
Clin Exp Pharmacol Physiol. 2020;47:1791–1797.	 wileyonlinelibrary.com/journal/cep�   |  1791© 2020 John Wiley & Sons Australia, Ltd

1  | INTRODUC TION

Soon after the start of the coronavirus disease 2019 (COVID-19) pan-
demic, it was recognized that its causative severe acute respiratory 
syndrome virus (SARS-CoV2) virus was somehow less deadly than its 
pervious fellow, SARS-COV. Yet some features of the new virus qual-
ified it to be a tremendously greater threat to humanity than its older 
version and those included very high infectivity, transmission from as-
ymptomatic people and great variability of its clinical features.

COVID-19 manifestations range from mild to rapidly progressive 
severe acute respiratory distress syndrome (ARDS), respiratory and 
circulatory failure, sepsis, and death.1 Older age and various forms 
of comorbidities were found to be associated with poorer outcomes, 
including fatalities. Reported risk factors included: cardiovascular, 
chronic kidney disease, and diabetes mellitus. As until 14 of July, 
13  266  181 cases have been reported worldwide in about 4.34% 
mortality rate.2

The angiotensin-converting enzyme 2 (ACE2), is a cell surface 
enzyme present in almost all organs. ACE2 is widely expressed in 
the lower respiratory tract cells besides its cardiac, renal, and intes-
tinal expression.3 ACE2 is believed to be the SARS-CoV2 receptor. It 
facilitates cellular invasion, replication, and viral pathogenicity.4 This 
could explain its ability to affect various organs, especially the gas-
trointestinal tract, the heart and the kidneys.

A precise antiviral or a specific immunization has not been iden-
tified yet, raising a need for adjuvant pharmacologic therapy. We 
believe that targeted therapies based on the known COVID-19 
pathogenesis should be considered.

Nicorandil (N-[2-hydroxyethyl]-nicotinamide nitrate) is a thera-
peutic agent used clinically for the treatment of angina. Nicorandil is 
believed to act by increasing nitric oxide availability and by opening 
ATP-sensitive K channels (K+

ATP).5 Several studies have also shown 
the involvement of nicorandil in inflammatory process and oxidative 
stress regulation.
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Abstract
At present, there is yet no specific antiviral treatment or immunization against the 
newly identified human severe acute respiratory syndrome virus (SARS-CoV2) that 
results in a rapidly progressive pandemic coronavirus disease 2019 (COVID-19). We 
believe in a crucial need for a clinical strategy to counteract this viral pandemic based 
on the known pathogenesis throughout the disease course. Evidence suggests that 
exaggerated patient's inflammatory response and oxidative stress are likely to ag-
gravate the disease pathology. The resulting endothelial dysfunction further induces 
fibrosis and coagulopathy. These disturbances can generate severe acute respiratory 
distress syndrome (ARDS) that can progress into respiratory and circulatory failure. 
Nicorandil is an anti-anginal vasodilator drug acts by increasing nitric oxide bioavail-
ability and opening of the KATP channel. Recently, nicorandil has been recognized to 
possess multiple protective effects against tissue injury. Here, we address a possible 
modulatory role of nicorandil against COVID-19 pathogenesis. We hypothesise nico-
randil would be an effective form of adjuvant therapy against COVID-19.
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In this context, we hypothesise a potential benefit of nicorandil 
administration as an adjuvant drug therapy in COVID-19 manage-
ment, based on the currently addressed pathogenesis.

2  | INFL AMMATION, OXIDATIVE STRESS-
INDUCED PULMONARY CELL DE ATH AND 
DYSFUNC TION IN COVID -19 AND ITS 
POSSIBLE MODUL ATION BY NICOR ANDIL

Following SARS-CoV2 lung invasion, the primed dendritic cells and 
epithelial cells initiate vast amounts of pro-inflammatory cytokines, 
including interleukins (IL-1β, IL-2, IL-6, IL-8), tumour necrosis factor 
(TNF), and C motif chemokines (CCL) 2, 3, and 5. This augmented 
inflammatory response would promote cellular injury and apopto-
sis.6 Such inflammatory response is promoted by the expression of 
adhesion molecules.7

The intense inflammatory response may activate a ‘cytokine 
storm’ and hence, marked cell death.8,9 The inflammatory media-
tors released from dying cells would further promote inflammation 
and pulmonary cellular injury,10 initiating a vicious circle of inten-
sified inflammatory and immune responses that may end in critical 
outcomes.

