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Observation of exceptional point 
in a PT broken non‑Hermitian 
system simulated using a quantum 
circuit
Geng‑Li Zhang1,2,3, Di Liu4,5 & Man‑Hong Yung1,6,7,8*

Exceptional points (EPs), the degeneracy points of non‑Hermitian systems, have recently attracted 
great attention because of their potential of enhancing the sensitivity of quantum sensors. Unlike the 
usual degeneracies in Hermitian systems, at EPs, both the eigenenergies and eigenvectors coalesce. 
Although EPs have been widely explored, the range of EPs studied is largely limited by the underlying 
systems, for instance, higher‑order EPs are hard to achieve. Here we propose an extendable method 
to simulate non‑Hermitian systems and study EPs with quantum circuits. The system is inherently 
parity‑time (PT) broken due to the non‑symmetric controlling effects of the circuit. Inspired by the 
quantum Zeno effect, the circuit structure guarantees the success rate of the post‑selection. A sample 
circuit is implemented in a quantum programming framework, and the phase transition at EP is 
demonstrated. Considering the scalable and flexible nature of quantum circuits, our model is capable 
of simulating large‑scale systems with higher‑order EPs.

Quantum computation is long believed to be faster than the classical counterpart for many tasks. The advantages 
of the quantum computation in various applications, such as factoring and  searching1–3, have been shown theo-
retically years ago. However, the quantum supremacy, or  advantage4 is only experimentally achieved by Google on 
their Sycamore processor  recently5. These newly available devices have attracted considerable attention. Among 
all researches on such noisy intermediate quantum chips, the simulation of the quantum systems may be one 
of the most practical and promising  applications6–8. Most existing  simulations9, 10 are designed for Hermitian 
systems. This could be a natural choice considering the energy conservation of physical systems. However, it 
is common that a system may be entangled and exchange energy with the environment. After tracing out the 
environment, the evolution of the system follows an effective non-Hermitian Hamiltonian (i.e. H  = H†)11–15. 
Therefore, the simulation of physical systems should not be limited to Hermitian systems.

Due to the unique properties of the exceptional point (EP)16, the degeneracy points of the non-Hermitian 
Hamiltonian, and the parity-time ( PT  ) phase  transition17–19, the non-Hermitian physics has also attracted inten-
sive interest recently. In contrast to the conventional level degeneracy, at the EPs, not only the eigenenergies but 
also the corresponding eigenstates merge to be identical (coalesce)17, 19. This coalescence leads to many distinctive 
phenomena around EPs, such as the ǫ1/n dependence of the level-splitting on the ǫ perturbations around the nth 
order  EP20 and some nontrivial topological properties in the complex  plane21, 22. Such properties raised vast new 
topics in the study of quantum sensing and system  control23, 24. For instance, though with some  doubts25–29, the 
last theoretical research and experimental evidence suggest that, EPs may be utilized for dramatically improve 
the sensitivity of level-splitting  detection23, 24, 30, 31.
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After first demonstrated in microwave  cavities32, the non-Hermitian effects were also soon observed in 
 optomechanics33–35, atomic  systems36, 37,  electronics38, 39,  acoustics40, 41, exciton-polaritons42, transmon  circuits43 
and most recently nitrogen-vacancy centers in  diamonds44. However, the power of the fast developing quantum 
computing is largely ignored in the study of simulating non-Hermitian systems and investigating EPs. Here we 
propose a realization of non-Hermitian system to study EPs using the quantum circuits, which is applicable to 
noisy intermediate-scale quantum (NISQ) devices. Similar to the heralded entanglement  protocols45, the effective 
non-Hermitian model is heralded by measuring the ancillas to the |0� states. Because of the non-symmetric con-
trolling effects of the circuit, the system is inherently PT-broken and different from the usual continuous quantum 
 measurement46. For demonstration, a single qubit non-Hermitian system is simulated, where a phase transition at 
EP is observed. This simulation is implemented with Huawei  HiQ47, a quantum programming framework based 
on the open-source python package  ProjectQ48, 49. It is straightforward to generalize the method to multi-qubit 
systems and higher-order EPs. We expect that the quantum chips in the near future could outperform the clas-
sical simulators for large non-Hermitian systems. Once the quantum chips are ready, the code can be migrated 
to the real device with minor modifications. We believe this work paves the way for simulating non-Hermitian 
physics and investigating EPs with quantum computers.

