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ABSTRACT

The recent advances in spatial transcriptomics have
brought unprecedented opportunities to understand
the cellular heterogeneity in the spatial context.
However, the current limitations of spatial tech-
nologies hamper the exploration of cellular local-
izations and interactions at single-cell level. Here,
we present spatial transcriptomics deconvolution by
topic modeling (STRIDE), a computational method
to decompose cell types from spatial mixtures by
leveraging topic profiles trained from single-cell tran-
scriptomics. STRIDE accurately estimated the cell-
type proportions and showed balanced specificity
and sensitivity compared to existing methods. We
demonstrated STRIDE’s utility by applying it to dif-
ferent spatial platforms and biological systems. De-
convolution by STRIDE not only mapped rare cell
types to spatial locations but also improved the iden-
tification of spatially localized genes and domains.
Moreover, topics discovered by STRIDE were asso-
ciated with cell-type-specific functions and could be
further used to integrate successive sections and re-
construct the three-dimensional architecture of tis-
sues. Taken together, STRIDE is a versatile and ex-
tensible tool for integrated analysis of spatial and
single-cell transcriptomics and is publicly available
at https://github.com/wanglabtongji/STRIDE.

INTRODUCTION

The rapid development of high-throughput single-cell se-
quencing technologies (1–3) allows the investigation of cel-

lular heterogeneity and the specificity of gene expression at
an unprecedented resolution. However, recent reports indi-
cate that cellular heterogeneity is not only modulated by the
intracellular regulatory network but also influenced by the
extracellular microenvironment (4,5). Traditional bulk and
single-cell RNA-sequencing (scRNA-seq) require the disso-
ciation of tissues or the isolation of single cells, resulting in
the loss of cell positions and their proximities to each other.
The recent advances in spatial transcriptomics have enabled
the measurement of gene expression while preserving the
spatial information (6–10), which provide great opportuni-
ties to investigate the cellular heterogeneity (11), cell–cell
communication (12) and the interplay between each other
(13) in the spatial context.

Despite the existing applications of spatial transcrip-
tomics on different tissues (12,14) and disease models
(15,16), there remain many computational challenges. The
cell-type assignment is one of the most important issues
to be addressed, considering that other downstream anal-
yses such as the detection of spatially restricted gene ex-
pression or cell–cell interactions highly rely on correct cell-
type annotations. Many in situ capturing technologies, such
as spatial transcriptomics (ST) and 10X Genomics Visium
utilized spots with a diameter of 55–100 �m to record
mRNA positions, and thus might cover multiple homo-
geneous or heterogeneous cells (1–20 cells). Other high-
resolution methods such as Slide-seq (9) and HDST (17)
could improve the resolution to 1–2 cells. However, the fixed
beads or wells used in those techniques cannot match the
cell boundaries perfectly, resulting in the overlap with sev-
eral cells. As a consequence, the gene expression measured
at one spatial location (i.e. spot or bead) can be regarded as
a mixture of multiple cells. The within-spot heterogeneity
greatly affects the performance of unsupervised clustering,
which was usually used in the analysis of scRNA-seq.
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To understand the cell type distribution from spatial tran-
scriptomics, the most common strategy is to integrate it
with scRNA-seq. There are two approaches for the integra-
tion of single-cell and spatial transcriptomics: gene signa-
ture scoring and deconvolution. Previous studies performed
enrichment analysis using the gene signature derived from
scRNA-seq (16,18), the utility of which is limited by the
incomparability of the scores across different spatial loca-
tions or slides. On the contrary, the deconvolution methods
aim to estimate the exact cell type proportions for each spa-
tial location, either by applying regression models (9,19,20)
or through fitting probability distributions (21,22). How-
ever, most of the existing deconvolution methods depend on
the marker genes inferred from single-cell reference, which
might suffer from the high drop-out rate and unwanted
gene expression fluctuations. The topic model was initially
proposed in the field of text mining to discover latent se-
matic structures from a large collection of documents. In
recent years, it has been extended to bioinformatics to an-
alyze single-cell epigenomics (23) and CRISPR screening
data (24) owing to the tolerance to the sparsity of data and
the interpretability of topics.

Here we presented STRIDE, a topic-model-based de-
convolution method for spatial transcriptomics by integrat-
ing with matched scRNA-seq. STRIDE first discovers cell-
type-associated topics from annotated single-cell transcrip-
tome by performing topic modeling. Then STRIDE applies
the pre-trained topic model to infer the cell-type compo-
sitions for each location of spatial transcriptomics. By us-
ing simulated spatial transcriptomics data, we validated the
power of STRIDE to predict the cell-type proportions in
high accuracy and sensitivity. To demonstrate the broad
utility of STRIDE, we applied it to three spatial transcrip-
tomics datasets of different tissues including mouse cerebel-
lum, human squamous cell carcinoma (SCC) and human
developing heart. We demonstrated that the topics gener-
ated by STRIDE could accurately reflect the spatial signa-
tures of each cell type, improve the resolution of spatial clus-
tering and finally help in reconstructing the 3D structures of
tissues based on the integration of multiple slides.

MATERIALS AND METHODS

Implementation of STRIDE

Discovery of topics from scRNA-seq by latent Dirichlet al-
location (LDA). Topic modeling is frequently used in the
field of natural language processing to discover latent se-
matic structures, referred as topics, from a mass of collected
documents. Latent Dirichlet allocation (LDA), a genera-
tive probabilistic model, is one of the most popular topic
modeling methods (25). Here we utilize LDA for the dis-
covery of functional topics from scRNA-seq data. In our
model, given that there are Mcells and V common genes the
scRNA-seq data shares with the ST data, for the mth cell,
the occurrences of topics are assumed to follow a multino-
mial distribution

Z·m ∼ Multinomial (θm) ,

where Z·m = (Z1m, Z2m, · · · , ZKm), represents the occur-
rences of all K topics in the mth cell, and θm is a K-

dimensional parameter vector, which follows a Dirichlet
distribution

θm ∼ Dirichlet (α) ,

where α is a symmetric K-dimensional hyper-parameter,
which denotes the prior weights of K topics in the mth
cell. For the kth topic, the occurrences of genes are also
multinomial-distributed

