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Perfluorooctanoic acid (PFOA) is a widely used perfluorinated compound and known to 
cause developmental toxicity which includes the increase of resorbed embryo, decrease 
of fetal survival, and fetal growth retardation. Nevertheless, whether it is associated with 
alteration of placental development remains unknown. Pregnant mice were gavaged with 
0, 2.5, 5, 10 mg PFOA /kg/day from pregnancy day (PD) 1 to PD 13. Results showed 
that PFOA exposure markedly decreased the placental weight and caused interstitial 
edema of placenta. Laminin staining indicated that blood sinusoids area was shrunken 
in placenta of PFOA-exposed mice. Furthermore, PFOA treatment significantly reduced 
numbers of uNK cells. Western blot analysis revealed that levels of Bax and cleaved-
caspase 3 proteins were markedly up-regulated in PFOA-treated groups. In addition, TEM 
examination showed that PFOA treatment caused rupture of nuclear membrane and 
nuclear pyknosis and fragmentation. Thus, our results suggested that gestational PFOA 
exposure significantly inhibited development of early placenta through shrinkage of 
labyrinth vessels and downregulation of uNK cells and apoptosis induction, which may 
result in adverse gestational outcomes.

Keywords: perfluorooctanoic acid, placental development, toxicity, apoptosis, uNK cells

INTRODUCTION

Perfluorooctanoic acid (PFOA), a broadly used perfluorinated chemical, is extensively applied in 
industrial and consumer fields for super hydrophobic, oleophobic, and hydrophilic characteristics, 
such as fire-fighting foams, oil-resistant coatings, performance chemical, plumbing thread seal tape, 
emulsifier, and polishes (Kudo and Kawashima, 2003; Wang et  al., 2015b). Due to the strongest 
carbon-fluorine bonds, PFOA was found to be able to resist environmental degradation like metabolism, 
hydrolysis, and photolysis (Liu et  al., 2013; Wang et  al., 2015b) and is extremely persistent in the 
natural world, including surface water, groundwater, house dust, food, and food packaging. Furthermore, 
it has also been detected in different parts of human body (Post et  al., 2012). In 2009 Stockholm 
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Convention, PFOA was listed as emerging persistent organic 
pollutant (Patterson et  al., 2009).

Recently, PFOA has attracted more attentions for reproductive 
and developmental toxicities (Yahia et  al., 2010; Das et  al., 
2015; Song et  al., 2018). Experiments in vivo and in vitro 
showed that PFOA exposure reduced testosterone production 
through the down-regulation of steroid hormone related 
synthetase (Zhao et  al., 2010a). In adult male mice, PFOA 
treatment for 14 consecutive days prominently damaged 
seminiferous tubules and decreased sperm numbers of testis 
and epididymis (Liu et  al., 2015). Epidemiological analyses 
indicated that sperm aneuploidy and fragmented DNA markedly 
rose in PFOA-positive mans compared with negative group 
(Governini et  al., 2015). In porcine ovarian granulosa and 
theca cells, PFOA administration dramatically decreased the 
secretion of basal and gonadotropin-stimulated steroid hormones 
(including progesterone, estradiol, and androstenedione) 
(Chaparro-Ortega et al., 2018). In the prospective birth cohort, 
serum PFOA levels in pregnant women were positively related 
to inhibin B concentration in the cord blood (Itoh et al., 2016). 
However, in human adrenocortical carcinoma cells, PFOA 
treatment had no significant effect on the testosterone and 
estradiol productions (Wang et al., 2015a). In addition, regression 
analyses indicated that menarche in the daughters with higher 
PFOA exposure were postponed 5.3  months compared with 
those with lower level exposure (Kristensen et  al., 2013). 
Moreover, Lee’s study showed that PFOA levels in maternal 
blood were negatively correlated with newborn weight (Lee 
et  al., 2013). During pregnancy, gestational exposure to PFOA 
obviously raised the numbers of resorbed embryo and reduced 
the number of survival offspring and fetal weight and caused 
fetal growth retardation in mice (Lau et  al., 2006; Yahia et  al., 
2010; Suh et  al., 2011; Chen et  al., 2017; Caserta et  al., 2018). 
Nevertheless, whether it is relevant to alteration of placental 
development remains unclear. Consequently, our aim of this 
study was to observe the effect and mechanism of maternal 
PFOA exposure on the growth and development of early placenta.

