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The developing brain is sensitive to environmental toxicants such as methylmercury

(MeHg), to which humans are exposed via contaminated seafood. Prenatal exposure

in children is associated with learning, memory and IQ deficits, which can result

from hippocampal dysfunction. To explore underlying mechanisms, we have used the

postnatal day (P7) rat to model the third trimester of human gestation. We previously

showed that a single low exposure (0.6µg/gbw) that approaches human exposure

reduced hippocampal neurogenesis in the dentate gyrus (DG) 24 h later, producing later

proliferation and memory deficits in adolescence. Yet, the vulnerable stem cell population

and period of developmental vulnerability remain undefined. In this study, we find that

P7 exposure of stem cells has long-term consequences for adolescent neurogenesis.

It reduced the number of mitotic S-phase cells (BrdU), especially those in the highly

proliferative Tbr2+ population, and immature neurons (Doublecortin) in adolescence,

suggesting partial depletion of the later stem cell pool. To define developmental

vulnerability to MeHg in prepubescent (P14) and adolescent (P21) rats, we examined

acute 24 h effects of MeHg exposure on mitosis and apoptosis. We found that low

exposure did not adversely impact neurogenesis at either age, but that a higher exposure

(5µg/gbw) at P14 reduced the total number of neural stem cells (Sox2+) by 23% and

BrdU+ cells by 26% in the DG hilus, suggesting that vulnerability diminishes with age. To

determine whether these effects reflect changes in MeHg transfer across the blood brain

barrier (BBB), we assessed Hg content in the hippocampus after peripheral injection

and found that similar levels (∼800 ng/gm) were obtained at 24 h at both P14 and P21,

declining in parallel, suggesting that changes in vulnerability depend more on local tissue

and cellular mechanisms. Together, we show that MeHg vulnerability declines with age,

and that early exposure impairs later neurogenesis in older juveniles.
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Introduction

Methylmercury (MeHg), an organic form of mercury (Hg), is a
common neurotoxicant found in contaminated fish and shell-
fish. Consumption of these foods is the main route of human
exposure (NAS, 2000). In humans, MeHg acts as a teratogen and
can cross the placenta and the blood brain barrier (BBB), caus-
ing damage to brain regions such as cerebral cortex, cerebellum,
and hippocampus. For decades, MeHg was documented to cause
neurological abnormalities in adults such as paresthesia, ataxia,
and dysarthria. However, not until the late 20th century did sci-
entists observe MeHg’s effects on the extremely vulnerable devel-
oping brain during twomajor poisoning events in Japan and Iraq.
In both cases, adults presented neurological symptoms only fol-
lowing a latency period. Surprisingly, however, children born to
women with minimal or no poisoning symptoms also displayed
severe neurological defects such as mental retardation, seizures,
and blindness, suggesting the developing brain had greater sen-
sitivity to MeHg that had crossed the placenta and fetal BBB
(Matsumoto et al., 1965; Amin-Zaki et al., 1976; Choi et al., 1978;
Harada et al., 1999; Philbert et al., 2000; Weiss et al., 2002). In
addition to these high level-poisoning events, other population
studies suggested that the developing brain was also vulnerable
to even more common exposures attained through the maternal
diet. Long-term epidemiological studies on children from fre-
quent fish-eating populations found variable effects of prenatal
low-level MeHg exposure (Myers et al., 1995b; Grandjean et al.,
1997; Debes et al., 2006; Davidson et al., 2011). For example, New
Zealander and Faroese children born to mothers who regularly
consumed fish during pregnancy had deficits in IQ, motor skills,
cognitive abilities, and language development (Kjellstrom et al.,
1986, 1989; Grandjean et al., 1997; Crump et al., 1998; Debes
et al., 2006). Yet, in Seychellois children, maternal MeHg expo-
sure did not appear to be associated with neurological deficits
(Myers et al., 1995a,b,c; Davidson et al., 2011). These variable
outcomes suggest that the extent of perceived MeHg insult dur-
ing development depends on the frequency (seasonal or year-
round) of fish consumption, level of contamination, presence of
other pollutants, methods for inferring fetal exposure (MeHg in
mother’s hair or umbilical cord blood), sensitivity of neurologi-
cal tests and overall diet of the populations (Clarkson andMagos,
2006). The manifestation of cognitive deficits (especially learning
and memory) in childhood after prenatal MeHg exposure sug-
gests that early insults cause cellular alterations that might result
in later hippocampal dysfunction. Evidence from these studies
highlights a period of developmental vulnerability in the hip-
pocampus that begins prenatally, but when (or if) it ends is not
known.

Given the effects of MeHg exposure on learning and mem-
ory, it is reasonable to focus on neurogenesis that occurs in
the dentate gyrus (DG) of the hippocampus throughout devel-
opment into adulthood (Deng et al., 2010). In the subgranular
zone (SGZ) of the DG, neural stem cells (NSCs) have a radial
glia-like morphology and express astrocytic marker glial fibril-
lary acidic protein (GFAP), intermediate filament nestin, and
transcription factor Sox2. They undergo intermittently asymmet-
ric cell division. Their progeny, termed intermediate progenitor

cells, cease GFAP expression and undergo frequent symmetric
divisions that comprise most of the DG dividing cell popula-
tion. These cells also express the transcription factor Tbr2 (T-box
brain gene 2). As they begin to commit to the neuronal lin-
eage, they lose Tbr2 and begin to express doublecortin (Dcx), a
neuron-specific microtubule-associated protein. Dcx expression
continues into the neuroblast stage, during which cells exit the
cell cycle, migrate into the granule cell layer (GCL) of the DG and
differentiate into immature neurons that express Prox1. After a
couple of weeks, NeuN- and calbindin-expressingmature granule
neurons are formed and integrate into the existing neuronal net-
work that modulates learning and memory (Kempermann et al.,
2004; Encinas et al., 2006; Hodge et al., 2008). The hippocam-
pus is unique in that a major portion of its neuronal development
in rodents occurs postnatally in the DG. Postnatal neurogenesis,
occurring from birth until just before puberty, takes place in the
hilus while adult neurogenesis occurs only in the two/three-cell
layered SGZ of the DG (Altman and Bayer, 1990; Eisch et al.,
2008).