Wk· ∼ Multinomial (ϕk) ,

where Wk· = (Wk1, Wk2, · · · , WkV), represents the number
of occurrences of all V genes in the kth topic, and ϕk is a
V-dimensional parameter vector, which follows a Dirichlet
distribution

ϕk ∼ Dirichlet (β) ,

where β is a V-dimensional hyper-parameter, which denotes
the prior weight of V genes in the kth topic. In STRIDE,
an online variational Bayes (VB) algorithm (26) is applied
to estimate the parameters and infer the gene-by-topic dis-
tribution and the topic-by-cell distribution, which is imple-
mented by the python library Genism (27). With the output
topic-by-cell distribution and user-provided cell-type labels,
we can calculate the topic-by-cell-type distribution

Tkn =
∑M

m=1 Zkm Amn∑M
m=1 Amn

where Tkn represents the probability that the nth cell type
has the kth topic, Zkm represents the probability that the
mth cell has the kth topic, and Amn = 1 or 0 means the mth
cell belongs to the nth cell type or not. According to Bayes’
Theorem, the cell-type-by-topic distribution can be inferred
as

Cnk = Tkn Qn

Pk
,

where Cnk represents the probability that the kth topic exists
in the nth cell type, Qn represents the probability of being
the nth cell type (i.e. the percentage of the nth type of cells),
and Pk represents the probability of the kth topic.

Selecting the optimal topic number. The number of top-
ics makes a difference to the trained topic models. Theo-
retically, the identified topics should be representative and
can distinguish different types of cells. To select the optimal
topic number, STRIDE will run several models with differ-
ent topic numbers and evaluate the models by the accuracy
of single-cell re-annotation. To be specific, for each topic
number, STRIDE will generate a cell-type-by-topic distri-
bution Cnk as described above. Then, SCnm, the probability
that the mth cell belongs to the nth cell type can be calcu-
lated as

SCnm =
K∑

k=1

CnkZkm.

And each cell from scRNA-seq would be assigned the cell
type with the largest probability. The cell-type prediction ac-
curacy of single cells could be calculated by comparing the
topic-derived cell type labels with the original labels users
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provide, and the topic model with the highest accuracy is
selected to deconvolve ST data. If multiple models have the
same highest accuracy, STRIDE will select the simplest one
(i.e. the model with the smallest number of topics). The se-
lection of the optimal topic number makes sure that the
topic model STRIDE uses has the best ability to separate
different cell types.

ST cell-type deconvolution. The gene expression measure-
ments at a location in ST can be regarded as a mixture of
multiple cells of different cell types. No matter what tech-
nology we use to characterize the cells, the latent topic
structures (i.e. the gene-by-topic distribution) should be the
same. With the gene-topic distribution derived from the first
step, LDA could further estimate the topic distributions for
each location in ST. That is,

Y· j = (
Y1 j , Y1 j , · · · , YK j

)
,

where Y· j is the distribution of all K topics in the j th loca-
tion. As in the single cell, the probability that the j th loca-
tion belongs to the nth cell type can be calculated as

STnj =
K∑

k=1

CnkYkj .

From another perspective, STnj could be viewed as the pro-
portion of the nth type of cells at the j th location.

Evaluating STRIDE’s performance using simulated ST data

Simulating ST data from BRCA scRNA-seq. To evalu-
ate the deconvolution performance under different condi-
tions, we generated three ST datasets from a breast cancer
(BRCA) scRNA-seq dataset (28). To evaluate the accuracy
of cell-type deconvolution, we simulated one ST dataset to-
tally randomly. Each spot in the simulated ST dataset was
a mixture of 2–10 cells randomly picked from scRNA-seq.
The transcriptome profiles of selected cells were aggregated
to represent the spot’s expression profile. To better mimic
the real capture, if the synthetic spot had over 25 000 UMI
counts, it would be down-sampled to 20 000 UMI counts.
To demonstrate the robustness of STRIDE with different
sequencing depths, we generated 1000 spots with aggregated
profiles of 10 randomly selected cells and down-sampled
them to 20 000, 15 000, 10 000, 5000, 2500 and 1000 counts,
respectively. Since the cell-type labels of selected cells are
known, the resulting cell-type proportions can be regarded
as the golden standard to evaluate the deconvolution per-
formance.

In consideration of the co-localization of some cell types
in reality, we generated an additional ST dataset from
the same BRCA scRNA-seq data to simulate the spatially
correlated cell-type distribution patterns in the tumor mi-
croenvironment. One typical tumor tissue could consist
of three compartments: the tumor core (TC), the tumor
stroma (TS) and the invasive margin (IM) (29). In addi-
tion to the three kinds of compartments, a special immune
structure––tertiary lymphoid structure (TLS), which devel-
ops at the inflammatory sites in non-lymphoid tissues, was
found to be present in several cancer types (30). Then we
generated a ST dataset which simulated spots from TC, IM,

TS and TLS, respectively. Spots from different regions have
different cell-type co-localization patterns. For example, to
simulate the TC region with infiltrating T cells, we gener-
ated 250 spots which contained primarily malignant cells
and CD8 T cells. Detailed simulation rules are listed in Ta-
ble 1. In addition, it was discovered that different infiltrat-
ing immune cells are limited to specific locations within or
around a tumor (31). To mimic the true situation as much
as possible, we also added some limitations of cell types in-
cluded in different compartments (Table 1).

Function analysis on topics. LDA could discover latent
topics from scRNA-seq, and each topic is composed of dif-
ferent genes with different probabilities. To ensure that the
discovered topic profile would be able to characterize the
cells, we performed functional enrichment analysis on the
topics. For each topic, the top 200 genes with the highest
probabilities were selected to perform gene ontology (GO)
analysis by using clusterProfiler v3.18.1 (32). For function
analysis in mouse cerebellum dataset, biological process
(BP) terms were from org.Mm.eg.db v3.12.0. In the human
heart dataset, the top 50 genes for each topic were used to
characterize the topics’ functions by enrichment analysis on
the GO BP terms provided by org.Hs.eg.db v3.12.0.