The extent of pulmonary inflammation in COVID-19 ranges 
from patchy inflammatory cellular infiltration to bilateral diffuse 
infiltrates and pneumocytes desquamation with hyaline membrane 
degeneration.11

In a study by Solaimanzade, COVID-19 radiologic findings of 
pulmonary ground-glass opacification and patchy infiltrates charac-
terized up to 86% of patients. The impaired oxygenation initiates hy-
poxia and tachypnea.12 In ARDS patients, hypoxemia and mechanical 
ventilation with high oxygen pressure generate extensive reactive 
oxygen and nitrogen species.13 The liberated oxidants target and 
destruct cellular proteins, lipids, carbohydrates, and DNA and exac-
erbate tissue inflammation and injury.14

Combating acute lung injury by nicorandil may be possible via 
multiple mechanisms. In fact, the anti-inflammatory and anti-oxida-
tive properties of nicorandil have been previously shown in several 
studies. Nicorandil has an ability to attenuate lipopolysaccharide-in-
duced human pulmonary artery endothelial cells (HPAEs) injury. 
It can also abort the inflammatory process by suppressing mono-
cyte-endothelial adhesion, the key step in the inflammation patho-
genesis. In a study by He et al, nicorandil abolished HPAECs nuclear 
factor (NF-κB) and mitogen-activated protein kinase (MAPK) and 
hence, aborted inflammatory cytokine formation and suppressed 
apoptosis.15 Nicorandil protected the HPAECs against hypoxia-in-
duced injury. It restored the diminished HPAEs endothelial nitric 
oxide synthase (eNOS) production and the activation of mitoKATP 
channels.16

Nicorandil exhibits anti-free-radical characteristics since it 
could scavenge hydroxyl radicals through its nicotinamide moi-
ety. Nicorandil efficiently inhibits superoxide anion production by 
the activated neutrophils.17 In addition, nicorandil can correct the 

lipoperoxidation and free radical injury induced by diabetes mellitus 
in rat kidneys, cardiac muscle and liver tissues.18

In a rat model of silica-induced lung injury, nicorandil effectively 
downregulated the elevated inflammatory markers NF-κB, TNF-α, 
and MPO in the lung tissues. Moreover, nicorandil restored the oxi-
dant/antioxidant balance through inhibiting iNOS and up regulated 
GSH, SOD, Nrf-2 and HO-1.19

Pre-treatment with nicorandil (100 µg/kg/h) protected non‑ven-
tilated lung collapse and re‑expansion in one-lung ventilation rab-
bit model.20 Nicorandil's effect was mediated through the notable 
oxidation/inflammation suppression. The expression levels of MDA, 
TNF-α, and the NF-κB were significantly reduced. Meanwhile, phos-
phatidylinositol-3-kinase (PI3K), hypoxia-inducible factor (HIF-1α), 
and SOD were upregulated in the injured lungs treated with 
nicorandil. The immunomodulatory effect of nicorandil and lung tis-
sue protection against apoptosis was reflected on improved arterial 
oxygen saturation and oxygen partial pressure.

Recently, Abe and co-workers documented an effective rat 
lung protection from ischaemic injury when preconditioned with 
nicorandil. The drug decreased the extent of pulmonary microvascu-
lar permeability at 60 mins following reperfusion. Nicorandil's effect 
on the permeability was evidenced by a prominent reduction in the 
filtration coefficient and the wet-to-dry lung weight ratio.21

A bronchodilator effect of nicorandil has also been shown when 
a dose of 6 mg/h infused intravenously prevented thiamylal-fentan-
yl-induced bronchoconstriction in humans.22 The airway smooth 
muscle relaxing action of nicorandil presumably was established 
through NO donation23,24 and the K+

ATP opening activity.25

3  | FIBROSIS INDUCED BY SARS- CoV2 
AND THE ANTI-FIBROTIC POTENTIAL OF 
NICOR ANDIL

About one-third of the Middle East Respiratory Syndrome-related 
coronavirus (MERS-CoV) and the old SARS-COV cases have been 
associated with radiological findings of lung fibrosis.26,27 Likewise, 
SARS-CoV2 infection has a high tendency for pulmonary paren-
chymal and interstitial fibrosis28,29 especially encountered in the 
advanced-phases.30 The risk of such changes is higher in the older 
age group owing to an observed more intense lung pathology in the 
acute phase of the disease in this group of patients.10

The prevention of pulmonary fibrosis in patients infected with 
SARS-CoV2 is an issue that urgently needs to be addressed.