In rats, the peak of postnatal neurogenesis (postnatal day 7–
P7) corresponds to human hippocampal development occurring
during the third trimester of gestation. In our previous studies
using P7 rats, we used a single MeHg exposure model coupled
with cell-specific immunohistochemical analysis in the DG to
clarify the temporal schedule of cellular events in the hippocam-
pus (Burke et al., 2006; Falluel-Morel et al., 2007; Sokolowski
et al., 2011, 2013). We used two exposures in our paradigm:
5µg/g, a classical exposure chosen because of acute effects on
the mitotic spindle without signs of overt poisoning (Rodier
et al., 1984) and 0.6µg/g (which approximates human expo-
sures) (Myers et al., 1995b; Falluel-Morel et al., 2012; Sokolowski
et al., 2013). Twenty-four hours after exposure, MeHg induced
cell cycle arrest during the G1/S phase transition, due to cyclin
E degradation, and subsequent cell death (Burke et al., 2006;
Falluel-Morel et al., 2007). NSCs were considered to be the
vulnerable population as they underwent apoptosis upon acute
exposure (Sokolowski et al., 2013). This acute NSC loss was asso-
ciated with a later reduction of DG granule neurons (∼27%)
by early adolescence (P21), whose deficiency might have con-
tributed to the deficits in spatial learning and memory (Morris
Water Maze task) at P35 (Falluel-Morel et al., 2007; Sokolowski
et al., 2013). Alternatively, cognitive functions might have been
affected by changes in the process of neurogenesis itself, because
we found that mitotic S-phase cells were reduced by 24% at P21
(Sokolowski et al., 2013). We do not know whether this decrease
in proliferation was due to a sustained loss of NSCs that fol-
lowed the acute injury, or a change in their later proliferative
activity, an issue we now address. Most immature neurons born
through neurogenesis die within the first week of their birth,
and it is possible that MeHg can impact them during this criti-
cal period of survival (Sierra et al., 2010) since MeHg can still be
detected in the hippocampus at P21 (after a 5µg/g P7 exposure)
(Sokolowski et al., 2013). In this study we will extend the analysis
of this paradigm to identify the affected cell compartments in the
adolescent neurogenic cascade.

Deficits in hippocampal-dependent behavioral tasks might be
a sign of impaired neurogenesis (Deng et al., 2010). Since prenatal
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MeHg exposure is implicated in cognitive deficits in school-age
children (Kjellstrom et al., 1986, 1989; Grandjean et al., 1997;
Crump et al., 1998; Debes et al., 2006), it is possible that hip-
pocampal neurogenesis is negatively impacted only during peri-
ods of developmental vulnerability. However, the length of this
period in the developing rat DG is not known. Thus, we now
use our single-exposure paradigm in rats to answer two ques-
tions: First, what is the effect of an early exposure (P7) on adoles-
cent neurogenesis (P21), and is there a specific cell compartment
affected? Next, when does the period of developmental vulner-
ability to acute MeHg toxicity end? Since the rate of postnatal
neurogenesis in the rat is highest during the first 3 weeks of life
(Kempermann, 2011), we have studied the temporal extent of this
vulnerability in prepubescent (P14) and adolescent (P21) rats.
Knowing more about the effects of perinatal MeHg exposure may
help us identify critical pathways that contribute to neurological
deficits andmay be useful to inform dietary guidelines for women
during pregnancy.

Materials and Methods

Ethics Statement
All animal procedures and experimental protocols were approved
by the Robert Wood Johnson Medical School Institutional Ani-
mal Care and Utilization Committee (IACUC) and conformed to
NIH Guidelines for animal use. Experiments were designed so as
to use a minimum number of animals and minimize discomfort.

Experimental Animals
Male Sprague-Dawley rat pups were used for all experiments in
this study. Rat litters with mothers were purchased from Hill-
top Lab Animals (Philadelphia, PA). Hilltop provides a litter of
12 cross-fostered male pups with a nursing mother. Upon arrival
in the temperature- and light-controlled animal care facility, ani-
mals were allowed to acclimatize (receiving food and water ad
libitum) for at least 3 days before undergoing experimental pro-
cedures. For both acute (P14, P21) and long-term (P7) exposure
experiments, littermates were subcutaneously (sc) injected with
100µL volume of vehicle (phosphate-buffered saline—PBS) or
MeHg (0.6 or 5µg/gbw), forming a within-litter dosing design
(Sokolowski et al., 2013). Sample size per experimental group
was based on the total number of pups in a litter divided by
three, (i.e., 4 pups per group in a 12-pup litter). One litter com-
prised one experiment, and each experiment was performed at
least three times. Pups remained with their cross fostering moth-
ers throughout the experiment. Althoughmaternal care is known
to affect developmental neurogenesis, forming all experimental
groups within each litter reduces the likelihood thatmaternal care
contributes to group bias. This design restricts variability within
each pup to being caused by individual biological response and
injection efficacy, and not by specific litter. Therefore, sample size
(n) was based on the number of pups. Instead of administering
MeHg via gavage, sc injection was used to ensure equal exposures,
as we have done for previous quantitative kinetic studies (Burke
et al., 2006; Sokolowski et al., 2013). Furthermore, gastrointesti-
nal MeHg absorption may vary depending on gut enzymes and
other contents (which may differ in developing animals).