MATERIALS AND METHODS

Chemicals and Reagents
PFOA (96% purity), biotinylated-dolichos biflorus (DBA) lectin, 
acetyl-D-galactosamine, and laminin antibody were obtained 
from MilliporeSigma Chemical Company (St. Louis, MO, USA). 
Rabbit anti-β-actin, Bax, and cleaved-caspase 3 were purchased 
from Cell Signaling Technology (MA, USA). Streptavidin-
peroxidase and diaminobenzidine solution were provided by 
Zhongshan Biotechnology Co., Ltd. (Beijing, China). Phosphatase 
inhibitor cocktail and polyvinylidene difluoride (PVDF) 
membrane were bought from Applygen Technologies (Beijing, 
China). All other chemicals were obtained from Nanchang 
preeminent biology Co., Ltd. (Nanchang, China).

Animals and Treatment
Adult Kunming mice (25–30  g) were purchased from the 
Laboratory Animal Center of Jiangxi traditional Medical 

University. Mice were housed at room temperature with a 
12 h light/dark cycle with free access to food and water. Female 
mice were bred with fertile male at the ratio of 2:1. In the 
next morning, all females were checked for vaginal plug and 
the presence was defined as pregnancy day (PD) 1. Dams 
were separated into four groups (n  =  6/group) and exposed 
with PFOA (0, 2.5, 5, 10  mg/kg/day) daily by oral gavage. 
Control group was treated with deionized water. Experimental 
animals were anesthetized with pentobarbital sodium prior to 
cervical dislocation and uterine collection at about 16:00 on 
PD 13. Embryos and placentas from these mice were weighed 
and taken photos by digital camera (Nikon, Japan) and were 
frozen in liquid nitrogen for further research. This study was 
performed in accordance with guidelines approved by the 
Animal Ethics Committee of Nanchang University. All mice 
were treated humanely according to the guidelines for laboratory 
animal science at Nanchang University.

Hematoxylin and Eosin Staining
Placentas were fixed in Bouin’s solution, kept in gradient ethanol 
solution (70, 80, 95% twice and 100% twice), and cleared with 
xylol. Sections were stored at 4°C for the histomorphology 
and immunohistochemistry analysis. Sections were stained with 
Hematoxylin and Eosin (H&E) for morphological observation. 
The areas of spongiotrophoblast and labyrinth and whole 
placenta were counted using sections with the maximum parts 
for the layer of whole placenta by Image J software (NIH, 
USA). Mean area for per group was calculated using five serial 
sections from six individuals.

Immunohistochemistry
Placental tissues were deparaffinized and rehydrated in xylol 
and descending ethanol solutions, respectively. Non-specific 
binding was treated with 5% BSA in PBS for 30  min, and 
then the samples were mixed with rabbit anti-laminin (1:200) 
or biotinylated DBA-lectin (1:1200) for overnight at 4°C. After 
washing with PBS, the sections were incubated with secondary 
antibody for 60  min at 37°C. Positive signals were indicated 
with diaminobenzidine solution. The numbers of cells positive 
for DBA lectin staining were counted in 10 non-overlapping 
fields at magnification, ×400.

Western Blot Analysis
Placental tissues were homogenized in lysis buffer containing 
the phosphatase inhibitor cocktail and PMSF and then 
centrifuged 15,000g for 15  min at 4°C for protein extraction. 
Proteins (20  μg per sample) in loading buffer were loaded 
to 15% SDS-PAGE gel for electrophoresis and blotted onto 
a PVDF membrane. The membrane was mixed with 5% skim 
milk for 1  h at room temperature and incubated with the 
primary antibodies overnight at 4°C. After washing in TBST 
solution, the blots were then incubated with goat anti-rabbit 
secondary antibodies (1:5,000) for 1  h at room temperature. 
Immunoreactive signal was observed by enhanced 
chemiluminescence (ECL) detection kit. The expression levels 
of proteins were determined by the densitometry of protein 
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bands using Quantity One software and normalized to 
β-actin expression.

Transmission Electron Microscopy 
Analyses
Placenta tissues (about 1  mm3 in size) were fixed in ice-cold 
2.5% glutaraldehyde phosphate buffer overnight and 1% 
osmium acid for 1 h at room temperature and were dehydrated 
in an ascending ethanol (50, 70, 90, and 100%) solution 
and 100% acetone. Then tissues were embedded in Epon 
812, solidified and sectioned at 120  nm, and were double 
stained with 4% uranyl acetate and lead citrate. Representative 
parts were observed with a TECNAI 10 TEM (Philips, 
Nederland). Five fields were randomly selected from each 
sample for apoptosis analysis (based on the changes in 
nuclear morphology).