Experimentally, nicorandil has been shown to produce improve-
ment in a number of lung fibrosis models. Nicorandil improved 
the lung tissue histological picture of a rat model of cyclophos-
phamide-induced lung fibrosis,31 silica-induced lung inflammation 
and fibrosis,19 and bleomycin-induced lung fibrosis32 and in more 
recently published study of Kseibati and co-workers.33 The fibro-
sis-ameliorating effect of nicorandil was attributed to its ability to 
relieve pulmonary oxidative stress. Its beneficial actions were sig-
nalled by a reduction in the inflammatory markers present in the 
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bronchoalveolar lavage fluid and a decrease in the profibrotic marker, 
transforming growth factor-β (TGF-β) and the indicator of pulmonary 
collagen deposition (hydroxyproline content). These studies support 
the nicorandilanti-fibrotic potential.

The antifibrotic potential of nicorandil was further documented 
in acute myocardial infarction patients subjected to coronary an-
gioplasty. Acute intravenous nicorandil followed by 6  months of 
treatment decreased the patient's plasma level of procollagen type 
III amino-terminal peptide (PIIINP) and ameliorated left ventricular 
remodelling and improved function.34

4  | COAGUL ATION DISORDERS 
ACCOMPANYING COVID -19 AND POSSIBLE 
MODUL ATION BY NICOR ANDIL

Coagulopathy is becoming an increasingly recognized feature of 
cases severe COVID-19. Disseminated intravascular coagulation 
(DIC) was identified in the majority of post-mortem specimens of 
COVID-19 patients.35 The alveolar capillaries of COVID-19 acute 
lung injury cases developed fibrin-rich thrombi holding extensive 
platelets and neutrophils infiltration.36

Hypoxia in severe COVID-19 was found to initiate thrombus for-
mation through systemic vasoconstriction, endothelial injury, and 
the consequent poor tissue perfusion. Hypoxia-inducible transcrip-
tion factor is the proposed mediator for this coagulation-dependent 
pathway.37

Sepsis-induced coagulopathy is a newly described category for 
the earlier phases of sepsis-associated DIC.38 Early application of an-
ticoagulant therapy in severe COVID-19 was suggested for Chinese 
patents aiming at improving the patient's outcome. In fact, 21.6% 
of severe COVID-19 patients in the study by Tang et al, presented 
by sepsis-induced coagulopathy; those patients got benefit from low 
molecular weight heparin administration.39

SARS-CoV2 infection induces not only pulmonary vascular 
endothelial injury40 but it also targets vascular endothelial cells 
all over the body and markedly affects patients with cardio met-
abolic comorbidities as well as hypertensive patients as SARS-
CoV2 has been shown to inhibits eNOS activity and decreases NO 
bioavailability.41

The intact vascular endothelium resists spontaneous platelets 
activation and consequently aborts the coagulation cascade, and 
so can prevent pathologic thrombus formation. Physiologically pro-
duced NO protects the endothelium and prevents tissue factor se-
cretion upon activation by several pro-inflammatory cytokines.40 In 
addition, NO inhibits platelets activation and limits endothelial-leu-
kocyte adhesion.42

Thus, treatment with nitric oxide or nitric oxide liberators rep-
resents an attractive anti-COVID-19 measure.42 NO was shown to 
suppress SARS-CoV replication through dual mechanisms. NO can 
attenuate the viral receptor (ACE2) interaction through inducing 
morphological changes in the viral spike (S) protein and may inhibit 
viral replication through diminishing viral RNA production.43