Methylmercury
Methylmercury chloride (CH3HgCl) was purchased from Sigma-
Aldrich (St Louis, MO). A 1.5-mg/mL stock solution in 0.1M
PBS was prepared by agitation in sealed glass bottles for 2 h
immediately before use.

BrdU and EdU Administration and Detection
To measure proliferating cells during S-phase, P15, P22, and P23
pups received a single intraperitoneal (ip) injection of 50mg/kg
Bromodeoxyuridine (BrdU) or 5-ethynyl-2′-deoxyuridine (EdU)
2 h before sacrifice, after which brains were processed for
immunohistochemistry. Our earlier studies were conducted
using BrdU. However, to reduce the potential for confounding
variables caused by classical immunohistochemical BrdU detec-
tion protocols such as antigen retrieval and HCl denaturation,
we used EdU and the Click-iT R© EdU Imaging Assay Kit (Life
Technologies, NY, USA) for detection in subsequent studies. To
ensure that EdU is comparable with BrdU in labeling S-phase
cells in the rat hilus, we injected P7 rats with both (BrdU and
EdU) and used respective immunohistochemical detection tech-
niques to visualize labeled cells. We found that 98% of BrdU+
cells were immunopositive for EdU.

Tissue Collection and Preparation
Pups were gently restrained while receiving ip injection of anes-
thetic (Ketamine/Xylazine cocktail—75mg/kg and 10mg/kg,
respectively). Animals were perfused with 15–25ml of 0.9%NaCl
followed by 15–25ml of 4% paraformaldehyde (PFA) in 0.1
mol/L PBS. Brains were dissected and postfixed in 4% PFA for
16 h at 4◦C, cryoprotected in 30% sucrose-PBS for at least 3
days, and quickly frozen in OCT medium (Tissue-Tek, Sakura,
Tokyo, Japan). Tissue blocks were stored at−80◦C until section-
ing. Coronal frozen sections (12–20µm thickness, depending on
the age of the animal) were made using a cryostat (Leica, Hei-
delberg, Germany) in a 1:10 series and stored at −20◦C until
immunostaining.

Immunohistochemistry
Sections were washed 3 times in PBS before proceeding with
immunostaining. BrdU detection required antigen retrieval
(steaming at 95◦C in 0.01 mol/L citrate buffer for 10min) and
incubation in 2N HCl (30min) before antibody incubation. For
all other stains (including double staining), sections underwent
antigen retrieval, then incubation in 33% normal serum in PBS
(1 h) and primary antibody (overnight) at room temperature
in 0.3% Triton X-100 and 1% normal serum in PBS. The pri-
mary antibodies used were: mouse monoclonal anti-BrdU (1:100;
Becton-Dickinson, San Jose, CA), rabbit monoclonal anti-cleaved
Caspase 3 (1:300; Cell Signaling, Beverly, MA), rabbit polyclonal
anti-Ki67 (1:500; Abcam, ab15580, Cambridge, England), rabbit
polyclonal anti-Sox2 (1:1000; Abcam, ab97959), rabbit polyclonal
anti-Tbr2 (1:300, Abcam, ab115986) and guinea pig polyclonal
anti-Doublecortin (1:1000; Millipore, ab5910, Temecula, CA).
For fluorescent staining, the secondary antibodies used were:
Alexa Goat anti-Mouse 488, Alexa Goat anti-Rabbit 594, and
Alexa Goat anti-Guinea pig 594 (Molecular Probes, Eugene, OR).
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Image Analysis
Six to twelve animals/group, obtained from three separate
experiments, were analyzed. Sections were visualized on an
Axio Imager.M2 microscope (Zeiss, Thornwood, NY). Posi-
tive cells were counted on unilateral hippocampi from 4 or
5 sections/animal. These sections were derived from every
10th section of the middle third of the hippocampus (between
Bregma −1.34 and −2.54mm, a region that is most prolifera-
tive at this age, Wagner et al., 1999; Cheng et al., 2002). The
first cell layer of the SGZ was included in the GCL, while the
other SGZ cells were counted as part of the hilus. All positive
cells present in the selected sections and regions were counted.
Cells were counted blind to experimental group at high magnifi-
cation (at least 20× objective) using Image J software (Rasband,
1997–2012).

Doublecortin Analysis

Due to the large number of Doublecortin (Dcx)-positive cells, the
numbers of cells/section were counted via unbiased stereology
using the Optical Fractionator of MicroBrightField (MBF) Stereo
Investigator system (Williston, VT, USA). Outlines of the DG
were drawn at low magnification, and somas were counted under
40× objective (400×magnification). Every 10th section through
the middle third of the hippocampus was analyzed, and data were
obtained from 5 sections (12µm each) per animal. Quantifica-
tion of cells observed on unilateral hippocampi was performed
for 6–12 animals per group, obtained from three independent
experiments.

Inductively Coupled Plasma Mass Spectrometry
P14 and P21 rat pups received a single sc injection of vehicle
(PBS) or MeHg (0.6 or 5µg/g body weight). At their respective
time points, animals (n = 3 per group and time point) were
perfused with 0.9% NaCl to remove blood from tissues. Whole
hippocampi were collected for analysis at 2, 24, 48 h (P21 pups
only) 2 and 4 weeks post-exposure. These time points were cho-
sen for their relevance to our prior mechanistic and cell char-
acterization studies (2–24 h), stereological measures (2 weeks),
and behavioral analysis (4 weeks) (Sokolowski et al., 2011). In
older rats, expression of neutral amino acid transporters (which
are known conduits of MeHg) in the BBB is reduced (Corn-
ford et al., 1982; Simmons-Willis et al., 2002; Liddelow et al.,
2012). Therefore, we included an additional time point (48 h)
in P21-exposed rats to see if MeHg entry into the hippocam-
pus is delayed. Three animals per MeHg group per time point
were used, and the hippocampi of control animals from each
time point were pooled into one sample. Hippocampal tissues
(<150mg wet weight) were placed into a conical tube. To each
tube, 0.25mL of concentrated nitric acid (EMD Omni-Trace
Ultra High Purity, VWR Scientific) was added and the samples
were allowed to react during active sonication. They were sub-
sequently digested using a MARSX microwave sample digester
(CEM Corp., Mathews NC). Final concentrations were diluted
to 5% acid using DI water (MilliQ Ultrapure De- ionized, Mil-
lipore Corp., Billerica, MA) for a total volume of 7mL. Internal
standards and controls included: acid blank, acid spike, matrix
blank and matrix spike. The acid blank had no tissue and no Hg