Performance evaluation. As simulated data provided
known cell-type compositions, we used two metrics, cor-
relation and root mean squared error (RMSE), to assess
the deconvolution performance. For each spot, Pearson’s
correlation between the predicted cell-type proportions and
the ground truth could be calculated to measure each spot’s
deconvolution accuracy. We could also calculate Pearson’s
correlation for each cell type to measure the performance
in distinguishing different cell types. In addition, we used
RMSE to evaluate the sensitivity and specificity. For each
spot, according to the presence or absence, all the cell types
were divided into two groups. RMSE was then calculated
for each spot in the two groups separately. Specifically,
in one spot, if RMSE is calculated only for cell types
present in truth, it will measure the capability of each tool
for identifying all true positives (i.e. sensitivity). On the
contrary, if RMSE is calculated only for the absent cell
types, it will measure how well they can identify the true
negatives (i.e. specificity).

In the case when methods are applied to real ST data,
there’s no golden standard to compare the prediction re-
sults with the truth. Instead, correlation between cell-type
fractions and signature scores was calculated to evaluate
the performance. For each cell type, the top 50 specific
marker genes, which were derived from FindAllMarkers
function of Seurat v4.0.1, were defined as signature genes.
The gene signature score was calculated for each spot, based
on cell-type-specific signature genes through AddModule-
Score function of Seurat.

Benchmarking different gene sets. To select the appropri-
ate features for model training, we benchmarked the im-
pact of different sets of genes. Since highly variable genes
(HVGs) are useful for cell clustering in scRNA-seq analysis,
we took HVGs into account. In general, all genes, marker
genes, HVGs, and combination of marker genes and HVGs
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Table 1. Rules for simulation of the tumor microenvironment.

Co-localization Malignant ←→ CD8T Malignant ←→ Fibro Fibro ←→ CD4T/B CD4T ←→ B

Cell type\Region Tumor core (250 spots) Invasive margin (250 spots) Tumor stroma (125 + 125 spots) TLS (250 spots)
Malignant 50% 30%
CD4T � � 30% 30%
CD8T 30% � � �
Tprolif � �
B � Or 30% 40%
Plasma � � �
Mono/Macro � �
Mast � �
Endothelial � � �
Fibroblasts 30% 50%
Myofibrolasts � �

Note: ‘�’ represents the existence of cell types with random cell-type fractions in different compartments, and the numbers represent the fixed percentages
of correlated cell types. The correlation coefficient between correlated cell types was fixed as 0.7.

were used as the input for STRIDE separately. For each
gene set, the optimal number of topics was selected accord-
ing to the accuracy of cell-type assignment for single cells.
Spot-level Pearson’s correlation was utilized to evaluate the
performance of models with different gene sets.

Benchmarking different deconvolution methods. We used
the simulated ST data to compare the performance of
STRIDE with other ST deconvolution tools, including
SPOTlight v0.1.6, NMFreg, Seurat v4.0.1 CCA, RCTD
v1.2.0 and Cell2location v0.5. Each published method was
run with all the parameters set as default values following
their documentations. Methods were evaluated using corre-
lation and RMSE as described in ‘Performance evaluation’
section.

Application of STRIDE on Slide-seq V2 mouse cerebellum
data

Collection of mouse cerebellum single-cell and spatial tran-
scriptomics data. Due to the well-studied structure and
complex cell-type composition, mouse cerebellum can be
used as a model tissue to assess the cell-type deconvolu-
tion performance naturally. Slide-seq V2 mouse cerebel-
lum data were obtained from a previous study (21). The
single-nucleus mouse cerebellum data collected by snRNA-
seq protocol was derived from another transcriptomic atlas
study (33), which provided detailed cell-type annotation in-
formation.

Cell-type deconvolution of mouse cerebellum data. The
single-cell and spatial gene count matrices were scaled by
the UMI counts in each cell or spot to avoid the impact of
different cell types. Then we performed unit-variance nor-
malization by gene to standardize the expression levels of
different genes. The top 500 differentially expressed (DE)
genes of each cell type were selected as feature genes to run
STRIDE. According to the prediction accuracy of single
cells in scRNA-seq, the model with 40 topics was selected
to perform deconvolution on spatial data. Given that the
resolution of Slide-seq V2 is up to 1–2 cells, each pixel in
spatial data was assigned the cell type with the largest prob-
ability. To reveal the anatomical features clearly, the granule
cell region was cropped out from the whole slide as the orig-

inal study did. And only the 7 of 19 most common cell types
were displayed in Figure 3.

Topic and marker visualization. STRIDE could discover
latent topics and estimate the topic profile of spatial loca-
tions through LDA. The topics were proved to be associ-
ated with specific cell types and have cell-type-related func-
tions by GO analysis. To visualize the spatial distribution of
topics, we selected four cell types: oligodendrocytes, granule
cells, Purkinje cells and molecular layer interneurons. For
each cell type, the probability distribution of representative
topics was displayed. If a cell type had multiple associated
topics, the sum of these topics was used to represent the cell
type. For comparison, the distribution of marker genes was
visualized. The top 100 DE genes of each cell type were de-
fined as marker genes. The sum of the expression of marker
genes was calculated and used as the cell type’s signature
score.

Application of STRIDE on human squamous cell carcinoma
ST dataset

Collection and preprocessing of SCC scRNA-seq and ST
data. The human SCC ST dataset was obtained from a
published study on tumor microenvironment. The study
also provided matched scRNA-seq data of the 10X Ge-
nomics Chromium platform. In our study, we only used
the sample, replicate 2 of patient 2. The scRNA-seq data
of patient 2 was clustered and annotated using the markers
provided by the original publication. As one patient only
had limited number of cells, the myeloid cells were classi-
fied into two clusters: DC and Mono/Macro (monocytes
and macrophages).

Cell-type deconvolution of human SCC ST data. To run
STRIDE, the single-cell and spatial gene count matrices
were scaled and normalized in the way described in the
mouse cerebellum dataset. The top 500 marker genes were
identified for each cell type in scRNA-seq, and were used
to train the topic models. The model with 28 topics was se-
lected automatically to be the optimal one. The cell-type de-
convolution result of ST was visualized by the scatter pie
plot.