Results
For simulations of two-dimensional non-Hermitian system, we take the circuit in Fig. 1a as a concrete instance. 
The non-Hermiticity remains if the gates are replaced by other one- or two-qubits gates. We take the first qubit 
as the “system” and the second qubit as an ancilla. The non-Hermitian unit is repeated only if the measurement 
result of the ancilla is |0� . Since the measurement on ancilla is repeated in the same basis, similar to the quantum 
Zeno effect, the success rate can be boosted by dividing each unit to smaller units. Starting from an initial state 
|ψ� , after n cycles the final state of the system |ψ(n)� is close to exp(−iHeffn)|ψ� . The Heff  here is an effective 
non-Hermitian Hamiltonian (see Methods IV A)

where σx and σz are the Pauli operators, and Ŵ = φ2/8 , with φ ≪ 1 . This approximation is similar to 
 Trotterization50, 51, whose error is O(Ŵ2)+ O(Ŵθ) . The non-Hermiticity of the system comes from the post-
selection on the ancilla qubit. This process is similar to the non-Hermitian Hamiltonian in some quantum simula-
tion experiments, such as the one heralded by the absence of a spontaneous decay in cold-atom  experiments45. 
It should be noted that the wavefunction evolved under the non-Hermitian Hamiltonian is unnormalized. It 
requires renormalization for further analysis.

The eigenenergies and the corresponding eigenstates of this Hamiltonian are

(1)Heff =
θ

2
σx +

iŴ

2
(σz − 1),

Figure 1.  (a) The circuit for simulating a non-Hermitian system on quantum computers. |ψ� is an arbitrary 
initial state of the system. For each cycle, the ancilla qubit is reinitialized to the |0� state. We only post-select 
the results with ancilla measured to be |0� . (b,c) The real parts and the imaginary parts of eigenenergies of the 
effective non-Hermitian Hamiltonian. At the exceptional point (EP) both the eigenenergies and the eigenstates 
coalesce. The system is always in the PT-broken phase except for the point Ŵ/θ = 0.
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where N  is a normalization constant.
The real parts and the imaginary parts of the eigenergies are shown in Fig. 1b,c respectively. Since the imagi-

nary part is nonzero except for the point Ŵ/θ = 0 , this effective non-Hermitian system always lies in the PT-
broken phase. This is a result of the shared imaginary part − iŴ

2  in both eigenvalues. This term is essentially caused 
by the non-symmetric controlling effect (see Methods IV A).

As marked in Fig. 1b, Ŵ/θ = 1 is corresponding to the exceptional point (EP), where, unlike the Hermitian 
system, not only the eigenvalues but also the eigenvectors coalesce.

In order to implement the n-cycle non-Hermitian circuit in Fig. 1a, we first allocate a qubit and an ancilla. 
The qubit is initialized to an arbitrarily chosen state |ψ� , and the ancilla is initialized to |0� . After applying one 
non-Hermitian unit, it successes if the measurement result is |0� . If success, we allocate another ancilla which is 
also initialized to the |0� state, and repeat the first step. Otherwise, we start all over again. The process is repeated 
until we achieve n successes in a row, and the final state of the “system” should be proportional to |ψ(n)� . In a 
trail, the whole process is repeated many times to estimate the probabilities P0 = �0|ψ(n)� . Several trails are used 
to get the mean and the standard deviation.

Obtaining an accurate estimation by sampling is resource consuming. In order to quickly verify if the circuit 
simulates an effective non-Hermitian system, we utilize the collapse_wavefunction and cheat func-
tions that is only available to the simulator backend (see Supplementary Information). By using collapse_
wavefunction(ancilla, [0]), the post-selected wavefunction of the “system” with the ancilla at |0� 
is directly achieved. Further, by using cheat() the full information of the wavefunction can also be directly 
obtained.

In Fig. 2, the simulated result is compared to the analytical solution to the effective non-Hermitian Hamilto-
nian. The initial state is set to |ψ(0)� = |0� . It shows that, as long as φ ≪ 1 (important for both the Trotterization 
and the success rate as shown in Methods IV A), and θ is small (so it is not far away from EP), the circuit simulates 
the desired non-Hermitian system well.

The degeneracy at EP leads to non-analytic behavior of the  system45, which can be easily observed by compute 
and plot Mz ≡ �σz� around EP.