added, while the acid spike had a known amount of Hg added.
The matrix spike was an untreated piece of tissue with a known
amount of Hg added. Samples were analyzed for Hg using a 53
(Thermo Electron, MA) inductively coupled plasma mass spec-
trometer (ICPMS). The m/z of 202 was used for quantitation,
while m/z of 199, 200, and 201 were also observed as a QC
measure.

Statistical Evaluation
Unpaired Student’s t-tests were used to analyze all experiments.
Since the goal of these experiments was to determine whether
MeHg has negative effects at ages older than P7, we compared
exposures to PBS vehicle alone. We were not asking whether
one exposure was different than another, which analysis would
necessarily require ANOVA for multiple group comparisons. All
analyses were performed using GraphPad Prism 6.0 software.
Probabilities of less than 0.05 were regarded as statistically sig-
nificant. Data were expressed as arithmetic means ± SEM for all
experimental measurements.

Results

The following experiments extend in two directions previous
results obtained using acute MeHg exposure in P7 rats. First,
while previous study of P7 exposure found acute NSC cell cycle
arrest and cell death as well as later adolescent deficits in pro-
liferation, the cellular mechanisms remain undefined. Since the
acute effects ofMeHg on P7NSCmitosis and apoptosis are exten-
sively reported (Burke et al., 2006; Falluel-Morel et al., 2007, 2012;
Sokolowski et al., 2011, 2013), we now only explore later conse-
quences of early exposure on adolescent (P21) stem cell pools, in
the following section. Second, we then determine the period of
vulnerability of NSCs by looking at later ages, P14 and P21, using
the same acute exposure paradigms as previously reported for
P7. We also relate developmental changes in vulnerability to the
efficacy of mercury transfer across the blood-brain-barrier (BBB)
with advancing age.

Perinatal MeHg Exposure Leads to Reduced
Neurogenesis at Adolescence
The current experiments focus only on P21 rats that have been
exposed to MeHg at P7 so we can determine the cellular mech-
anisms that contribute to adolescent deficits. We previously
defined the molecular and cellular events that occurred upon
acute MeHg exposure in P7 rats, and found that within 24 h there
was a >30% reduction in mitotic S phase cells (BrdU+) in the
DG hilus and >50% reduction in the size of the Sox2+ NSC
population, suggesting stem cells were particularly vulnerable
(Sokolowski et al., 2013). MeHg exposure led to reductions in cell
cycle regulator cyclin E, as well as induction of mitochondrial-
dependent apoptosis (Burke et al., 2006; Sokolowski et al., 2011).
Indeed, MeHg exposure elicited a 3–5-fold increase in caspase-
3+ cells in the hilus, with >75% labeling with stem cell marker,
nestin, and 32% with Sox2, which led to later cell deficits in
the hilus and GCL by adolescence (Falluel-Morel et al., 2007;
Sokolowski et al., 2011). Furthermore, the early exposure also
lead to reduced numbers of mitotic S-phase cells at P21. Is this
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because acute losses of NSC at P7 remain until P21, or alter-
natively, do NSC numbers recover but acquire altered prolif-
eration? To determine which cell compartments contribute to
reduced total cells and diminished proliferation, P7 pups were
injected (sc) with PBS, low MeHg (0.6µg/g) or high MeHg
(5µg/g) (Figure 1A). Pups were sacrificed at early adolescence
(P21) 2 h after BrdU injection and coronal brain sections were

immunostained for markers of proliferating cells (Ki67), NSCs
(Sox2), intermediate progenitors (Tbr2) and immature neurons
(Dcx) (Sokolowski et al., 2013). The Ki67 labeled population
(the marker identifies all proliferative cells throughout the cell
cycle) was unaffected by this exposure (Figures 1B–E). Fur-
ther, neither the total Sox2+ NSC population nor the Tbr2+
intermediate precursors were affected by early MeHg exposure

FIGURE 1 | Early (P7) MeHg exposure leads to an immature neuron

deficit in the adolescent (P21) hippocampus. (A) Experimental timeline.

Five coronal sections of the hippocampus per brain were counted. (B–D)

Ki67 (red) staining in the hilus of the dentate gyrus (DG). Arrows indicate

positive cells. Nuclei are labeled with DAPI (blue). (E) Quantification of the

average number of Ki67+ cells per section per animal in the hilus. Animals:

n = 6–7 per group. Each bar represents mean ± SEM. Scale bars: 100µm.

(F–H) Sox2 (red) staining in the hilus of the DG. (I) Quantification of the

average number of Sox2+ cells per section per animal in the hilus. Animals:

n = 6–7 per group. Scale bars: 100µm. (J–L) Tbr2 (red) staining in the hilus

of the DG. (M) Quantification of the average number of Tbr2+ cells per

section per animal in the DG. Animals: n = 5–7 per group. Scale bars:

100µm. (N–P) Dcx staining in the GCL of the DG. Crossed arrows indicate

negative cells. (Q) Quantification of the average number of Dcx+ cells per

section per animal in the DG. Animals: n = 9–10 per group. Scale bars:

50µm. *p < 0.05.
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(Figures 1F–M). However, rats exposed to low MeHg at P7 had
19% less immature neurons (Dcx) compared to the control group
at P21 (Figures 1N–Q), a deficit that likely contributes to the
reduction in total cells observed previously. This result supports
our recent observation of reduced neurons (∼27%) in the GCL
2 weeks after a low MeHg exposure at P7 (Sokolowski et al.,
2013), as Dcx precursors ultimately exit the cell cycle to become
postmitotic mature neurons.

