate one field experiment 
numerically and investigate the effect of different frequencies in the insecticide application in the urban environment.
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Introduction
The Aedes aegypti (Linnaeus, 1762) mosquito is the 
main vector that transmits Dengue, Zika, Chikungu-
nya, and Yellow Fever [1]. Urbanization and interna-
tional travel are key factors that facilitate the spread of 
these diseases. The study of the spread of mosquitoes 
and viruses has important implications for understand-
ing diseases, patterns of hyperendemicity, and dis-
ease severity, facilitating the planning of public health 
actions and vaccine development strategies [2]. Den-
gue is considered among the vector-borne diseases 
that have spread most rapidly in the world [3]. The 
Americas, South-East Asia, and Western Pacific are the 
most affected regions by the dengue fever [4]. Only the 
Americas region reported 3,139,335 cases through the 
year of 2019 [5]. Over the past 50 years, this endemic 
disease grew 30 times, expanding geographically to new 
countries and, in the current decade, from urban to 
rural settings [6].

Public policies aiming to control dengue epidem-
ics must necessarily include appropriate strategies for 

minimizing the mosquito population factor [7]. Some 
papers address different strategies to control the popu-
lation of Ae. aegypti. For example, using bio-insecticide, 
larvae-eating fish species, and chemical insecticides [6]; 
through controlling the breeding of mosquitoes in the 
home environment during the year [8]; using genetically 
modified mosquitoes [9, 10]; or in the prospect of sterile 
insect technique control [11, 12].

There are several approaches to modeling the popu-
lation dynamics of Ae. aegypti. The most common one 
uses ordinary differential equations (ODEs) following the 
seminal work by Focks et al. [13, 14]. The importance of 
temperature and precipitation on mosquito population 
patterns is investigated in [15, 16]. Authors study the 
vectorial transmission of diseases using ODEs based on 
about eight parameters for each spatial location. It is nat-
ural to mix this approach with susceptible, infected, and 
recovered (SIR) models. The authors in [17] use a sys-
tem of eight ODE equations and approximately fourteen 
parameters to study the evolution of human infection for 
Chikungunya of 2005 in several Reunion islands cities.

The modeling approach based on ODEs works with 
total populations. It can not be used to investigate the 
spatial dynamics of vectors and related phenomena as 
terrain topography, different urban areas, etc. For exam-
ple, some authors [18], circumvent this issue by using a 
combination of ODEs with the graph theory.

Results:  The numerical results suggest that the insecticide application has a limited impact on the mosquitoes popu-
lation and that the optimal application frequency is close to one week.

Conclusions:  Models based on partial differential equations provide an efficient tool for simulating mosquitoes’ spa-

tial population dynamics. The reduced model can reproduce such dynamics on a sufficiently large scale.

Keywords:  Spatial Population Dynamics, Modeling, Aedes aegypti
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Different possibility to describe the spatial dynamics of 
the population of Ae. aegypti uses partial differential equa-
tions (PDEs). This approach is based on the assumption 
that the vectors’ displacement is an erratic movement and 
consequently can be modeled as mass diffusion. Several 
one-dimensional models using this approach have been pre-
sented and studied in [7, 19, 20]. However, for these models, 
it is not possible to analyze the topography of the terrain, 
considering issues that are very relevant to mosquito propa-
gation, such as heterogeneity and local climatic conditions. 
A more realistic two-dimensional model can be seen in [21]. 
However, this complex model considers seven phases of 
the mosquitoes’ life cycle and results in a significant num-
ber (fifteen) of parameters to be determined. In this sense, 
the current paper follows the work by Yamashita et al. [22], 
aiming to model the spatial dynamics of the mosquitoes 
population way, making it possible to model it in a realistic 
urban scenario. Moreover, we explain how to obtain all used 
parameters in an attempt to approach mathematical mod-
eling and biological knowledge.

Since estimating all parameters can be challenging, this 
article focuses on a two-dimensional model depending 
on few parameters and maintaining the mosquito popu-
lation dynamics’ main properties, such as the female 
mobile population and limited carrying capacity of the 
aquatic phase. We also present how to obtain most of 
these parameters from experimental data available in 
the literature using concepts from dynamical systems, 
genetic algorithm optimization, and partial differen-
tial equations. The modeling presented here addresses 

biological issues and is applied in a real situation consid-
ering a heterogeneous scenario in which it is also possible 
to calculate the population equilibrium. The described 
approach is used to investigate the impact of the insecti-
cide application frequency in the mosquitoes population.

The paper is organized as follows.  "Background" sec-
tion describes the experiments which form the back-
ground of this work.  "Methods and modelling" section 
presents the modeling, explains all parameters and the 
methods used to estimate them. The numerical algorithm 
is also described in this section.   "Results" section pre-
sents the main results and finally in "Conclusions" section 
are some discussions and conclusions.