When Ŵ/θ > 1 , the eigenvalues and eigenvectors can be recast as �± = (−iŴ ± iθ sinh α)/2 and 
|v±� = [ie±α , 1]T , with α = cosh−1(Ŵ/θ) . In this regime, the eigenvalues have different imaginary parts, which 

(2)�± = −
iŴ

2
±

1

2

√

θ2 − Ŵ2, |v±� =
1

N

[

1
θ
(iŴ ±

√
θ2 − Ŵ2)

1

]

,

Figure 2.  Compare simulation results with theoretical results. (a–d) Results with different φ and θ . The initial 
state of the qubit is set to |0� . P0 is the probability that the qubit remains in the |0� state. The blue lines are the 
theoretical results with the effective non-Hermitian Hamiltonian. The red dashed lines are the results using 
functions that are only available in the simulator backend as a quick verification of the circuits. The dots with 
error bars are the simulated results. The n-cycle non-Hermitian circuit is repeated 100 times to get a single 
estimation of P0 . Then the whole process is repeated 10 times to get the mean value of P0 and the error bar.
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means that the two eigenstates have different decay rate (though both negative) under time evolution. The 
stationary state is |v+� since its eigenvalue has a larger imaginary part (smaller absolute value), which implies 
Mz = �v+|σz |v+� =

√

1− (θ/Ŵ)2  . As shown in Fig. 3a, starting from the fully mixed state ρ(0) = I/2 , Mz 
gradually approaches the stationary value with the number of non-Hermitian cycles increases.

When Ŵ/θ < 1 , we can rewrite the eigenvalues and the eigenvectors as �± = (−iŴ ± θ cosα)/2 and 
|v±� = [±e±iα , 1]T with α = sin−1(Ŵ/θ) . The two eigenvalues has the same imaginary parts, and therefore the 
two eigenvectors are equally stationary. As shown in Supplementary Information, begin with the fully mixed 
state ρ(0) = I/2 , Mz will always oscillate in this regime. For instance, when θ ≫ Ŵ and at the long time limit, 
Mz(t) ≈ sin(2α) sin(θ t) , from which it is not hard to see that, the lone time average vanishes, i.e. Mz = 0.

Therefore, the expectation value Mz takes distinctive behaviors on each side of the EP point, which shows a 
phase transition even for a single qubit. This is very different from the usual phase transition, which only happens 
when the number of particles goes to infinity. In Fig. 3b we show the good agreement between the simulations 
from HiQ and the theoretical results for Ŵ > θ , which confirms this phase transition. However, in the region of 
Ŵ < θ , the huge number of cycles required for taking the time average, especially when Ŵ is in the same order 
of θ , is beyond our current scope.

With similar idea, higher dimensional non-Hermitian system can also be simulated by using quantum circuits, 
such as the circuit structure shown in Fig. 4.

Without the ancilla qubits, the system evolves under the unitary operator U which corresponds to a Hermitian 
Hamiltonian H. After taking into account of the ancilla qubits and post-selection on state |0 . . . 0� , the effective 
Hamiltonian of the system reads

where Ŵ = φ2/8 and σ z
i  is the Pauli operator on the ith qubit. With the effective multi-qubits non-Hermitian 

system, physics of higher order EPs can be investigated (e.g., a 4th order EP as explained in Methods IV B).

Discussion
We’ve proposed a scheme of simulating non-Hermitian systems with quantum circuits, and numerically demon-
strated the phase transition at EP of such system. This is achieved by imitating the effect of environment with the 
post-selection of the measurement results on the ancilla qubits. The codes for our numerical experiment is based 
on the simulator backend of HiQ, which can be cast to programs on physical quantum chips once they are avail-
able in the near future. The non-Hermiticity of the quantum circuit have been shown and the phase transitions 
at EPs are also demonstrated. Although the number of cycles ( > 5000 ) required to show the phase transitions 
is hard to be achieved for quantum chips at this stage, the non-Hermiticity of the circuit may be demonstrated 
experimentally on existing quantum chips ( ∼ 100 cycles). Compared to previous implementations, which utilize 
the specific properties of the underlying systems, our method benefits from the universality and scalability of 

(3)Heff = H +
iŴ

2

∑

i

(σ z
i − 1),

Figure 3.  The stationary value and phase transiton at EP at φ = 0.1 . (a) Mz approaches a stationary value when 
Ŵ > θ . The solid lines are results simulated with collapse_wavefunction and cheat functions of the 
simulator backend. The dashed lines represents the theoretical stationary values. (b) shows the phase transitions 
of Mz at EP. The n-cycle non-Hermitian circuit is repeated 500 times for a single estimation of Mz , and the 
whole process is again repeated 20 times to get the average and the variance for each Ŵ.
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the quantum circuits. The idea of this work can also be generalized to multi-qubit circuits and higher-order EPs, 
where the advantage over other methods can be foreseen. Our results could open a new path to the applications 
of quantum computers beyond the usual simulation paradigms that confined to Hermitian systems.

Methods
Circuit for single qubit. The motivation of our design of quantum circuit comes from the fact that, non-
Hermiticity of physical systems are generated from the entanglement with the environments. To imitate the 
real-world scenarios, the “system” qubits are entangled with the ancillas in the quantum circuit. By measuring 
the ancilla qubits and post-selecting specific measurement results we can design the non-Hermiticity of the 
system qubits.