Statistical Analysis
All statistical analyses were carried out using GraphPad Prime 
5 software (La Jolla, CA). The data are presented as the means 
± standard error (SE) and checked by Shapiro-Wilk test, and 
compared with one-way analysis of variance (ANOVA) followed 
by LSD’s post-hoc test or using Student’s t-test between two 
groups. Levels of significant difference were set at p  <  0.05.

RESULTS

Maternal Perfluorooctanoic Acid Exposure 
Reduced the Weight of Early Placenta
There is no significant difference in the ratio of embryo enclosed 
by deciduas to the body weight between PFOA-treated groups 
and control group (Figure  1A). However, the ratio of embryo 

A
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D

FIGURE 1 | Maternal PFOA exposure reduced the weight of early placenta. (A) The ratio of embryo enclosed by decidua to the body weight. (B) The ratio of embryo 
plus placenta to the body weight. (C) The ratio of placenta to the body weight. (D) Representative pictures of embryo and placenta (a single litter shown for each 
group) collected on gestational days 13. Values are represented as the mean ± SE (n = 6 mice/treatment group). *p < 0.05, ***p < 0.001 compared with control.
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FIGURE 2 | Histopathological changes of placenta after PFOA exposure. (A) Hematoxylin and eosin staining of placenta sections. (B) Total area of placenta (%). 
(C) The ratio of spongiotrophoblast area to total area (%). (D) The ratio of labyrinth area to total area (%). (E) The ratio of spongiotrophoblast area to labyrinth area. 
Scale bar, 50 μm. Values are represented as the mean ± SE, n = 6. *p < 0.05, **p < 0.01, ***p < 0.001 compared with control.

and placenta to the body weight decreased by 74.23% after 
treatment with 10 mg/kg/day PFOA (Figures 1B,D). Furthermore, 
5 and 10  mg/kg/day PFOA treatment also markedly reduced 
the ratio of placenta to body weight (Figures  1C,D).

Maternal Perfluorooctanoic Acid Exposure 
Disturbed Placental Histology
Placental histology indicated that PFOA exposure induced obvious 
alterations in the placentas of pregnant mice. As shown in Figure 2A, 
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spongiotrophoblast in 5 and 10 mg/kg/day PFOA groups exhibited 
interstitial edema of placenta. No significant variation in the total 
area of placenta was found in all experimental mice (Figure  2B). 
However, low and high doses of PFOA cause a prominent increase 
in the areas of spongiotrophoblast to the total area (Figure  2C). 
PFOA exposure showed no significant effect on the ratio of 
labyrinth area to the total area (Figure 2D), but high-dose (10 mg/
kg/day) PFOA treatment dramatically decreased labyrinth area, 
and increased the ratio spongiotrophoblast area to labyrinth area 
compared to control group (Figure  2E).

Perfluorooctanoic Acid Exposure Resulted 
in the Shutting of Vascular Lumen and 
Reduced the Numbers of uNK Cells
Laminin staining showed there are lots of fetal vessels in the 
placental labyrinth of control group, which are regularly 
distributed and form intricate and organized branching network 
and its lumen are dilated (Figures 3A,E). However, administration 
of different doses PFOA (2.5–10 mg/kg/day) significantly reduced 
blood sinusoids area and shutting of vascular lumen 
(Figures  3B–D,F). Furthermore, all doses PFOA exposure 
significantly reduced the amounts of uNK cells in the deciduas 
of placenta (Figure  4).

Maternal Perfluorooctanoic Acid Exposure 
Induced Placental Apoptosis
Blotted results revealed that expression levels of Bax 
(Figures  5A,C) and cleaved-caspase 3 proteins (Figures  5B,C) 
were markedly up-regulated in all three doses PFOA-treated 
groups compare control group, with a maximal increase observed 
at 5  mg/kg/day PFOA. Moreover, TUNEL staining indicated 
that 2.5, 5, 10 mg/kg/day PFOA significantly increased apoptotic 
positive cell numbers of placental tissues (Supplementary 
Figure  1). TEM examination showed that PFOA treatment 
caused extensive morphological changes of nucleus in the 
placental cells, which were characterized by the rupture of 

nuclear membrane, nuclear pyknosis and fragmentation, and 
chromosome condensation of placental cells (Figure  6).