In the absence of specific and effective therapy for COVID-19, 
and based on the proposed important modulatory role of NO on the 
interstitial lung thrombo-inflammation, NO inhalation has been sug-
gested by some authors to be an alternative or adjuvant therapy.44 In 
fact the American Food and Drug Administration (FDA) has recently 
granted the safety of NO-releasing drugs as a supportive therapy in 
COVID-19 treatment.45

Nicorandil is a known NO-donner and its beneficial role in the 
context of thrombosis has been documented. In a study in 2015, 
nicorandil was shown to protect the human coronary artery endo-
thelial cell injury and it could prevent sirolimus-induced thrombus 
formation by virtue of its antioxidant property.46 In another study, 
nicorandil protected pulmonary vasculature from the monocro-
taline-induced endothelial injury and further thromboembolic 
formation.47

Some clinical studies have investigated the effect of nicorandil 
on platelet function in patients with unstable angina. Peng et al doc-
umented diminished serum inflammatory factors and matrix metal-
loproteinase-9 in the nicorandil-treated patients accompanied by 
elevated anti-oxidation factors. Platelet function was assessed by 
measuring the expression level of platelet membrane glycoproteins 
GP-VI, CD42b, PAC-1, and CD63. These glycoproteins were found 
to be significantly reduced in the nicorandil-treated group compared 
to controls.48

Another study carried out by Lu and co-workers indicated that 
adjuvant nicorandil therapy in patients with unstable angina alle-
viated the inflammation-mediated thrombus formation. Nicorandil 
prevented the peripheral blood platelet activation as indicated by 
reduced CD63, CD42b, PAC-1 and GP-VI fluorescence intensity.49

5  | C ARDIOVA SCUL AR MANIFESTATION 
IN COVID -19 AND THE SUSPEC TED ROLE 
OF NICOR ANDIL

It is of great importance to highlight the acute myocardial injury 
manifestations in COVID-19. The involvement of myocardial injury 
may be linked to the cardiac ACE2 expression.50 In addition to the in-
flammatory storm caused by SARS-CoV2 infection, respiratory dys-
function and the consequent hypoxaemia may be other precipitating 
factors for the COVID-19 induced cardiac injury. Interestingly, myo-
pericarditis was documented in a case report of COVID-19 infected 
female patients. The myocardial dysfunction was described without 
evidence of obstructive coronary disease, and even without inter-
stitial pneumonia manifestations.51 Moreover, acute cardiac injury 
was reported in the severe cases admitted to the ICU. Myocardial 
injury was confirmed by the elevation of high-sensitivity troponin 
I (hs-cTnI) biomarker, particularly in patients having higher plasma 
inflammatory cytokines and higher blood pressure measurements as 
compared to the non-ICU patients.52

The anti-inflammatory antioxidant property of nicorandil pro-
tected the coronary endothelial cell injury in patients undergoing 
percutaneous coronary intervention53 and reduced the incidence 
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of death following acute myocardial infarction.54 In a direct cardiac 
tissue effect, nicorandil protected the heart against doxorubicin-in-
duced cardiotoxicity. Nicorandil fixed the doxorubicin-impaired NO 
bioavailability and NF-kB activation and the resulted apoptosis and 
consequently improved cardiac functions and the myocardial histo-
logical picture.55 In another study, nicorandil counteracted cardiac 
fibrous tissue formation through inhibiting cultured rat cardiac fibro-
blasts proliferation.56

In patients undergoing percutaneous coronary intervention, in-
travenous nicorandil administration just before reperfusion signifi-
cantly improved the epicardial flow and tissue perfusion that was 
reflected on the ST-segment resolution.57

The vasodilatory effect of nicorandil refers to its nitrate-like 
characteristics as well as the K+

ATP channel opening activity, result-
ing in vascular smooth muscle cells relaxation and consequently both 
venous and arterial blood vessels vasodilation.58

Intravenous bolus administration of nicorandil in congestive heart 
failure patients significantly reduced the pulmonary capillary wedge 
pressure accompanied by an increased cardiac index. This was ac-
companied by a decrease in arterial blood pressure only with doses 
of nicorandil exceeding 398 µg/kg.59 Similar cardioprotective effects 
were shown by using nicorandil 200 µg/kg loading dose.60