Background
Ae. aegypti and Ae. albopictus dispersion in an endemic 
urban dengue area in southeastern Brazil was analyzed 
in [23]. They fed adult females on rubidium chloride-
enriched blood (RbCl) [24] and measured the dispersal 
by detecting Rb-labeled eggs in ovitraps. Although there 
are some limitations in this technique, such as the tip of 
the proboscises of all rubidium marked mosquitoes were 

Fig. 1  Region used in [23] and its concentric areas, Map of Nova 
Iguaçu retrieved from Google Maps and highlighted area used in the 
2d simulation

Table 1  Number of Rb-tagged eggs recovered in each 
region [23], the same using analytical solution and numerical 
simulations, see "Results" section

Distance Experimental [23] Analytical Numerical

0–100 (m) 0 1.56 1.72

100–200 (m) 2 4.52 4.97

200–400 (m) 12 15.77 17.22

400–600 (m) 20 19.63 21.06

600–800 (m) 17 17.74 18.53

Fig. 2  Schematic representation of Ae. aegypti Life Cycle. More details 
are described throughout the  "Methods and modelling" section
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cut off, possibly changing their dispersion [23]. In gen-
eral, works addressing mosquitoes dispersion distances 
[25–27] measures the maximum value of such dispersion, 
making it difficult to evaluate the small distance displace-
ment, which is the norm in mosquito biology [28, 29].

The described experimental results, in our opin-
ion, are more related to diffusion phenomena (con-
nected to the Laplacian operator) then to advection 
phenomena (modeled as wave propagation). As will be 
explained in the following sections, it allows us to con-
sider a significant amount of mosquitoes (90% in the 
current approach) stay in a specific area while the out-
liers travel further.

The release point at [23] was the center of a circle 
with a radius of 800 (m). According to [23], two weeks 
before the release of Rb-tagged mosquitoes, all houses 
(about 5,000) located in the 1,600 (m) diameter study 
area were inspected for containers containing imma-
ture mosquitoes that were identified and counted. To 
evenly distribute the ovitraps, the 800 (m) radius cir-
cular area was divided into five concentric areas of 
0–100 (m) radius (23 ovitraps), 100–200 (m) (69 ovit-
raps), 200–400 (m) (276), 400–600 (m) (460) and 
600–800 (m) (644), respectively, similar to Fig. 1, [23]. 
In this way, the number of ovitraps per square meter is 
approximately the same in the investigated area.

Dispersal of Ae. aegypti—Fifty-one ovitraps (17 on 
day 3 and 34 on day 6) were found with Rb-marked Ae. 
aegypti eggs, Table 1. Ae. aegypti Rb-marked eggs were 
found up to 800 (m) from the release point. None of the 
23 ovitraps placed up to 100 (m) from the release point 
was positive for Rb- marked Ae. aegypti eggs.

Methods and modelling
Modelling
We consider four main phases in the life cycle of the Ae. 
aegypti: the mobile female in the reproductive phase 
(transmits diseases), the egg phase (substantially increases 
the mosquito population), larva and pupae phases (in this 
paper we join them into the aquatic phase for simplicity). 
For simplicity, in this mosquitoes’ population dynam-
ics model, we consider larva and pupae as one phase, see 
Fig.  2. We are interested in an urban spatial scale, where 
diffusion represents the dispersion of the mosquitoes due 
to the autonomous and random movements of the winged 
females.

Variables M, A, and E represent the population density 
of Ae. aegypti mosquitoes in the mobile, aquatic, and egg 
phases, respectively. Coefficients µ1 and µ2 represent the 
mortality of the mobile and aquatic phases respectively; 
k is the carrying capacity for the aquatic phase; r repre-
sents the oviposition rate of females; D is the diffusion 

coefficient of females; γ is the immobile phase matura-
tion rate; e is the hatching rate.

Due to the very high resistance of the egg phase (up to 
450 days [30]), as we are interested in an urban spatial 
macro-scale modeling, we do not consider the mortality 
in the egg phase. Quantitatively the results presented in 
this paper do not change significantly considering such 
parameter. The model is described by the following sys-
tem of partial differential equations:

where the domain of variables M(x,  y,  t), E(x,  y,  t), 
A(x,  y,  t) and initial conditions inside some spatial 
domain � ⊂ R

2 are given by

System (1)–(3) can be regarded as a modification of the 
model presented in [7], neglecting the term referring con-
vection and dividing the immobile phase into an aquatic 
phase (larvae and pupae) and an egg phase. This model 
can also be regarded as a modification of one presented 
in [21, 31], where we separate eggs from the aquatic 
phase and consider only the mobile female population.

The carrying capacity, based in [13, 32], represents a 
space limitation of one phase due to situations present in 
the environment, such as competition for food among the 
larvae [33]. The carrying capacity was neglected in the egg 
phase because of the skip oviposition phenomenon [34]1. 
Limitations in the winged phase were not reported in 
any study. Finally, we consider the limitation term in the 
aquatic phase (larvae and pupae), where it is effective [16].