DISCUSSION

Previous studies indicated that PFOA exposure obviously 
increased the numbers of resorbed embryo and suppressed 
fetal growth during pregnancy in human and mice (Koustas 
et  al., 2014; Chen et  al., 2017). Our results showed for the 
first time gestational PFOA exposure markedly inhibited the 
development of early placenta via shrinkage of labyrinth vessels 
and downregulation of uNK cells and apoptosis induction in 
mice, which has possibly contributed to adverse pregnancy 
outcomes such as early pregnancy loss and decrease of fetal 
growth. 5 and 10  mg/kg/day PFOA treatment dramatically 
decreased placental relative weight and resulted in the interstitial 
edema of placenta. Immunohistochemical staining evidenced 
that PFOA exposure caused the shutting of fetal vessels and 
down-regulation of uNK cell numbers in the deciduas of 
placenta. Western blot results revealed that PFOA exposure 
significantly increased apoptosis-related protein Bax and cleaved-
caspase 3 levels. Furthermore, TEM examination found that 
PFOA treatment induced the rupture of nuclear membrane 
and nuclear pyknosis and fragmentation of placental cells.

The placenta is a special and important organ during 
gestation, which can provide enough oxygen and nutrients 
for the growth and development of fetus (Papanikolaou et  al., 
2018). In the present study, maternal exposure to PFOA 
markedly decreased placental weight and induced the interstitial 
edema of placental spongiotrophoblast, which probably resulted 
in fetal resorptions and growth retardation and compromised 
postnatal survival. Song et  al.’s studies showed that placental 
weight and the numbers of survival offspring mice were 
dramatically reduced in the PFOA-treated groups (Lau et  al., 
2006; Yahia et  al., 2010; Song et  al., 2018). This result was 
almost in accord with our current and previous research 

A
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FIGURE 3 | The effect of PFOA exposure on the labyrinth vessel of placenta. The representative immunohistochemical staining of laminin showed blood vessel 
changes of placental labyrinth collected from mice which were administrated by control (A), 2.5 (B), 5 (C), and 10 (D) mg/kg/day PFOA. Rectangular areas in (A–D) 
(original magnification ×100) were magnified in the bottom (E,F) with higher magnification of ×400. The inset of (H) is negative control. Arrows: blood vessels. Sp: 
spongiotrophoblast; Lab: labyrinth. Scale bar, 50 μm. (I) Blood sinusoids area in the labyrinth region. Values are represented as the mean ± SE (n = 12 placentas/6 
mice/treatment group). **p < 0.01 compared with control.
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FIGURE 4 | PFOA exposure down-regulated the numbers of uNK cells. DAB staining indicated the changes of uNK cells in the deciduas collected from mice which 
were administrated by control (A), 2.5 (B), 5 (C), and 10 (D) mg/kg/day PFOA. Images in the upper panels (A–D, original magnification×100) were magnified in the 
bottom (E–H) with higher magnification of ×200, respectively. The inset of (H) is negative control. Scale bar, 50 μm. (I) The numbers of uNK cells. Values are 
represented as the mean ± SE (n = 6 placentas/6 mice/treatment group). **p < 0.01 compared with control.

(Chen et  al., 2017). Furthermore, Caserta D reported that 
PFOA levels in maternal blood were negatively related to 
newborn weight (Caserta et  al., 2018). Prenatal exposure to 
perfluorooctanesulfonicacid (PFOS) and PFOA can 
be  transferred from mother to fetus through the placental 
barrier and is considered to affect the development of human 
fetus (Mamsen et  al., 2017).