The observation of an unaffected Ki67 population at P21 upon
early MeHg exposure suggests that the acute loss of NSCs at P7
recovers with further development. So then what might account
for the reduction of cells in S-phase (BrdU+ cells) observed
previously at P21 (Sokolowski et al., 2013)? Potentially, specific

stem cell compartments may exhibit reduced progression from
G1 into S phase, which we examined using double immunos-
taining (Figure 2). There was no change in the proportion of
early stem cells engaged in S-phase, as reflected by double
labeling of BrdU with Sox2 (Figures 2B–E,N) nor of neurob-
lasts/immature neurons, assessed by BrdU double labeling with
Dcx (Figures 2J–M,P). In contrast, high MeHg exposure at P7
elicited a 36% decrease in the intermediate progenitor cells in
S-phase at P21 (Figures 2F–I,O). Since there was no change in
the number of total Tbr2 cells (Figure 1), early MeHg appears to
selectively affect the ability of intermediate progenitors to enter
S-phase. This selective change in Tbr2 cell S phase entry may
be related to the fact that they are the most rapidly proliferating

FIGURE 2 | Early (P7) MeHg exposure leads to a deficit in S-phase of

intermediate progenitor cells in the adolescent (P21) hippocampus.

(A) Experimental timeline. (B–E) BrdU-Sox2+ double staining in the hilus of

the dentate gyrus (DG). Arrows indicate double-positive cells. (B) S-phase

cells labeled by BrdU (green), (C) NSCs labeled with Sox2 (red), (D) nuclei

labeled with DAPI (blue), (E) merged image. (F–I) BrdU-Tbr2+ double

staining in the SGZ of the DG. (F) BrdU (green), (G) intermediate progenitor

cells labeled by Tbr2 (red), (H) DAPI (blue), (I) merged image. (J–M)

BrdU-Dcx+ double staining in the SGZ of the DG. (J) BrdU (green), (K) DAPI

(blue), (L) Neuroblasts labeled by Dcx (red), (M) merged image. (N)

Quantification of the average number of BrdU-Sox2+ cells per 5 sections per

animal in the hilus. Animals: n = 4 per group. Each bar represents mean ±

SEM. (O) Quantification of the average number of BrdU-Tbr2+ cells per 5

sections per animal in the SGZ. Animals: n = 5–8 per group. *p < 0.05 (P)

Quantification of the average number of BrdU-Dcx+ cells per 5 sections per

animal in the SGZ. Animals: n = 4 per group.
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FIGURE 3 | S-phase cells and NSCs of the prepubescent (P14)

hippocampus are vulnerable to acute MeHg exposure. (A)

Experimental timeline. Five sections per brain were counted. (B–D)

BrdU/EdU staining (green) in the hilus of the DG. Nuclei are labeled with

DAPI (blue). (E) Quantification of the average number of BrdU+/EdU+

cells per section per animal in the hilus. Animals: n = 10 per group.

Each bar represents mean ± SEM. Scale bars: 100µm. (F–H) Sox2

staining (red) in the hilus of the DG. (I) Quantification of the average

number of Sox2+ cells per section per animal in the hilus. Animals:

n = 4–7 per group. (J–L) Tbr2 staining (red) in the hilus of the DG. (M)

Quantification of the average number of Tbr2+ cells per section per

animal in the DG. Animals: n = 4–5 per group. (N–P) Dcx staining (red)

in the GCL of the DG. (Q) Quantification of the average number of

Dcx+ cells per section per animal in the DG. Animals: n = 6 per group.

(R) Quantification of the average number of cleaved caspase-3+ cells

per section per animal in the hilus. Animals: n = 8 per group. *p < 0.05.
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NSCs in the DG (Hodge et al., 2008). It is notable that the effects
of early P7 exposure on P21 cell compartments, Dcx and Tbr2,
occur at different exposures.

Prepubescent Rats are Vulnerable to MeHg
In our previous studies, we observed that the highly proliferative
P7 DG was vulnerable to MeHg, which elicited G1/S cell cycle
arrest and acute death of NSCs (Burke et al., 2006; Falluel-Morel
et al., 2007; Sokolowski et al., 2011, 2013), indicating that pro-
liferating cells are targets of MeHg. The prepubescent DG has
heightened cell proliferation compared to the adult as well, and
thus might also be vulnerable. To further explore developmental
stage specific vulnerability, we have used the same experimental
paradigm as performed at P7, assessing the effects of MeHg on
NSC proliferation and apoptosis 24 h after injection, so we can
compare outcomes across the ages. P14 pups were injected (sc)
with low (0.6µg/g) or high (5µg/g) MeHg and sacrificed 24 h
later, receiving a BrdU injection 2 h before sacrifice (Figure 3A).
High MeHg exposure reduced S-phase cells in the P14 DG hilus
by 26% (Figures 3B–E) as well as the number of Sox2+ NSCs
by 23% (Figures 3F–I). These similar proportions of reduction
may suggest that Sox2+ NSCs are a major cell compartment tar-
geted by MeHg. In contrast, MeHg exposure did not have acute
effects on the Tbr2+ intermediate progenitors (Figures 3J–M)
even though it is a known target of antimitotic agents (Hodge
et al., 2008). To determine if neuroblasts (the last population to
incorporate BrdU during neurogenesis, Seri et al., 2004; Enci-
nas et al., 2006) and immature neurons are adversely affected by
MeHg, we analyzed Dcx+ cells and did not observe a change in
cell number upon either exposure (Figures 3N–Q). This obser-
vation suggests that this later stem cell compartment is not sen-
sitive to MeHg at this time. To investigate a potential mechanism
producing reductions in BrdU and Sox2 cell populations, we
immunostained cells for the apoptotic marker, cleaved caspase-
3. However, MeHg did not induce cell death in the hilus at 24 h
(Figure 3R). Thus, at this age, cleaved caspase-3 might not be
as sensitive a marker for detecting MeHg-induced cell death at
24 h as it was during our P7 exposure studies (Sokolowski et al.,
2011), or the time course of apoptosis may differ. In aggregate,
these results demonstrate that proliferating hippocampal NSCs
at P14 remain vulnerable to MeHg, but primarily at higher levels
of exposure.