Remark

Notice that the variable definition domain given in (6) is 
invariant under the time evolution by System  (1)–(3). In 
order to prove this affirmative it is sufficient to check that 
the vector field defined by the right side of (1)–(3) points 

(1)
∂M

∂t
= ∇ · (D∇M)+ γA− µ1M,

(2)
∂E

∂t
= rM − eE,

(3)
∂A

∂t
= e

(

1−
A

k

)

E − (µ2 + γ )A,

(4)0 ≤ M(x, y, t) < ∞, M(x, y, 0) = M0(x, y),

(5)0 ≤ E(x, y, t) < ∞, E(x, y, 0) = E0(x, y),

(6)0 ≤ A(x, y, t) ≤ k , A(x, y, 0) = A0(x, y).

1  The female lays the number of eggs that the place holds, without more 
space, she migrates to other environments to finish laying the eggs.
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toward inside the domain, when (M, E, A) approaches the 
domains border. 

1.	 As the term ∇ · (D∇M) can not change the sign of 
M, when M is approaching zero, the right side (1) is 
not negative.

2.	 The right side of (2) remains positive, when the initial 
conditions (M0,E0,A0)(x, y) are inside the domains 
definition, the solution of (1)–(3) remains inside this 
domain.

3.	 When A approaches zero the right side of (3) is not 
negative. When A approaches k (from below) the first 
term in the right side of (3) tends to zero, while the 
second term remains negative.

How to estimate maturation rate
The time elapsed from the hatching of the larvae to the 
emergency of the pupae in the adult phase can be meas-
ured experimentally. For example, [35] reports approxi-
mately eight days of maturation at a fixed temperature of 
26  ◦ C. To estimate a maturation rate coefficient γ from 
this value, we divide 1 per the maturation time taking 
into account 50/50 ratio of male/female. The result is 
γ = 0.0625 female mosquitoes per day.

How to estimate oviposition rate
For the oviposition rate, we need to measure the number 
of eggs per day deposited by a single mosquito. In this 
case, we use the experimental data from [36], that reports 
an average of 75.01 eggs per day during five days of the 
oviposition period at 25 ◦C with 80% relative humidity. It 
corresponds to 375.05 eggs in the total lifetime of eleven 
days seen in the experiment. As the oviposition rate cor-
responds to an average egg deposition during the mos-
quitoes’ lifetime, we divide the total number of eggs per 
lifetime to roughly estimate r = 34 (eggs/day).

How to estimate mortality rates
We assume that all eggs hatch and the corresponding 
mortality rate coefficient is equal to zero. The mortality 
rate coefficient of the aquatic phase is defined by the lar-
vae’s coefficient, resulting in the parameter µ2 approxi-
mately equal to 0.025 (1/day) [16].

The mobile phase mortality rate coefficient is calcu-
lated as a sum of the base mortality rate and an incre-
ment due to insecticides impact: µ1 = µb

1
+ µi

1
.

Considering both natural death and accidental ones, 
approximately 10% of mosquitoes in the adult phase dies 
at each day [37], giving us a base mortality rate coefficient 
µb
1
 close to 0.1 (1/day).
In order to model the mortality rate increment due to 

insecticide impact on the mosquitoes’ population, we add 
a correction factor to the base mortality rate. To model 
this factor we consider the Eq. (1) neglecting diffusion 
term, maturation term, and also neglecting the base mor-
tality rate ( µ1 = µi

1
):

This type of equation appears in many applications. In 
particular, for chemical reactions, the characteristic time 
(time corresponding to complete the major part of the 
reaction) is defined as tchar = 1/µ1 [38]. We consider the 
insecticide effect of being 30 minutes, which is the time 
insecticide suspension stays in the air [39]. Taking this 
value as a characteristic time, we arrive at the reference 
value of the mortality rate of µi

1
= 48 (1/day). In what 

follows, we considered the same application time of 30 
minutes for all insecticide application frequencies. The 
characteristic time for different mortality rates consid-
ered in this paper are presented in Table  2.

The focus of the model application addressed in this 
paper is to investigate the impact of the insecticide appli-
cation frequency in mosquitoes’ population. Thus the 
total amount of insecticide applied is the same, making 
it possible to compare different application strategies. For 
example, if applied every two weeks, the mortality cor-
rection factor is µi

1
= 96 (1/day) for thirty minutes; when 

applied once a week, the mortality correction factor is by 
µi
1
= 48 (1/day) for thirty minutes and so on.

How to estimate diffusion coefficient
While the diffusion coefficient is the most important 
parameter to define the mosquitoes’ displacement, it 
cannot be easily estimated from biological aspects as the 
previous parameters. We use the experimental data [23] 
to estimate its value through two different approaches: 
analytical and numerically using the heuristic method. 
In order to replicate the experiment, the model was sim-
plified: since the focus of the experiment is the dispersal 

(7)
∂M

∂t
= −µi

1M.