Consider the circuit in Fig.  1a. For any intermediate state |ψ� , rewrite the state after gate Rx(θ) , 
exp(−iθσx/2)|ψ�|0� , in computational basis: (α|0� + β|1�)|0� . Then the controlled rotation CRx(φ) gives state

If the measurement result of the ancilla qubit is |0� , assuming φ ≪ 1 , the output should be

where Ŵ = φ2/8 . the last step is similar to the Trotterization for quantum simulation with error O(Ŵ2)+ O(Ŵθ) , 
and the effective non-Hermitian Hamiltonian

Although the circuit in Fig. 1a seems like the traditional continuous quantum measurement (such as Fig. 24 in 
 Ref46), there’re many substantial differences. The evolution by Rx(θ) and CRx(φ) cannot be written as a unitary 
evolution governed by the general Hamiltonian of continuous quantum measurements, where unlike the asym-
metric controlling of the system qubit on the ancilla qubit, the coupling between the system and the “meter” 
takes symmetric form with coupling strength characterized by γ . Furthermore, in contrast to the continuous 
measurement limit ( γ t ≪ 1 ), only φ ≪ 1 is required with θ unconstrained in our setup.

It should be noted that, the amplitude α is invariant under the non-Hermitian operation unit since the con-
trolled rotation does not take effects when the qubit is at |0� state. This non-symmetry between the two eigenstates 
is the underlying reason that the system is always PT-broken.

After the non-Hermitian unit, the probability of measuring |0� on the ancilla is P0 = 1− |β|2 sin2(φ/2) . For 
instance, taken φ = 0.1 and on average |β|2 = 0.5 , we have P0 ≈ 0.999 . After 5000 cycles, the success rate is 
about 0.7% . However, since EP only depends on θ/Ŵ , θ and Ŵ can be scaled by a factor of 1/N at the same time 
without changing the EP. Similar to the quantum Zeno effects, when N approaches infinity, the total success rate 
approaches 1, which can guarantee the observation of EPs as long as the fidelity of quantum chips is high enough.

The quantum circuit in Fig. 1a can be implemented on any quantum devices that support the circuit-based 
quantum computing. To show that the simulated system is indeed non-Hermitian, we implemented the circuit 
on the HiQ simulator. Once the quantum chips are ready and connected to the HiQ, we expect that the same 

(4)
CRx(φ)−−−−→

(

α|0� + β cos
φ

2
|1�

)

|0� − iβ sin
φ

2
|11�.

(5)

|ψ ′� = α|0� + β(1− φ2/8+ O(φ4))|1�

= e−i iŴ2 (σz−1)+O(Ŵ2)(α|0� + β|1�)

= e−i iŴ2 (σz−1)+O(Ŵ2)e−iθσx/2|ψ�

≈ e−iHeff |ψ�,

(6)Heff =
θ

2
σx +

iŴ

2
(σz − 1).

Figure 4.  The circuit for simulating a N-qubits non-Hermitian system. The repeating strategy is the same as 
that has been described in the main text. qi denotes the N system qubits, ai denotes the N ancilla qubits and U is 
the unitary evolution gates applied on the system qubits. The initial states of the system qubits can be arbitrary, 
but the initial states of the ancilla qubits are all |0� states.
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algorithm can be run on the quantum chips with minor modifications (for instance, by changing the backend 
from simulator to quantum chips).

The non-Hermitian unit in Fig. 1a can be intuitively translated to the HiQ/ProjectQ language as:

where the standard Python +|(or)+ operator is reloaded and used to apply the gates to qubits here. qubit 
and ancilla are the qubits allocated in the MainEngine representing the “system” and the ancilla respec-
tively. Rx(theta) and C(Rx(phi)) are the rotational and the controlled rotational operators with respect 
to Pauli-X, and Measure represents the quantum measurement in computational basis.

Ciruit for multi‑qubits. The multi-qubits circuit shown in Fig. 4 can be used to investigate higher order 
EPs, for instance, assume the Hermitian Hamiltonian H = a(σ x

0 σ
z
1 + σ

y
0 σ

z
1 )+ b(σ z

0 σ
x
1 + σ z

0 σ
y
1 ) and without 

loss of generality take Ŵ = 1 , we have four eigenenergies

where u = ±1 and v = ±1.
When a = b = 1/2

√
2 , the four eigenenergies coalesce, as shown in the Fig. 5, and we have a 4th order EP.

Data Availability
The main data supporting the finding of this study are available within the article and its Supplementary Infor-
mation files. Additional data can be provided upon request.
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