MeHg Vulnerability Is Diminished by Early
Adolescence
By early adolescence (P21), neurogenesis starts to approach the
adult basal level (Schlessinger et al., 1975). Using our acute 24 h
exposure model, we did not observe a deleterious effect of MeHg
at either exposure on the S-phase population nor an increase in
apoptosis (Figure 4). There was also no change in the number of
Sox2 + cells (PBS = 148 ± 14; MeHg [5µg/gm] = 116 ± 29;
mean Sox2+ cells ± SEM; p = 0.3717; N = 3/group). We pos-
tulated that the exposure time might be too short for the toxicant
to have an effect, since expression of neutral amino acid trans-
porters (which are known to import MeHg) in the BBB reduces
with age, and the toxicant burden might be reduced or delayed in
transit into the hippocampus in older rats (Cornford et al., 1982;

FIGURE 4 | The adolescent (P21) hippocampus is not vulnerable to 24h

MeHg exposure. (A) Experimental timeline: P21 rats were given a single sc

injection of MeHg (5µg/g) or vehicle (PBS) at 0 h, and after an ip injection of

BrdU at 22 h, were sacrificed at 24 h. Four (4) sections per brain were counted.

(B) Quantification of the average number of BrdU+ cells per section per animal

in the hilus. Animals: n = 8–9 per group. Each bar represents mean ± SEM.

(C) Quantification of the average number of cleaved caspase-3+ cells per

section per animal in the hilus. Animals: n = 7–8 per group.

Simmons-Willis et al., 2002; Liddelow et al., 2012). Therefore,
we assessed an additional exposure time of 48 h and used only
high (5µg/g) MeHg in the single exposure model. Again, there
was no effect on S-phase cells (BrdU+ cells: PBS = 22 ± 1.9;
MeHg = 19 ± 1.2; p > 0.1743; N = 5− 9/group) or apopto-
sis at either time point (Cleaved caspase-3+ cells: PBS= 6± 1.1;
MeHg = 5.2 ± 1.1; p > 0.6139; N = 6-7/group). To deter-
mine whether NSCs were affected, we also counted Sox2 labeled
cells and observed that they were not negatively impacted by
the MeHg insult (Sox2+ cells: PBS = 133 ± 17.5; MeHg =

173 ± 34.1; p > 0.3558; N = 3/group), suggesting that the
adolescent hippocampus is resistant to a developmental MeHg
exposure.

Transfer of MeHg Across The BBB Does Not
Diminish During the Postnatal Period
Because the same MeHg exposures had diminishing effects on
hippocampal neurogenesis at older ages, we wondered whether
transfer might be restricted with development. To examine this
issue we injected both low and high dose MeHg sc as before
and then dissected the hippocampus at 2 and 24 h, as well as
at 2 and 4 weeks, the same intervals assessed previously for
P7 rats (Figure 5) (Sokolowski et al., 2013). At both ages (and
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FIGURE 5 | Transfer of MeHg across the BBB does not diminish

during the postnatal period. Hg concentrations are expressed in

nanograms per gram (ng/gm) at time points from 2h to 4 weeks after two

different exposures (0.6 or 5µg/MeHg) in two age groups (P14 and P21).

Control samples were obtained at all-time points and pooled for each age

cohort for analysis (P14 control = <28 ng/gm, P21 control =<26 ng/gm).

After exposure to 0.6 and 5µg/MeHg at both ages, significant levels of Hg

were observed at all-time points.

exposures), there was rapid accumulation of Hg in the hip-
pocampus already at 2 h (327 ng/gm at P14; 166 ng/gm at P21;
5µg/gm MeHg). By 24 h, there was >800 ng/gm Hg for the high
exposure at both ages, a level that was 6–9 times greater than
the lower exposure. By 2 weeks, the levels were ∼400 ng/gm
for the high exposure for both ages, a level that was about 4
times greater than the low exposure. By 4 weeks, the major-
ity of Hg, >90% of the early level, had dissipated, though
there were minor residual levels, which contrasts with P7 injec-
tions that exhibited no detectable Hg at 4 weeks after injection
(Sokolowski et al., 2013).

Discussion

Effects of Perinatal MeHg on Adolescent
Neurogenesis
We found that early exposure at P7 has lasting effects on ado-
lescent (P21) neurogenesis since fewer intermediate progenitor
cells (Tbr2) were undergoing S-phase (BrdU), and there were
deficits in the total number of immature neurons (Dcx), though
these different effects reflected distinct exposures. In contrast,
there was no long-term effect of acute P7 exposure on the total
proliferating cell fraction (Ki67) or NSCs (Sox2) at P21. Thus,
the Sox2 NSC population, which is the majority of proliferating
cells in the DG (Encinas and Sierra, 2012), is only affected by
MeHg acutely, but at longer terms it apparently recovers. When
we used this same P7 exposure model in previous studies, we
observed a reduction in the S-phase cell fraction at P21. This
apparent discrepancy between the adolescent Ki67 and BrdU
labeling suggests that early MeHg exposure prevents or delays a
subset of P21 precursor cells from entering S-phase, a change in
long-term precursor proliferative activity. Previously, we demon-
strated that acute P7 MeHg exposure arrests proliferating cells
at the G1/S checkpoint, leading to cell death within 24 h (Burke