Table 2  Mobile phase mortality rate due to insecticides 
for different application frequencies and the corresponding 
characteristic time

Appl. frequency µ
i

1
 (1/day) tchar Duration of effect

Once a day 6.86 by application 3.5 (h)

Twice a week 24 by application 1 (h) 30 (min) ≈ 0.02 (day)

Once a week 48 by application 30 (min)

Every two weeks 96 by application 15 (min)
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of the initially released Rb-tagged mosquitoes during a 
short period, the immobile phase equation is neglected. 
Therefore, the model is simplified to:

with the initial condition M(x, y, 0) = M0 · δ(x, y) , where 
δ(x, y) is a Dirac delta function, and M0 the number of 
mosquitoes released in the center of the circle. Equa-
tion (8) possesses analytical solution for the unbounded 
two-dimensional domain:

As this solution decays exponentially with the distance 
from the origin, considering a sufficiently large domain, 
the difference from this solution and the correct solution 
for limited domain on the boundary is negligible. Thus 
we can use it to estimate mosquitoes distribution.

The analytical approach presented in this paragraph 
is only used to obtain the diffusion coefficient from the 
experimental data [23]. Notice that the authors in [23] do 
not apply insecticides and that the total experiment dura-
tion was 6 days. During such a short period, the mos-
quitoes’ mortality does not impact results significantly. 
Besides, this analytical solution is used to validate the 
heuristic approach (presented next), which fits diffusion 
and mortality coefficients. We use the solution (9) with-
out the mortality term ( µ = 0 ) and integrate it to find 
the diffusion coefficient D, such that in seven days 90% 
of the initial population is within the circle of radius 800 
(m). While these values seem arbitrary at first, the experi-
ment in [23] shows us that 800 (m) is a minimum radius 
to consider since mosquitoes can be found in all the 
explored area. The authors in [40] also corroborate this 
remark stating that in dry seasons, like the one where the 
experiment takes place, the mosquitoes can be found at 
a maximum distance of 1000 (m) from the release point.

For the heuristic approach, the experimental data are 
compared to the simulated one with the following meth-
odology. First, the solution (9) with to-be-fitted values 
D, and µ is obtained within each of the areas analyzed 
by the experiment. Each integral value is multiplied by 
a constant parameter α , which indicates the probability 
of mosquitoes to lay eggs into the ovitraps in the inves-
tigated area. The resulting values R are compared to the 
experimental data E. A genetic algorithm, described 
in "Genetic algorithm" section, is used to fit D, µ , and α
, minimizing the error between R and E.

(8)
∂M

∂t
= D∇2M − µM,

(9)M(x, y, t) =
M0

4tπD
e
−x2−y2

4Dt −µt
.

How to estimate carrying capacity coefficient
The carrying capacity depends on external factors such 
as food availability, climate factors, terrain properties, 
making a direct estimation almost impossible. In order 
to estimate the carrying capacity coefficient k, we extend 
the methodology presented in [13, 41]. Let χ ∈ R

2 be a 
part of the domain, where the variables M, A, and E can 
be considered homogeneous. This assumption agrees 
with the experimental data, where there is always a lim-
ited number of traps. For example, the region χ can be a 
block, a neighborhood, or a town.

Considering a compact χ with smooth boundary Ŵ , and 
assuming a sufficiently smooth solution M, Gauss’s Theo-
rem results in:

where n is a normal vector pointing outwards the region 
χ . For simplicity let us consider that χ is isolated from 
the neighbor regions. Thus, to estimate carrying capacity 
coefficient, it was considered that there are no mosqui-
toes entering or leaving χ resulting in ∇M · n = 0 in Ŵ.

Under the discussed hypotheses, integrating System 
(1)–(3) in χ and dividing the resulting equations by the 
area of χ , yields the following system of ordinary differen-
tial equations:

Systems similar to (11) were studied in the litera-
ture [15, 19, 22, 42]. The solution is the traveling wave 
connecting two equilibria (M,E,A) = (0, 0, 0) and 
(M,E,A) = (M∗,E∗,A∗) , where the second one cor-
responds to the maximum number of mosquitoes. We 
assume this behavior here as the proof stays outside of 
the scope of this paper. Equating the right side of System 
(11) to zero results in:

where:

(10)
∫∫

χ

∇ · (D∇M)dA =
∮

Ŵ

D∇M · ndS,

(11)























∂

∂t
M = (γA− µ1M),

∂

∂t
E = (rM − eE),

∂

∂t
A =

�

eE
�

1− A
k

�

− (µ2 + γ )A
�

.

(12)

M∗ = −k
γµ1 − γ r + µ1µ2

rµ1

= k
γ

µ1

(

1−
1

Q0

)

,

(13)

E∗ = −k
γµ1 − γ r + µ1µ2

µ1e
= k

γ r

µ1e

(

1−
1

Q0

)

,

(14)A∗ = −k
γµ1 − γ r + µ1µ2

γ r
= k

(

1−
1

Q0

)

,
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is equivalent to the basic offspring number [43]. It can 
be noted that there is a bifurcation here. When Q0 ≤ 1 
the only valid equilibrium inside the variables’ definition 
domain (6) is (0, 0, 0), since M∗ , E∗ and A∗ are non posi-
tive. If Q0 > 1 , values 0 < M∗ , 0 < E∗ , and 0 < A∗ < k . 
For more details see [43].