PAGE 5 OF 15 Nucleic Acids Research, 2022, Vol. 50, No. 7 e42

Deconvolution-based spatial clustering. The cell-type de-
convolution could provide high-resolution view of cell-type
composition. Spots with similar cell-type composition are
assumed to belong to the same cluster. By combining cell-
type composition similarity with the additional spatial in-
formation provided by ST, spatial domains could be further
identified. To identify the spatial domains, k-means cluster-
ing was performed based on both the spot’s own cell-type
composition and its surrounding cell populations. In the
case of SCC, equal weights were given to the two factors,
and k was set to 6 to run k-means clustering. C3 cluster was
defined as tumor-core region, and spots surrounding the C3
cluster were defined as the tumor-edge region, which mainly
consisted of C1, C4 and C5 spots. To divide the region out-
side tumor into the stroma and the tumor-stroma border,
for each spot except C3, we calculated the distance between
the spot and its nearest C3 spot, and regarded it as the dis-
tance to the tumor region. Then, spots with distance >4 and
<4 were defined to be the stroma region and tumor-stroma
border, respectively.

Deriving high-resolution gene expressions. STRIDE could
estimate the topic profiles for both scRNA-seq and spatial
transcriptomics. Then the correspondence between single
cells in scRNA-seq and spots in ST could be constructed
according to the similarity of topic distributions. Here we
calculated the cosine similarity to measure the similarity
between spots and cells. For each spot in ST, according to
the spot-cell similarity, 10 most similar cells from scRNA-
seq were selected in proportion to cell-type composition in-
ferred by STRIDE. In this way, the gene expression in each
spot can be dissected into cell-type-specific expression.

Function analysis of epithelial cells in different clusters. The
spot-matched single cells selected from the last step could
be pooled together to study the cellular heterogeneity with
high resolution. To compare the difference of epithelial cells
in different regions, we extracted epithelial cells predicted
to be located in tumor-core and tumor-edge for differential
analysis. In order to characterize the functions of region-
specific epithelial cells, we performed enrichment analy-
sis on hallmark pathways and GO BP terms collected from
the Molecular Signatures Database (MSigDB v7.1) (34) and
org.Hs.eg.db v3.12.0, respectively.

Application of STRIDE on developing human heart ST
dataset

Collection and preprocessing of human heart scRNA-seq and
ST data. The developing human heart data were derived
from a previous study (14). The study provided 4, 9 and 6
heart sections from three timepoints, 4.5–6, 6.5 and 9 PCW,
respectively, which were profiled by ST technology. They
also provided a 6.5 PCW cell-type map with single-cell res-
olution constructed by smFISH. The single-cell transcrip-
tional profiles of the 6.5 PCW tissue sample were generated
through 10X Genomics Chromium platform. The scRNA-
seq data were clustered and annotated using the markers
provided by the original study. Notably, three fibroblast-like
cell clusters were combined into a large fibroblast-like clus-
ter in our study.

Cell-type deconvolution of human heart ST data. To run
STRIDE on the human heart dataset, the top 100 DE genes
of each cluster compared to all other cells were identified
by Wilcoxon test. Because epicardium-derived cells, smooth
muscle cells and fibroblast-like cells are transcriptionally
similar, the marker genes of each of the three cell types were
identified by comparing one with the other two. Markers
genes for atrial and ventricular cardiomyocytes were dis-
covered in the same way. The scaled and normalized count
matrices with marker genes were utilized to train the topic
models. The model with 28 topics was further employed to
deconvolve the ST data. The deconvolution results of sam-
ple 3, 9 and 16 were visualized by the scatter pie plot.

3D model construction of human heart

Slide alignment based on STRIDE-derived topics and spa-
tial structure. The human heart samples for each time-
point were sectioned along the dorsal–ventral axis, which
can be used to reconstruct the spatial architecture of devel-
oping human hearts. Here we modified a published method
PASTE (35), which utilized Fused Gromov-Wasserstein
Optimal Transport (FGW-OT) algorithm, to integrate mul-
tiple tissue layers from a ST experiment. The original
PASTE aligns and integrates adjacent layers based on the
transcriptional and spatial similarity. Here we made a little
change to the goal problem that we expected to find a map-
ping between spots from two layers which had similar topic
profiles and preserved spatial relationship. The problem was
formulated by finding a mapping � ∈ R

n×n′
+ that minimized

the following transport cost function:

F
(
�; X, D, X′, D′, c, α

) = (1 − α)
∑

i, j

c
(
X·i , X′· j

)
�i j

+α
∑

i, j,k,l

(
Dik − D′

j l
)2

�i j�kl .

(X, D) and (X′, D′) denote two layers of one ST experi-
ment, where X ∈ R

p×n
+ and X′ ∈ R

p×n′
+ represent topic pro-

files of the p topics in n and n′ spots, and D ∈ R
n×n
+ and

D′ ∈ R
n′×n′
+ represent the spot distance matrices within each

layer. The parameter α ∈ [0, 1] is used to weigh up the
topic distribution similarity and spatial distance similarity.
If α = 0, only topic distribution similarity is taken into
consideration, and vice versa. The problem was solved by
Python Optimal Transport (POT) library.

3D reconstruction of PCW6.5 human heart. To recon-
struct the 3D structure of the 6.5 PCW human heart,
we sequentially aligned multiple adjacent ST layers. For
a series of sequential layers (X(1), D(1)), · · · , (X(9), D(9))
from the dorsal to the ventral, we found the mapping
�(k) (k = 1, · · · , 8) between the kth and (k + 1)th layer.
Based on the mappings, we should project all tissue layers
to the same spatial coordinate system. This is a generalized
weighted Procrustes problem. That is, to find a translation
vector v̂ ∈ R

2 and a rotation matrix R̂ ∈ R
2×2 (RT R = 1)

that minimize the weighted distances between matched
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spots

R̂, v̂ = min
∑

i, j

�
(k)
i j ‖ Z(k)

·i − RZ(k+1)
· j − v‖2,

where Z(k) ∈ R
2×n represents the spot coordinate matrix of

the kth layer. The problem was solved by using SVD (see
PASTE (35) for more details). For Figure 6A, only three tis-
sue sections, samples 8, 9 and 10 were displayed to visualize
the alignment and integration result. For Figure 6B, all nine
ST slides from 6.5PCW were displayed to provide a general
view of the reconstructed 3D structure of the human heart.