et al., 2006; Falluel-Morel et al., 2007). In the current study, we
find that 2 weeks after high MeHg exposure the proportion of
intermediate progenitor cells engaged in S-phase (BrdU-Tbr2+)
is reduced, suggesting that they are the main population dis-
playing deficits in S-phase (Table 1). We speculate that the cells
that survive the acute initial insult either fail to enter S-phase,
or continue to proliferate, albeit more slowly because of the
continued presence of MeHg. In future studies we may test
for a slower cell cycle at P21 by injecting multiple thymidine
analogs such as CldU and IdU at different intervals after MeHg
exposure, determining cell cycle lengths of different cell popula-
tions using triple immunofluorescence (Vega and Peterson, 2005;
Tanaka et al., 2011; Brandt et al., 2012; Farioli-Vecchioli et al.,
2014).

While P7 MeHg exposure had long-term effects on the Tbr2
and Dcx subpopulations at P21, the former cells were vulnera-
ble to only high exposure whereas the latter were decreased with
low exposure only. It has long been known that MeHg expo-
sure has complex effects on cell biological processes, which may
exhibit multiphasic responses (Hare and Atchison, 1995). This
is likely due to MeHg affecting many different molecular tar-
gets as concentrations are varied. As a divalent cation, MeHg
can (1) compete with Ca2+ in intracellular signaling, (2) lead
to reactive oxygen species (ROS) generation that affects mito-
chondrial function, (3) alter gene expression, and (4) bind to
unbiquitous sulfhydryl groups on cysteines and methionines in
diverse proteins, like tubulin (Limke et al., 2004; Falluel-Morel
et al., 2007; Ceccatelli et al., 2010). Thus, it may be expected
that uniform changes in biological outcomes will not be seen
with increasing exposures, but rather qualitative differences may
occur.While not yet defined, the effects of P7 lowMeHg exposure
on later P21 Dcx cell number may fall into this category, whereas
higher early exposure may no longer change the Dcx popula-
tion due to actions at other sites, but may now affect the most
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TABLE 1 | Summary of previous and current results.

Acute MeHg at P7 Long-term MeHg effects at P21

EFFECTS OF EARLY MeHg EXPOSURE ON HIPPOCAMPUS

Cell cycle progressiona,b

S-phase cellsa,b,c

Apoptosis of neural stem cellsc (caspase-3-Sox2/nestin)

DG volume and cell and neuron numbers b,c

S-phase cells c

— Proliferating cells (Ki67)

Intermediate progenitor S-phase cells (BrdU-Tbr2)

Immature Dcx neurons

Spatial learning and memoryb,c

Age S-phase cells (BrdU) Early precursors (Sox2) Intermediate progenitors (Tbr2) Immature neurons(Dcx)

ACUTE MeHg EFFECTS BY AGE

P7 a,b,c c

P14 No effect No effect

P21 No effect No effect No effect No effect

These data demonstrate the acute and long-term effects of MeHg exposure on specific hippocampal cell compartments, which are implicated in the presentation of behavioral deficits

in early adulthood. Previous data is italicized; current data is bolded.
aData from Burke et al. (2006).
bData from Falluel-Morel et al. (2007).
cData from Sokolowski et al. (2013).

rapidly proliferating Tbr2 population. To examine this issue we
might assess a range of acute molecular responses after low and
high MeHg exposure at P7, such as Ca2+ levels, mitochondrial
membrane potential, Ca2+ dependent signals [calpain, PKC], cell
cycle regulators and developmental regulatory genes (Sox2, Tbr2,
Lhx2, NeuroD, Prox1). For example, low exposure might affect
Prox1, which regulates the transition from proliferative interme-
diate Tbr2+ precursor to postmitotic Dcx-expressing immature
neurons (Stergiopoulos et al., 2014), whereas high exposures may
directly affect cell cycle regulators such as cyclins and/or CDK
inhibitors (Tury et al., 2012). Furthermore, some of these changes
may only occur in specific cell compartments, such as those
expressing distinct stage specific transcription factors, a direction
for future study.

MeHg Vulnerability Diminishes by Early
Adolescence
Our second major finding is that the developmental window of
vulnerability to MeHg in the hippocampus ends between pre-
pubescence and adolescence. Until recently, our studies on acute
MeHg exposure were performed in P7 rats, which is a highly sen-
sitive developmental period in rodents that corresponds to the
third trimester of human gestation. This current study demon-
strates that the prepubescent rat hippocampus is vulnerable to
MeHg (Table 1). Similar to the P7 rat, acute exposure at P14
decreased the number of proliferating (BrdU+) cells and NSCs
(Sox2) after 24 h, though the magnitude of change was smaller.
This suggests that Sox2+ precursors are consistent targets of
acute MeHg exposure during early postnatal life. However, there
was no sign of vulnerability in the P21 hippocampus at 24 or 48 h
postexposure. Furthermore, the proportion of cleaved caspase-3
labeled cells, which we used previously as a sensitive marker of
acute MeHg toxicity at P7 (Sokolowski et al., 2013), was not

increased upon exposure at these older ages. One possibility is
that the kinetics of cell death might be different at these ages, with
the peak of apoptosis occurring earlier or later than 24 h.