Minami et al supported the acute haemodynamic safety of 
the intravenous administration of nicorandil 200  µg/kg in acute 
heart failure patients following excluding patients with SBP 
<90 mm Hg.61

In acute heart failure (AHF) admitted to the ICU, 100  µg/kg 
nicorandil bolus injection followed by 5 days 60–100 µg/kg/h, signifi-
cantly diminished the myocardial stress markers and gave better echo-
cardiographic findings and that was reflected on the patients’ clinical 
picture. Furthermore, nicorandil improved the haemodynamics in the 
patients that expressed high baseline systolic arterial blood pressure 
(SBP)(>140 mm  Hg), and in cases with low SBP (<140 mm  Hg) the 
drug was shown to be safe without producing marked hypotension.62 
Nicorandil also improved patients’ haemodynamics regardless of their 
baseline systolic arterial blood pressure.62

These clinical studies demonstrate that nicorandil is a safe 
and effective medication for the treatment of acute heart failure 
emergencies.

A more recent study by Mehra et al looks into the relationship 
between cardiovascular disease, drug therapy, and mortality in 
COVID-19 hospitalised patients. Mehra and co-workers found that 
the increased risk of mortality was associated with older age groups 
(>65 years), coronary artery disease, heart failure, cardiac arrhyth-
mias, chronic obstructive pulmonary disease, and current smokers. 
No increased risk of in-hospital death was found to be associated 
with the use of vasodilator drugs like angiotensin-converting enzyme 
inhibitors or the use of angiotensin receptor blockers.63 Denoting 
vasodilator safety in COVID-19 treatment.

Furthermore, the European Society of Cardiology guide-
lines indicate the efficacy of intravenous vasodilators at an early 
stage for AHF patients without excessively low blood pressure 
(SBP > 90 mm Hg).64

6  | KIDNE YS A S SARS- CoV2 TARGET AND 
THE NICOR ANDIL POSSIBLE CONTROL

Since ACE2 is recognized as a functioning SARS-CoV2 receptor, and 
since it has marked adrenal tissue expression, direct renal affection can 
be expected. The electron microscopic examination of the human post-
mortem renal tissues revealed clusters of coronavirus particles, with de-
tectable spike proteins in the tubular epithelium and in podocytes. Light 
microscopic picture denoted diffuse proximal tubular injury in the form 
of indistinct luminal brush border, and even frank necrosis.65

Also, other factors may mediate acute kidney injury during the 
course of COVID-19 infection; those include systemic hypoxia, coag-
ulopathy, and possible drug nephrotoxicity. The renal protective effect 
of nicorandil was previously reported. Nicorandil administration sig-
nificantly restored mitochondrial enzymes and oxidative phosphoryla-
tion efficacy mediated through enhanced mitoKATP channel function.66

Nicorandil treatment of cultured podocytes could increase the 
antioxidant mitochondrial manganese superoxide dismutase con-
tent and suppress macrophages xanthine oxidase expression.67 
Nicorandil supported renal functions in salt-sensitive hypertensive 
rats. Significant glomerular upregulation of endothelial nitric oxide 
synthase (eNOS) expression was verified.68

The nephro protective effects of nicorandil have been assessed 
in several clinical studies. The acute renal haemodynamic effects 
of nicorandil were compared to those of nitroglycerin in patients 
with stable coronary artery disease and normal renal functions. 
The coloured Doppler ultrasound revealed increased renal artery 
peak-systolic, end-diastolic, and mean blood flow velocities in the 
nicorandil-treated group compared to the pre-treatment values and 
compared to those of the nitroglycerin-treated group.69

A retrospective chart review on patients with coronary vascular 
disorders receiving haemodialysis for end-stage renal disease sug-
gested a valuable role of the nicorandil treatment in improving pa-
tient clinical outcomes and increased the patient's survival.70

In this review, we have tried to shed light on the possible bene-
fits of nicorandil therapy in the COVID-19 management. Nicorandil 
possesses multiple potential modulatory properties on the currently 
known pathogenesis of the disease.

7  | CONCLUSION

Based on the reported pathophysiological modulatory effects in 
similar models of organ injury discussed in this review, we recom-
mend clinical trial conduction to evaluate the safety and efficacy of 
nicorandil in patients with COVID-19.
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