RESULTS

STRIDE: a topic-model-based method to deconvolve spatial
transcriptomics using scRNA-seq

STRIDE is designed to deconvolve the cell-type compo-
sition of spatial transcriptomics locations by integrating
scRNA-seq data from the same tissue (Figure 1). We as-
sumed that transcriptional measurements obtained from
spatial transcriptomics and scRNA-seq of the same tissue
have common cell types with similar features and thus can
be projected to a common latent space. Here, we charac-
terized the common latent space by topic modeling, a sta-
tistical model originally used in natural language process-
ing. The first step of our method is to infer the cell-type-
associated topic profiles from scRNA-seq. Topic modeling
on cell-by-gene matrix from scRNA-seq data could gen-
erate two probability distributions. One is the probability
of a gene belonging to a topic (i.e. gene-by-topic distribu-
tion). In addition, topic modeling also estimates the con-
tributions of different topics for each cell (i.e. topic-by-cell
distribution), which could be summarized to the cell-type-
by-topic distribution using Bayesian method. Next, the pre-
trained topic model could be employed to infer the topic
distributions of each spot in spatial transcriptomics. Finally,
STRIDE could estimate the cell-type fractions of each spot
by combining cell-type-by-topic distribution and topic-by-
spot distribution.

Besides the cell-type composition deconvolution for each
spot, STRIDE also provides several downstream analysis
functions, including (i) signature (i.e. topic) detection and
visualization, (ii) spatial clustering and domain identifica-
tion based on neighborhood cell populations and (iii) re-
construction of 3D architecture from sequential ST slides
of the same tissue. The methodology details are described
in the method section and the examples are shown in the
following results.

STRIDE yielded more accurate cell-type composition esti-
mates on simulated ST data than existing tools

To evaluate the performance of STRIDE, we generated syn-
thetic mixtures of cells with known cell-type labels. Specif-
ically, we simulated three spatial transcriptomics datasets
from a breast cancer (BRCA) scRNA-seq dataset (28) to im-
itate different conditions. For each simulated location, sin-
gle cells from scRNA were selected randomly or by fixed
cell type proportions and their transcriptomic profiles were
combined to synthesize a mixture. The synthetic mixtures

with known cell-type compositions could serve as ground
truth to benchmark the performance of STRIDE on de-
composing cell types.

We first validated the ability of topic modeling to dis-
cover cell-type-specific topics. We derived 28 different top-
ics which were enriched in distinct cell types (Figure
2A), indicating the association between topics and spe-
cific cell types. We also performed Gene ontology (GO)
function analysis on top enriched genes for each topic
(Supplementary Figure S1A). GO biological process (BP)
terms related to tumor metastasis, such as platelet ag-
gregation, were detected in malignant-cell-associated topic
(Topic 22), whereas immune-related functions were en-
riched in immune-cell specific topics (Supplementary Fig-
ure S1B). Furthermore, the B-cell, T-cell and myeloid cell
enriched topics had distinct enriched terms, suggesting that
the topics generated by STRIDE could accurately sepa-
rate different immune cell types (Supplementary Figure
S1B). In addition, when we validated the trained topic
model using the same scRNA-seq dataset used for train-
ing, STRIDE achieved high cell-type assignment accuracy
(87.13%, n = 33043 cells) (Figure 2B, see Materials and
methods section). Cell types such as CD4+ and CD8+ T
cells, which are similar in their transcriptome, accounted for
most of the errors (79.51%, n = 4251 errors).

Feature selection is usually an important step to achieve
a balance between resource consumption and model per-
formance in machine learning algorithms. We then bench-
marked the impact of feature gene selection on STRIDE’s
deconvolution performance using simulated data. We cal-
culated the overall Pearson’s correlation coefficients be-
tween estimated cell-type proportions and real proportions
within each spot for evaluating the performance. Interest-
ingly, the model trained using marker genes (defined as DE
genes for each cell type) showed comparably decent per-
formance with the model trained with all genes, while the
models trained using highly variable genes (HVGs) or mark-
ers plus HVGs showed poor performance (Figure 2C and
Supplementary Figure S1C). Therefore, STRIDE selects
marker genes for model training by default, but also allows
users to provide more specific cell-type signatures.

Next, we compared the performance of STRIDE with
other published cell-type deconvolution tools, including
methods developed for spatial transcriptomics, such as
SPOTlight (19), NMFreg (9), Seurat CCA (36), RCTD (21)
and cell2location (22), as well as the ones for bulk RNA-
seq, such as CIBERSORTx (37) and EPIC (38). STRIDE
showed the highest concordance between the prediction
and the ground truth, and RCTD and cell2location showed
slightly worse consistency (Figure 2D). To further evalu-
ate the sensitivity and specificity, in each spatial location,
we divided all cell types into two groups according to the
presence and absence, and calculated root mean squared er-
ror (RMSE) within each group (see Materials and meth-
ods section). STRIDE achieved a balance between sensi-
tivity and specificity, while other methods such as CCA,
RCTD and cell2location, achieved high specificity at the
expense of low sensitivity (Figure 2E). We also assessed
the methods’ capability to distinguish different cell types.
STRIDE exhibited the overall best performance among all
methods (Figure 2F and Supplementary Figure S1D). All
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of these methods showed poor performance in discriminat-
ing three T-cell subtypes (i.e. CD4+ T cells, CD8+ T cells
and proliferating T cells), which show highly similar ex-
pression profiles even in the scRNA-seq data. Considering
that in reality some cell types are co-localized, we gener-
ated an additional ST dataset from the same BRCA scRNA-
seq data to simulate the spatially correlated cell-type dis-
tribution patterns in the tumor microenvironment. Among
all the methods, STRIDE displayed generally best perfor-
mance, in terms of both the concordance with the ground
truth, and the balance between sensitivity and specificity
(Supplementary Figure S1E–G). Lastly, in the real scenario
some spots might be partially captured, and the sequenc-
ing depth might affect the number of captured genes as well
as the deconvolution results. We further benchmarked the
performance of STRIDE with different sequencing depths.
Although the deconvolution performance declined with the
decrease of the sequencing depth, STRIDE was still more
robust to the sequencing depth compared to other meth-
ods (Figure 2G). Collectively, these results demonstrated
that STRIDE could estimate the proportions of diverse cell
types with high accuracy, and were tolerated to spatially co-
localized cell-type distributions as well as low sequencing
depth.