Different experiments obtain the number of eggs, or 
larvae, or female and male mosquitoes. For example, 
the authors in [23, 44] collected the number of ovitraps 
in which the females laid eggs in a determined evalu-
ated region. Another work [45] shows the spatial distri-
bution of Ae. aegypti and Ae. albopictus larval densities. 
The authors in [44] investigates the concentration of Ae. 
aegypti females. In this way, using the Eqs. (12)–(14) 
allows estimating the presented models carrying capacity 
coefficient for all these cases.

In this work, we obtain a value of the carrying capac-
ity coefficient k from the adult mosquitoes estimated 
population found in [46]. One of its experiments in an 
urban neighborhood report approximately 100000 mos-
quitoes in a region of 4000000 ( m2 ), corresponding to 
M∗ ≈ 0.025 ( #/m2 ) mosquitoes. The final expression for 
k is computed using this value for M∗.

How to estimate hatching rate
The experimental data [13] suggests that, in optimal con-
ditions of humidity, the mean value of the hatching rate 
coefficient is 0.24 (1/day) with a temperature of 28 ( ◦C ), 
which is considered ideal for the development of the 

(15)Q0 =
rγ

µ1γ + µ1µ2

mosquito. In this model, we consider the value e = 0.24 
(1/day), even though it is known that this parameter is 
highly dependant on climatic conditions.

Methods
In this section, we briefly describe numerical methods 
used in this paper. A simple genetic algorithm is used 
to fit the parameters by minimizing the error between 
the experimental data [23] and the simplified model 
described in "How to estimate diffusion coefficient" sec-
tion. The finite volume method (FVM) is used to simulate 
the model (1)–(3).

Genetic algorithm
This sections goal is to fit parameter values of D, µ and 
α by minimizing the error function 

∑5
i=1((Ri − Ei)wi)

2 . 
The set of different weights wi for each region 
w = (1, 1, 5, 10, 10) is used to give more attention to the 
radial propagation of the mosquitoes. The structure of a 
genetic algorithm is described in Algorithm  1, see [47] 
for more details.

Input: error function.

initialize population with random candidate solutions;

evaluate each candidate;

while number of generations < 300 do

select parents;

crossover pairs of parents;

mutate generated candidates;

evaluate new candidates;

select new generation;

end

Output: parameter values of D, µ and α minimizing the error function.
Algorithm 1: Genetic algorithm structure

In the Algorithm  1, the selection function, used to 
choose the best parent candidates and the next genera-
tion is given by tournaments of size 4, i.e., between four 
possible candidates and select the one with minimal error 
function. The crossover uses an arithmetic function, 
where the new candidate has the average values between 
two parents. The solutions are bounded, and the adaptive 
feasible mutation function ensures that the mutated can-
didates stay in the defined bounds. Note that the bounds 
used in the optimization help to achieve a more realistic 
local minimum of the problem. For the boundaries we 
consider that the parameters must be positive, D is lim-
ited in 30000 ( m2/day), µ is lower than 1 (1/day) and the 
upper bound for α is estimated to be less than 0.1 because 
of the considered number of released mosquitoes 
( M0 = 3000 ) and the data collected by the experiment.

Finite volume method
The governing equations describing the population 
dynamics of Ae. aegypti have been discretized using an 

Fig. 3  Control volume in finite volume formulation
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explicit FVM [48] detailed next. The domain is given by 
� = [0, L] × [0, L] . In order to rewrite the System (1)–(3) 
in the weak form, we integrate it in the control volume 
ωij ⊂ � , see Fig. 3:

 
Considering ωij as a cell centered in (xi, yj) , we solve 

each integral separately. For the left side of the System 
(16)–(18), taking M, E or A as U, it follows:

where U(xi, yj , tn) = Un
i,j . We have 

�x = xi+1 − xi = yj+1 − yj = �y defined by the uni-
form discretization of the spatial grid, and �t = tn+1 − tn 
is the time step used in the temporal evolution of the 
solution.

For the second term in (16) (diffusion term), first con-
sider the derivative only in the X direction:

Using a similar calculation for the Y direction and add-
ing both equations for X and Y directions we obtain the 
second term in (16) (diffusion term). For simplicity we 
denote this term D(Mn

ij).
The integral of each source term is approximated as 

follows:

(16)

∫∫

ωij

∂M

∂t
dxdy =

∫∫

ωij

∇ · (D∇M)dxdy

+
∫∫

ωij

(γA− µ1M)dxdy,

(17)
∫∫

ωij

∂E

∂t
dxdy =

∫∫

ωij

(rM − eE)dxdy,

(18)

∫∫

ωij

∂A

∂t
dxdy =

∫∫

ωij

[

e

(

1−
A

k

)

E − (µ2 + γ )A

]

dxdy.

(19)

∫ yj+1/2

yj−1/2

∫ xi+1/2

xi−1/2

∂U(x, y, t)

∂t
dxdy ≈ �x�y

Un+1
i,j −Un

i,j

�t
,

(20)

∫ yj+1/2

yj−1/2

∫ xi+1/2

xi−1/2

∂

∂x

(

∂(DM)

∂x

)

dxdy

≈ �yD

[(

Mn
i+1,j −Mn

i,j

�x

)

−

(

Mn
i,j −Mn

i−1,j

�x

)]

.