Studies demonstrated that aberrant placental angiogenesis 
was associated with fetal growth and neonatal body weight 
and survival rate (Torry et  al., 2004). Results from this study 
showed that microvessel space in the labyrinthine region was 

shrunken and shut in placenta of PFOA-treated mice, suggesting 
disorder of placenta exposure to PFOA may be  caused by 
dysfunction of the vascular structure. It was found that PFOS 
treatment resulted in the dilatation of fetal intracranial blood 
vessel along with severe lung collapse which led to neonatal 
mortality during mice pregnancy (Yahia et al., 2008). Furthermore, 
Liu’s study evidenced that PFOA significantly increased 
paracellular permeability of human retina endothelial cells 
through the degradation of adherens junctions (Liu et al., 2018). 
However, Spachmo B did not find that PFOS and PFOA exposure 
significantly damaged the angiogenesis of Atlantic salmon 
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embryos and larvae (Spachmo and Arukwe, 2012). In addition, 
PFOA-exposure mice did not show intracranial blood vessel 
dilatation although 5 and 10 mg/kg PFOA obviously attenuated 
the neonatal survival rate (Yahia et  al., 2010). Therefore, the 
cause and mechanism of neonatal death by PFOA may be diverse 
from PFOS and are the areas of future study.

uNK cells are the most plentiful granulated lymphocyte 
population in the maternal-feto interface during pregnancy (Gong 
et  al., 2017). They secrete abundant cytokines and regulate 
trophoblast invasion, vascular remodeling, and placental 
development which are vital to success pregnancy (Tripathi et al., 
2015; Gong et al., 2017). Our results showed that PFOA exposure 
significantly reduced the numbers of uNK cells, which is a 
plausible explanation for pregnancy loss. Previous study indicated 
that estradiol could alter the homing, development, and 
physiological function of uNK cells (Gong et  al., 2017). PFOA 
is an estrogen-like effect of environmental endocrine-disrupting 
chemicals (Zhao et al., 2010b), and our previous study demonstrated 
that PFOA exposure significantly suppressed luteal function by 
oxidative stress and apoptotic pathway in mice during pregnancy 
(Chen et  al., 2017). Therefore, down-regulation of uNK cell 
numbers in the deciduas of placenta may be  caused by changes 
of estrogen and progesterone in PFOA-treated mice.

The apoptosis plays an important role in the growth and 
development of placenta. Bax, a pro-apoptotic member of 
the Bcl-2 protein group, can facilitate the release of cytochrome 
c from mitochondria and then trigger apoptosis progress 
(Jurgensmeier et  al., 1998). PFOA administration in our 
study sharply increased the expression of Bax protein. It is 
consistent with Liu’s study, in which levels of Bax and p-p53 
proteins obviously increased, and Bcl-2 protein significantly 
decreased in the testis of PFOA-treated mice (Liu et  al., 
2015). In zebrafish liver cells, the level of Bax mRNA also 
significantly increased in the PFOS exposure, but not PFOA 
exposure (Cui et  al., 2015). Besides, members of the caspase 
family of aspartic acid-directed cysteine proteases lead to 
cell apoptosis by means of flawing the cellular structure and 
function (Ratts et al., 2000; Cui et al., 2015). Among caspase 
family, caspase-3 is a central effector caspase in many cells 
and mediates the cleavage of itself, other caspase and 
downstream substrates (Gown and Willingham, 2002). Our 
results evidenced PFOA treatment significantly increased 
expression of cleaved caspase-3 protein. In addition, both 
PFOS and PFOA treatment can significantly induce the 
activation of caspase-3, -8, and -9  in primary cultured 

A

C

B

FIGURE 5 | Effect of PFOA exposure on apoptosis-related proteins  
of placenta. (A) Relative expression levels of Bax protein. (B) Relative 
expression levels of cleaved-caspase 3 protein. (C) Representative western-
blotting images of Bax and cleaved-caspase 3 proteins. Data are normalized  
to β-actin and represented as the mean ± SE, n = 6. ***p < 0.001 compared 
with control.

A B C D

FIGURE 6 | TEM analyses of placental tissues after PFOA exposure. The representative TEM micrographs of the placental tissues collected from mice which were 
administrated by control (A), 2.5 (B), 5 (C), and 10 (D) mg/kg/day PFOA. Black arrows indicate nuclei. Scale bar, 2 μm.
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hepatocytes. However, specific signal pathway of PFOA-induced 
placental apoptosis requires further investigation in mice.

In summary, our study observed the effects of maternal 
PFOA exposure on the placental growth and development and 
evidenced for the first time that gestational PFOA exposure 
markedly inhibited the growth and development of early placenta 
through labyrinth vessels shrinkage and decreased uNK cells 
and apoptosis induction, which probably resulted in adverse 
gestational outcomes. Our results will be beneficial to promoting 
continuous attention about the health risk from high exposure 
to PFOA for the pregnant women.
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