Application of STRIDE on mouse cerebellum dataset re-
vealed spatial localization patterns of cell types and novel spa-
tial signatures

To demonstrate STRIDE’s usability on real spatial tran-
scriptomics data, we applied it on a mouse cerebellum
section profiled by Slide-seq2 (21). The mouse cerebellum
presents clearly defined cell-type layer structures, and thus
can be used to assess the cell-type decomposition perfor-
mance. We collected a published snRNA-seq dataset as ref-
erence (33), and applied STRIDE to map reference cell

types to spatial locations of Slide-seq2 image (Figure 3A).
Consistent to the prior literature (Figure 3B) (39), the two
types of molecular layer interneurons, MLI1 and MLI2,
were mapped to the top and outermost layer of the cere-
bellar cortex (i.e. molecular layer). Bergmann and Purkinje
cells were co-localized to the same middle layer, Purkinje
layer, while granule cells were localized to the bottom layer,
granular layer. The oligodendrocytes and astrocytes were
scattered below the granular layer (Figure 3A). Taken to-
gether, STRIDE could accurately deconvolve the cell types
and reconstruct the layered structure of the mouse cerebel-
lum.

Although there’s no ground truth for real spatial tran-
scriptomics data, we could potentially compare the de-
convolution result achieved from STRIDE with the cell-
type-specific markers. We found that the spatial distribu-
tion of cell types inferred by STRIDE was generally con-
sistent with the spatial distribution of marker genes (Fig-
ure 3C). For example, the marker genes of oligodendro-
cytes were highly expressed in the white matter underneath
the gray matter of the cerebellar cortex, where oligoden-
drocytes are highly enriched (Figure 3C). In line with ex-
pectations, the markers for granule cells, Purkinje cells and
molecular layer interneurons were distributed from the in-
ner layer to the middle layer, and thence to the outermost
layer, respectively (Figure 3C). The further correlation anal-
ysis between gene signature score and cell-type proportion
revealed roughly corresponding relationships, despite the
confusion between astrocytes and Bergmann cells, and be-
tween MLI1 and MLI2 (Supplementary Figure S2A). Since
Bergmann cells are one type of astrocytes, it seems reason-
able that there was a high correlation between the two cell
types.

Additionally, STRIDE could discover cell-type-related
topics and underlying functions for these topics (Supple-
mentary Figure S2B). Interestingly, we noticed that the
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Figure 2. Benchmarking STRIDE’s performance using simulated data. (A) The cell-type-by-topic distribution estimated by STRIDE. The color represents
the probability that one topic exists in one given cell type. (B) Validation of the trained topic model on the scRNA-seq used for training. The confusion
matrix reflects the consistency between the prediction and the truth for the cell-type assignment of scRNA-seq data. The value represents the number of
cells that belong to one cell type and are predicted to all different cell types. The color represents the proportion of cells belonging to the cell type on the
y-axis and classified as the cell type on the x-axis. (C) Benchmark of STRIDE’s performance on different gene sets. The box plot reflects the distribution
of Pearson’s correlation calculated between the predicted cell-type proportion and the ground truth for each spot. (D) Benchmark of STRIDE’s accuracy
against different deconvolution methods. The box plot reflects the overall distribution of Pearson’s correlation calculated in each spot for each method.
(E) Benchmark of STRIDE’s sensitivity and specificity against different deconvolution methods. In each simulated location, the cell types were divided
into two groups according to the presence (blue) and absence (pink), and RMSE was calculated within each group separately. The box plot reflects the
distribution of RMSE in different methods. (F) Benchmark of the ability to distinguish diverse cell types across different deconvolution methods. Pearson’s
correlation between the predicted proportions and the ground truth was calculated for each cell type. The black line in each column indicates the median
of different cell types’ correlation for each method. (G) Benchmark of STRIDE’s robustness against different deconvolution methods on the simulated
dataset with different sequencing depths.



PAGE 9 OF 15 Nucleic Acids Research, 2022, Vol. 50, No. 7 e42

Molecular layer

Purkinje layer

Granular layer

White matter

MLI1 MLI2

Purkinje cell
Bergmann cell

Oligodendrocyte

Astrocyte

Granule cell

Astrocytes

Bergmann

Granule

MLI1

MLI2

Oligodendrocytes

Purkinje

Topic 7, 8, 18, 30 (Oligodendrocytes) Topic 11 (Granule) Topic 3, 16, 38 (Purkinje) Topic 29 (Molecular)

0.00
0.25
0.50
0.75
1.00

Markers (Oligodendrocytes) Markers (Granule) Markers (Purkinje) Markers (Molecular)

0.0
2.5
5.0
7.5

A B

C

D

Expression

Probability
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topic signatures showed better spatial localization patterns
compared to marker genes for molecular layers (Figure
3C,D). We also performed GO function analysis on cell-
type-specific topics and demonstrated the consistency be-
tween the topics and their functions (Supplementary Fig-
ure S2C). For instance, GO terms involved in myelinogen-
esis, such as myelination and axon ensheathment were en-
riched in oligodendrocyte-specific topics (Topic 8, 18 and

30), while biological processes participating in synapse for-
mation and synaptic signal transmission were identified in
topics related to Purkinje cells and molecular layer interneu-
rons (Topic 3 and 29). Taken conjointly, these results sug-
gested that topic signatures generated by STRIDE could
better describe the spatial localization pattern of cell types
than their marker genes, which can be used to identify novel
spatially expressed genes.
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STRIDE characterized the spatial heterogeneity of tumor
cells in human squamous cell carcinoma microenvironment