Substituting the integrals into (16)–(18) leads to follow-
ing system:

(21)

∫ ∫

ωij

(γA− µ1M)dxdy ≈ (γAn
ij − µ1M

n
ij)�x�y,

∫ ∫

ωij

[

e

(

1−
A

k

)

E − (µ2 + γ )A

]

dxdy

≈

[

e

(

1−
An
ij

k

)

En
ij − (µ2 + γ )An

ij

]

�x�y,

∫ ∫

ωij

(rM − eE)dxdy ≈ (rMn
ij − eEn

ij)�x�y.

(22)

Mn+1
i,j −Mn

i,j

�t
=

1

�x�y
D(Mn

ij)+ γAn
ij − µ1M

n
ij = F1(M

n
ij ,A

n
ij),

(23)
En+1
i,j − En

i,j

�t
= rMn

ij − eEn
ij = F3(M

n
ij ,E

n
ij).

Fig. 4  Computational domain corresponding to the area highlighted 
by a rectangle in Fig. 1. Yellow color indicates the area affected by the 
insecticide, and blue color indicates the interior of house blocks not 
affected by insecticide

Table 3  Parameter values used in simulations inside the house 
blocks and on the streets in the heterogeneous scenario. For 
the homogeneous scenario we use weighted average of these 
values

Parameter Houses Streets Homogeneous

D 9484.5 ( m2/day) 18969 ( m2/day) 12440 ( m2/day)

µ1 0.1177 (1/day) 0.2354 (1/day) 0.1544 (1/day)

µ2 0.0250 (1/day) 0.0500 (1/day) 0.0328 (1/day)
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Using a Crank-Nicolson discretization for the right side 
of (22)–(24) and rewriting the equations in terms of the 
previous time and the next time, it follows the implicit 
scheme:

The simulation consists in solving the nonlinear system 
(25)–(27) for Mn+1 , En+1 and An+1 at each time step to 
calculate the population distribution of each phase. We 
use a time step lower or equal to thirty minutes. More 
details on this method can be found in [48–50].

(24)

An+1
i,j − An

i,j

�t
= e

(

1−
An
ij

k

)

En
ij − (µ2 + γ )An

ij = F2(A
n
ij ,E

n
ij),

(25)
Mt+1

ij = Mt
ij +

�t

2
(F1(M

n
ij ,A

n
ij)+ F1(M

t+1
ij ,At+1

ij )),

(26)
Et+1
ij = Et

ij +
�t

2
(F3(M

n
ij ,E

n
ij)+ F3(M

t+1
ij ,Et+1

ij )).

(27)
At+1
ij = At

ij +
�t

2
(F2(A

n
ij ,E

n
ij)+ F2(A

t+1
ij ,Et+1

ij )),

Table 4  Mean and standard deviations of the parameters from a 
100-fold execution

Parameter Mean SD (%)

D ( m2/day) 18969 2660.30 (14%)

µ (1/day) 0.1177 0.0314 (26%)

α 0.0642 0.0140 (21%)

Table 5  Parameter names and values used in simulations

Parameter Description Value References

D Diffusion coefficient 18969 ( m2/day) Fitted, [23]

γ Maturation rate 0.0625 (1/day) [35]

µ1 Mobile phase mortality rate 0.1177 (1/day) Fitted, [23]

µ2 Immobile phase mortality rate 0.0250 (1/day) [16]

r Oviposition rate 34 (1/day) [36]

e Hatching rate 0.2400 (1/day) [13]

k Carrying capacity 0.0590 (1/m2) Fitted, [46]

Fig. 5  Spatial distribution of mobile phase before the application of insecticides, a day 5, during the application, b day 6, and after the application, 
c day 7, d day 8. Each figure corresponds to the situation at 00:15. The insecticides are applied on day six at 00:00–00:30. The simulation corresponds 
to the weekly insecticide application
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Simulation of the insecticide application
For the simulations, we consider the area highlighted by 
a rectangle in Fig.  1. Figure  4 shows the corresponding 
computational domain, where yellow color indicates the 
area affected by the insecticide, and blue color indicates 
the house blocks. Notice that the yellow area is slightly 
larger than the streets because of the diffusion effect of 
the insecticide pulverized in the air.

The simulations were performed using Finite Vol-
ume Method explained in  "Finite volume method" sec-
tion with initial conditions M0

ij = 0.001 ( 1/m2 ) and 
A0
ij = E0

ij = 0 ( 1/m2 ) for all grid points (xi, yj) . Parameter 
values are in Table 5. We run the simulations for two sce-
narios explained next.

Heterogeneous scenario It considers that diffusion coef-
ficient value inside house blocks is equal to half of that 
obtained in "Parameter estimation" section, since streets 
are more favorable place for mosquitoes movement. 
Mortality coefficients inside home blocks are also consid-
ered to be 50% of those in streets since there are more 
natural conditions contributing to mosquitoes’ mortal-
ity outside houses, see Table  3. The considered spatial 
variation of the parameters are hypotheses made by the 
authors only to show how the model deals with a hetero-
geneous scenario. Despite being close to fitted values or 
to values obtained from literature, the exact multipliers 
corresponding to each city area could not be determined. 
The average diffusion and average mortality coefficients 
were maintained equal in heterogeneous and homogene-
ous scenarios to enable the comparison between both.

Homogeneous scenario It considers that the diffusion 
and mortality rates of mosquitoes are equal in streets and 
inside house blocks. Corresponding parameter data for D, 
µ1 and µ2 are in Table 3. The importance of this simplified 
case is that it allows us to make a bridge with the ODE 
theory, which results are presented in "How to estimate 
carrying capacity coefficient" section. In order to compare 
homogeneous and heterogeneous scenarios parameters D, 
µ1 and µ2 were calculated as a weighted average between 
the parameters of streets and houses proportional to the 
area of the respective environment, see Table 3.

Results
This section aims to describe the results obtained by the 
previously described methodologies. "Parameter estima-
tion" section focuses on the parameter estimation using 
both the genetic algorithm and the analytical approach. 
"Population dynamics simulation and validation" sec-
tion shows results comparing the numerical solution to 
the experimental data and the analytical solution of the 
model. Simulation results for the complete model with 
the fitted parameters are also presented.

Parameter estimation
By numerically fitting the experimental data
Given the random nature of the genetic algorithm, it was 
executed in a 10-fold scheme, calculating the mean value 
of each parameter, and its standard deviation. The resulting 
mean and standard deviation are presented in Table 4. The 

Fig. 6  Homogeneous scenario—total population of mobile phase by time with different application strategies. Dotted lines represent equilibria 
found by Eq. (12)
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relatively low standard deviation indicates that the results 
are close to the same local minimum in the limited search 
space.

By analytical approximation using the heat equation
Due to the experiment’s short duration, Eq. (8) is simplified 
by removing the mortality term resulting in a heat equa-
tion, which possesses a well known analytical solution. 
Considering initial data given by the Dirac function and 
using heat kernel [51, p. 45] the two-dimensional solution 
is given by:

where σ(t,D) =
√
2Dt is the standard deviation, that also 

represents the “Gaussian width” of the kernel function. 
We search for the parameter D, such that 90% of the ini-
tial mosquitoes population stays inside the circle of radius 
800 (m) after seven days of the experiment. For all nor-
mal distributions, approximately 90% of the area is within 
1.64 standard deviations of the mean value, in this case 
zero. We substitute the values in 1.64σ(7,D) = 800  (m), 
yielding D = 16997 (m2/day).

Population dynamics simulation and validation
In this subsection, we present the numerical results of 
the direct simulations using FVM. Initially, we perform 
a simulation in a 2D homogeneous domain using a sim-
plified model given by Eq.  (8). For this simulation, we 

(28)M(x, t) =
M0

2πσ 2
e
−x2−y2

2σ2 ,

use parameter values of D and µ1 obtained in previous 
sections and summarized in Table 5.

Integrating the numerical solution at t = 7 (days) on 
each of the areas described in Fig.  1 and multiplying 
the results by the probability of detecting mosquitoes 
in the trap α = 0.0642 gives us values to compare with 
the experimental data, as seen in the fourth column of 
Table 1.

The analytical results in Table  1 (third column) are 
obtained using same parameters in the Eq. (9) and per-
forming the same integration multiplied by α.

Simulation of the insecticide application
Figure 5 presents mobile phase population density dis-
tribution obtained from the simulation of the hetero-
geneous scenario for weekly insecticide application, see 
Table 2. Notice that each sub-figure uses its color scale 
for better understanding.

As can be observed in Fig.  4, there are bigger blocks 
in the center of the considered neighborhood. Figure 5a 
shows that, as expected, bigger blocks offer more condi-
tions for the proliferation of the vector. Figure 5b shows 
that, immediately after the insecticide application, the 
population density in the streets decreased considerably, 
while the population inside small blocks is more affected 
than in bigger blocks. These results are reasonable since 
pulverized insecticide can not reach areas more dis-
tant from the streets. Figures 5c, d show the population 
recovery after the application of the insecticides. It is 

Fig. 7  Heterogeneous scenario - Total population of mobile phase by time with different application strategies. Dotted lines represent equilibria 
found by Eq. (12)
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clear than the bigger blocks are the source of such recu-
peration allowed by the presence of the egg and aquatic 
phases.

We compare different insecticide application strategies 
by calculating the integral of the population density in 
the entire region at each time step. Figures 6 and 7 show 
total mosquitoes’ population at each day for the homo-
geneous and the heterogeneous scenarios, respectively. 
Both figures show five simulations: four simulations with 
different application strategies (see Table 2) and the case 
without insecticides use for comparison.