To further explore the application of STRIDE in complex
human tissues, we applied it on a SCC dataset (15) gener-
ated using the ST technology. The scRNA-seq data from
matched patients were analyzed to decipher the cell-type
populations, and subsequently used as a reference to inte-
grate with ST data. Deconvolution using STRIDE could
explicitly resolve the cell-type compositions for spatial lo-
cations, thereby delineating the complex tumor microenvi-
ronment (Figure 4A). Interestingly, the deconvolution anal-
ysis by STRIDE revealed a fibrovascular niche where en-
dothelial cells and fibroblasts were enriched, and another
immune-cell-enriched leading-edge region (Figure 4A and
Supplementary Figure S3A), which were in accordance with
the findings from the original study. To better define spa-
tial domains within the tissue section, we performed spa-
tial clustering analysis combining both the neighborhood
information and the cell-type deconvolution result. Loca-
tions with similar cell-type compositions and similar sur-
rounding cell populations were clustered together (see Ma-
terials and methods for more details). This identified six
spatial domains, each of which had different cell-type pro-
portions (Figure 4B,C). Cluster C4 and C2 corresponded
to the fibrovascular niche and the immune-related leading-
edge mentioned above, respectively, while C3 were domi-
nated by epithelial/malignant cells, which can be regarded
as the tumor region. We next explored the relationship be-
tween the immune cell subset distribution and their relative
position to tumor. According to the distance from the tu-
mor region, we divided the spots outside C3 into two re-
gions, the tumor-stroma border and the stroma region (Sup-
plementary Figure S3B, see Materials and methods). We
observed that there were more myeloid cells in the stroma
region than in the tumor-stroma border. As for the lympho-
cytes, CD4+ T cells were enriched in the border, while B,
CD8+ T and proliferating T cells didn’t show obvious en-
richment in the border or the stroma region (Supplemen-
tary Figure S3C). This is consistent with the finding that
regulatory T cells were enriched in the border region (15).
Taken together, by integrating neighborhood information,
STRIDE deconvolution could define the spatial domains,
and further characterized the spatial distribution patterns
of different cell types in the tumor microenvironment.

The tumor cells usually displayed high heterogeneity,
we next asked whether the spatial domains identified by
STRIDE could be used to investigate the potential relation-
ship between tumor cells’ heterogeneity and their spatial lo-
cations. We defined C3 as tumor-core, and its surrounding
region (C1, C4 and C5) as tumor-edge, respectively (Fig-
ure 4D). To describe the difference between the tumor cells
from these two regions, we performed differential gene ex-
pression analysis and function enrichment analysis for the
up-regulated genes of each region. Surprisingly, the tumor-
core and the tumor-edge region showed distinct hallmark
pathways (Supplementary Figure S3D). The tumor-core re-
gion was characterized by the enrichment of estrogen re-
sponse and cholesterol homeostasis pathways, which were
reported to play an important role in SCC carcinogene-
sis (40). By contrast, the edge region specific genes were

highly enriched in interferon-involved signaling pathways,
in line with the results from the previous study (15). Inter-
estingly, we also found cancer hallmarks such as epithelial–
mesenchymal transition (EMT) and angiogenesis were en-
riched in the edge region, suggesting these tumor cells had
the ability to modulate immune response and were likely
to metastasize (Supplementary Figure S3D,E). To exclude
the possibility that the observation was affected by other
cell types present in the tumor-core and the tumor-edge re-
gion, we dissected the transcriptome of epithelial cells from
the spots (see Materials and methods). Epithelial cells from
scRNA-seq were mapped to the spatial locations based on
the similarity of topic distribution (Supplementary Figure
S3F). Again, we found that pathways involved in epider-
mis development and keratinization were identified in ep-
ithelial cells within the tumor-core region, while epithelial
cells in the tumor-edge were enriched in pathways related
to hypoxia, as well as EMT associated pathways such as
cell migration and angiogenesis (Figure 4E,F). In summary,
the cell-type deconvolution results from STRIDE not only
helped to identify spatially localized domains, but also re-
vealed the spatial heterogeneity within the same cell type.

STRIDE detected the location of rare cell types during the
development of human heart

To verify the utility of STRIDE in different biological sys-
tems, we also applied it to study spatial organization of
organ development. A recent study presented a spatio-
temporal atlas of the developing human heart by combin-
ing scRNA-seq, spatial transcriptomics and in situ sequenc-
ing (ISS) (14), which provided great resource for us to val-
idate the application of STRIDE. We trained model us-
ing scRNA-seq data collected from heart at 6.5–7 post-
conception weeks (PCW) (Supplementary Figure S4A) and
performed cell-type deconvolution on all samples from
three developmental stages (4.5–5, 6.5 and 9 PCW). As ex-
pected, the atrial and ventricular cardiomyocytes were pre-
dicted to be located in the upper and lower chambers across
all three stages (Figure 5A). The epicardial cells were also
correctly mapped to the outer layer of the heart, which is de-
fined as the epicardium. Remarkably, cardiac neural crest
cells and Schwann progenitor cells, a rare cell type identi-
fied by scRNA-seq, was mapped to the mesenchyme region
with smooth muscle cells and fibroblast-like cells enriched
(Figure 5A). This spatial localization was not achieved by
the direct clustering of spots based on the gene expression
profiles (14). Finally, the cell-type mapping by STRIDE was
highly consistent with the spatial cell-type map (Figure 5B)
created through the integration of ISS and scRNA-seq by
the original study (14).

We further explored the distribution of topics discov-
ered by STRIDE. Reassuringly, most cell-type-specific top-
ics (Supplementary Figure S4B) were distributed in con-
cordance with the spatial position of their corresponding
cell types (Figure 5C). The cell-type-specific topics also
showed highly cell-type-specific functions. For example, GO
processes related to cardiac muscle development and con-
traction were enriched in cardiomyocyte-associated topics,
and processes such as erythrocyte or ion homeostasis and
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Figure 4. Characterizing the heterogeneity of microenvironment in human squamous cell carcinoma. (A) The scatter pie plot to show the spatial locations
of different cell types predicted by STRIDE. Each scatter represents a spot in the ST slide. The pie chart is used to reflect the proportions of different cell
types within each spot. Colors represent different cell types. (B) The k-means clustering of spots based on the cell-type compositions and surrounding cell
populations. Colors represent the cluster labels. (C) The cell-type composition of each cluster. The cell-type proportions of all spots in each cluster were
averaged to represent the cluster’s cell-type composition. (D) Spatial location of the tumor-edge region. Spots in the tumor-edge region are highlighted
with red. (E) Hallmark (left) and GO (right) enrichment analysis on the up-regulated genes of epithelial cells in each region. The size of the dot represents
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oxidation-reduction process were enriched in erythrocyte-
associated topics (Supplementary Figure S4C). Taken to-
gether, these results demonstrated that STRIDE could be
used to infer the cell-type mixture patterns of tissues from
different time points, and accurately detected the position
even for rare cell types.