The methodology presented in "How to estimate car-
rying capacity coefficient" section allows us to calculate 
an equilibrium state for total mobile mosquitoes’ popula-
tion using Eq. (12). In the homogeneous scenario without 
insecticides, we use Eq. (12) directly. To deal with hetero-
geneous parameters, we apply Eq. (12) to each grid point 
to find a local equilibrium, and then we sum the results 
for all grid points to obtain a total population equilib-
rium. To deal with discontinuous insecticide application, 
we consider the mortality coefficient (e.g., 48 (1/day)) and 
divide it by the number of half-hour periods in the corre-
sponding time (in this case 336), simulating the effect of 
the same insecticide concentration applied continuously. 
The resulting equilibrium solutions are plotted in Figs. 6 
and 7.

As one can see, Formula (12) gives perfect a match for 
equilibrium solution and no insecticide case in both sce-
narios. When insecticides are applied, the total mobile 
mosquitoes’ population oscillates close and below the 
equilibrium solution in both scenarios. In this case, the 
total mobile population approximates the equilibrium 
value given by Eq.  (12) when applications become more 
frequent.

Discussions
One of the goals aimed by the present article is to evi-
dence the possibility of describing mosquitoes’ spa-
tial population dynamics through a model with few 
parameters. We presented model simulations using the 

limited and discrete computational domain using a two-
dimensional step function for the spatial variation of the 
parameters in the heterogeneous scenario. The temporal 
dependency of parameters is neglected. This simplic-
ity is essential since complex models that rely on a large 
number of parameters can frequently present limited 
applications as these parameters are almost impossible to 
obtain. Numerical fitting of a large number of parameters 
and limited data inevitably raises the question of a local 
minimum problem. In our opinion, the spatial dynamics 
of mosquitoes’ population can be modeled using a diffu-
sion equation.

For the mathematical model cited above, we present 
how to estimate the main parameter values (diffusion 
coefficient, mortality rate, and carrying capacity) from 
the literature [23, 36]. In particular, for the diffusion coef-
ficient, the values obtained through analytical estimates 
using the heat equation and the numerical fitting through 
genetic algorithm are close to values found in the litera-
ture, evidencing the robustness of the method. We hope 
the presented methodology will facilitate real applica-
tions of these types of models in public health strategies 
planning.

Equations (12)–(14) allow two applications in the mos-
quitoes’ population dynamics modeling. Firstly, given 
experimental data on a maximum number of mobile 
female mosquitoes or the maximum number of eggs or 
the maximum number of larvae, they allow the estimate 
of the carrying capacity of the larvae phase. This coef-
ficient, presented in many models, is almost impossible 
to estimate otherwise. Secondly, if one knows the car-
rying capacity coefficient, Eqs.  (12)–(14) allow calculat-
ing an equilibrium solution for these three phases. Our 
simulations show that this equilibrium solution is an 
over-bound for the oscillating mosquitoes’ mobile phase 
population, even in scenarios when mobility and mortal-
ity coefficients are considered different between house 
blocks and streets. In this case, assuming a direct correla-
tion between the number of mosquitoes and the number 
of contaminated people, this simple algebraic formula 
allows us to estimate the effect a given insecticide appli-
cation strategy will have on public health.

Numerical simulations show that the increased fre-
quency of insecticide application does not imply the 
decrease of mosquitoes’ population. In fact, more 
spaced applications lead to bigger oscillations, as can be 
observed in Figs.  6 and  7. Quantitatively these oscilla-
tions are shown in Table 6. Notice that the lower average 
population corresponds to the weekly application.

Simulations of the heterogeneous (more realistic) sce-
nario show that mosquitoes’ main population remains 
inside house blocks and is not accessible to insecticides 
application. These places work as a source for a fast 

Table 6  Maximum, minimum and average population of the 
last 14 simulated days in heterogeneous scenario, corresponding 
to Fig.  6, for each insecticide application strategy. Between 
parentheses we show these values relative to the equilibrium 
solution M∗

= 14752

Application frequency Min. value Max. value Avg. value

Once a day 13323 ( 90.3%) 13571 ( 92.0%) 13472 ( 91.3%)

Twice a week 11967 ( 81.1%) 13300 ( 90.6%) 12818 ( 86.9%)

Once a week 11189 ( 75.9%) 13560 ( 91.9%) 12736 ( 86.3%)

Once in two weeks 10247 ( 69.5%) 14187 ( 96.2%) 13044 ( 88.4%)
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mosquitoes’ dissemination and population recovery. Tak-
ing these results into account together with the damage 
insecticides cause to other insect species [52] should 
incentive the debate over the application of this control 
technique. Better planning optimizes the insecticide 
application and can diminish such damage.

Finally, it is important to state that more precise 
results need correct mortality coefficients, which can be 
obtained through specific experiments.

Conclusions
In conclusion, our results show the following.

•	 The simple modeling based on diffusion properties 
showed satisfactory results for describing the mos-
quitoes’ spatial population dynamics in the heteroge-
neous urban environment.

•	 The total population equilibrium is affected by insec-
ticides’ application, and the periodicity of application 
plays a significant role in the average total mosqui-
toes’ population.

•	 Considering the limitations in data (all parameters are 
fitted or obtained from the literature) and modeling, our 
results suggest that the weekly insecticide application 
results in a local minimum of the average mosquitoes’ 
population. However, more research needs to be done 
to determine the optimal strategy for vector control.
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