STRIDE enabled 3D architecture construction of developing
human heart using topics

In order to further demonstrate the application of
STRIDE-derived topics, we set out to explore the in-
tegrative analysis across multiple samples leveraging the
STRIDE deconvolution results. The human heart samples
for each timepoint were sectioned along the dorsal–ventral
axis, which can be integrated to reconstruct the 3D spatial
architecture. We modified PASTE (35) and performed ST
slide integration based on STRIDE-derived topics, which
could balance both transcriptional similarity and spatial
structure similarity through a balancing parameter (Figure
6A, Supplementary Figure S5A, see Materials and meth-
ods). Spots with similar topic profiles were mapped pair-
wise. For example, spots mainly containing ventricular car-

diomyocytes were mapped to each other within the ventri-
cle region, and the atrial cardiomyocytes in the right and
left atrium were correctly mapped within a local range (Fig-
ure 6A).

We then constructed a 3D model representation of the de-
veloping human heart (Figure 6B) on the basis of sequen-
tial pairwise alignment of adjacent samples. Our 3D model
could accurately represent the 3D structure only using the
spatial expression information without the need for image-
based registration. Interestingly, when we focused on the
SMCs and erythrocytes, which are the main components of
vessels, we observed that these cells started from the OFT
and clearly formed four branches into right atrium (RA),
right ventricle (RV), left ventricle (LV) and left atrium (LA)
(Figure 6C and Supplementary Figure S5B), which might
correspond to the vena cava, pulmonary artery, aorta and
pulmonary veins, respectively. In addition, we could clearly
observe the location of epicardial cells in the outermost
layer of the heart from the 3D model (Figure 6C). Taken
together, the 3D reconstruction from multiple slides based
on both the topic distribution similarity and the spatial dis-
tance similarity enabled a global view of the developing hu-
man heart and is also applicable for other systems.
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Figure 6. 3D model reconstruction of the developing human heart. (A) The alignment between adjacent tissue samples. Each pair of spots is connected
by a line if they are matched according to the slide alignment. The left and right show the matching between spots dominated by ventricular and atrial
cardiomyocytes, respectively (the matching of other cell types are shown in Supplementary Figure S5A). (B) 3D model representation of the 6.5 PCW
human heart constructed by STRIDE. Nine sequential samples from the 6.5 PCW heart were aligned and integrated together. Each sphere represents a
spot in the ST slide, which is colored according to the cell type with the highest proportion. The translucent outline shows the 3D atlas of the developing
human heart (Carnegie stage 18). (C) Left, the spatial distribution of SMCs and erythrocytes. Right, the spatial distribution of epicardial cells.

DISCUSSION

The recent development of spatial transcriptomics has
brought new insights into the understanding of tissue ar-
chitectures. However, due to the limitations of current tech-
nologies, it is difficult to accurately map cell types to spatial
locations at single-cell resolution through ST data alone. To
address this issue, we introduce STRIDE, a deconvolution
method which utilizes topic modeling to decipher cell-type
compositions of spatial transcriptomics by integrating with
scRNA-seq data. Benchmarking STRIDE on different fea-
ture genes demonstrated that STRIDE could accurately es-
timate the cell-type proportions, and outperformed other
existing methods in terms of the balance between specificity
and sensitivity, and the robustness to the sequencing depth.
By applying STRIDE on different scenarios, we confirmed
its versatility in different biological systems and flexibility to
various spatial transcriptomics techniques. We also demon-
strated the broad application of STRIDE in the derivation
of spatially localized cell-type signatures, identification of

spatial domains, and final reconstruction of 3D tissue ar-
chitecture based on cell-type-specific topics.

In spite of the aforementioned merits, STRIDE still has
some limitations. First of all, the deconvolution by STRIDE
depends on the assumption that the cell populations and
their proportions are similar and robust between spatial
transcriptomics and scRNA-seq. In fact, different sampling
strategies and sites make a great difference to the cell-type
compositions. It’s almost impossible to estimate the frac-
tions of cell types which are present in spatial data but ab-
sent in scRNA-seq data. The issue can be mitigated by ei-
ther controlling the consistency of sampling sites, or select-
ing closely matched reference samples. Second, STRIDE
showed reduced performance in predicting the fractions of
transcriptionally similar cell subtypes due to the lack of suf-
ficient subtype-specific marker genes, although all of the
other methods also failed. Future implementation of hierar-
chical topic modeling (41) might discover hierarchical topic
structures, thus enhancing the capability to discriminate
similar cell types from the same lineage. The principal ob-
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jective of spatial transcriptomics is to understand the cellu-
lar heterogeneity and interplay in the spatial context. Many
methods have been developed to infer the ligand–receptor
interactions from spatial transcriptomics through the co-
expression or co-localization analysis within the physically
proximate locations (42). Future deployment of STRIDE
could consider to estimate deconvolved cell-type expression
level based on scRNA-seq, which could assist in the effec-
tive inference of interactions between different cell types.
The coupling of cell-type distribution and intercellular in-
teractions will facilitate the discovery of principles for the
spatial organization of cells.

STRIDE could deconvolve the cell-type compositions of
spatial transcriptomics based on latent topics. On the other
hand, the shared topics by single-cell and spatial transcrip-
tomics could also be used to map single cells to spatial lo-
cations. In this way, single-cell multi-omics data, such as
scNOMe-seq (43) and scNMT-seq (44), could be integrated
with spatial transcriptomics through scRNA-seq to uncover
the spatial regulatory mechanism. And with the accumula-
tion of spatio-temporal transcriptomics and regulatory pro-
files, STRIDE could be further enhanced to elucidate the
spatio-temporal multi-omics dynamics during the tissue de-
velopment or the tumor progression. Besides, most of the
current spatial techniques quantify the gene expression and
infer cell-type distribution in the two-dimensional space.
Though the topic-based integration of multiple spatial tran-
scriptomics samples proved to be helpful in the 3D recon-
struction of tissue architectures, we anticipate that with the
aid of imaging data and data from other modalities, it will
be possible to establish a more comprehensive and multi-
scale 3D tissue atlas by STRIDE.

DATA AVAILABILITY

The mouse cerebellum dataset including spatial tran-
scriptomics and snRNA-seq is available at https:
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The SCC dataset can be accessed from Gene Expres-
sion Omnibus (GEO) through the accession number
GSE144240. The human heart dataset is collected from
https://www.spatialresearch.org.

STRIDE is an open-source python package with source
code freely available at https://github.com/wanglabtongji/
STRIDE.
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