Given that the overall magnitude of the neurotoxic effect of
MeHg at P14 was smaller than at P7, and entirely absent at P21,
we wondered whether this may be due to changes in the BBB.
During fetal development, tight junctions, which provide a struc-
tural barrier against xenobiotics, are formed and many trans-
porters involved in influx and efflux mechanisms are expressed
(Saunders andMollgard, 1984). Further, there is evidence that the
expression levels of the neutral amino acid transporters, which
are a known conduit for MeHg (Simmons-Willis et al., 2002), are
higher in the developing BBB than in the adult (Cornford et al.,
1982; Liddelow et al., 2012). Thus, it was perhaps surprising that
the transfer of Hg into the hippocampus at both P14 and P21 was
robust, accumulating already at 2 h, and increasing for 24 h (and
in the case of P21, even further at 48 h). These kinetics are very
similar to our previous results performed at P7 (Sokolowski et al.,
2013). Two weeks after the injections, levels in the hippocampus
were approximately half that at 24 h, and by 4 weeks, >90% of
the Hg was gone, suggesting effective mechanisms for clearance
at both ages. Thus, what explains the diminished effects at older
ages? We suspect both the NSCs themselves and neighboring
cells play major roles in neuroprotection. Regional expression of
antioxidants such as glutathione might confer additional protec-
tion in the brain. For example, astrocytes (which are a significant
source of glutathione precursors, Allen et al., 2002) isolated from
the cerebellum have lower glutathione capacity and are therefore
more sensitive to MeHg exposure than astrocytes from the cor-
tex (Kaur et al., 2007). The increasing presence of glia that are
generated during the postnatal period in rat (Bignami and Dahl,
1973) might also affect the MeHg burden to NSCs. Microglia and
astrocytes secrete neurotrophic factors in the NSC niche, which
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might provide protection against a MeHg insult (Sierra et al.,
2014). When cultured with neurons, astroctyes increase their
uptake of MeHg, leading to reduced neuronal MeHg uptake and
mitochondrial dysfunction (Morken et al., 2005). In summary,
these results provide new knowledge of an expanded period
of neurodevelopmental vulnerability (Table 1) that diminishes
secondary to changes in NSCs and surrounding tissues.

MeHg is one of the numerous environmental agents that
cause developmental neurotoxicity by altering NSC prolifer-
ation. Other agents include ionizing radiation and methy-
lazoxymethanol (MAM), which are antimitotic, and ethanol,
chlorpyrifos (organophosphorus pesticide), and lead (Rice and
Barone, 2000; Fox et al., 2012). Antimitotic agents are most
detrimental during periods (and in areas) of high cell prolifer-
ation in the brain. For example, the ionizing radiation used for
brain cancer therapy has been shown to reduce neurogenesis and
impair hippocampal-dependent behaviors in adult rats (Nokia
et al., 2012). Excessive environmental exposure to manganese (an
essential trace element which is neurotoxic at higher concentra-
tions) pre- and postnatally kills immature granule neurons in
mice (Wang et al., 2012), and is associated with impaired cog-
nitive performance in children (Roels et al., 2012). Recent studies
have linked the development of child and adult-onset metabolic,
neurological, and neurodegenerative diseases to toxicant expo-
sures during gestation and the perinatal period (Fox et al., 2012).
Our current observation of decreased adolescent neurogenesis
and learning and memory deficits (Falluel-Morel et al., 2007;
Sokolowski et al., 2013) after perinatal MeHg exposure in rats
is not surprising, considering that various epidemiological stud-
ies show an association between prenatal exposure and cognitive
deficits (Grandjean et al., 1997; Clarkson and Magos, 2006).

Pre- and postnatal lead exposure is linked to childhood obesity
(Fox et al., 2012). The antimitotic agent MAM is found in the
cycad seed, which is widely consumed in Guam, Kii Penin-
sula (Japan), and West Papua. Gestational MAM exposure is
implicated in western Pacific amyotrophic lateral sclerosis and
Parkinson-dementia complex (ALS–PDC) in these populations
(Kisby and Spencer, 2011). PrenatalMAM exposure has also been
used to induce positive and negative symptoms of schizophre-
nia in rats (Gourevitch et al., 2004; Flagstad et al., 2005; Hazane
et al., 2009). Our findings in this study corroborate that neu-
rogenesis is a relevant process to study when identifying devel-
opmental neurotoxicants, and that vulnerability will likely be
stage-specific.

Toxicants that contribute to neurological disorders and dis-
ease pose not only a public health risk, but also an economic
risk because possessing a reduced IQ leads to lower productivity
and the associated mental health treatment costs are increasingly
expensive (Trasande et al., 2005). Knowing the extent of develop-
mental vulnerability to common neurotoxicants will help the sci-
entific community and regulatory agencies to properly assess safe
environmental levels of substances which have unknown toxicity.

Acknowledgments

Supported by the CounterACT Program, National Institutes of
Health Office of the Director (NIH OD), and the National Insti-
tute of Environmental Health Sciences (NIEHS), Grant Num-
ber [ES019762]. Additional support was provided by The Center
for Environmental Exposures and Disease, supported by NIEHS
ES005022.MO is supported byNS082015 and formerly NSFDGE
0801620.

References

Allen, J. W., Shanker, G., Tan, K. H., and Aschner, M. (2002). The consequences
of methylmercury exposure on interactive functions between astrocytes and
neurons. Neurotoxicology 23, 755–759. doi: 10.1016/S0161-813X(01)00076-6

Altman, J., and Bayer, S. A. (1990). Migration and distribution of two popula-
tions of hippocampal granule cell precursors during the perinatal and postnatal
periods. J. Comp. Neurol. 301, 365–381.

Amin-Zaki, L., Elhassani, S., Majeed, M. A., Clarkson, T. W., Doherty, R. A.,
Greenwood, M. R., et al. (1976). Perinatal methylmercury poisoning in Iraq.
Am. J. Dis. Child. 130, 1070–1076.

Bignami, A., and Dahl, D. (1973). Differentiation of astrocytes in the cerebel-
lar cortex and the pyramidal tracts of the newborn rat. An immunofluores-
cence study with antibodies to a protein specific to astrocytes. Brain Res. 49,
393–402.

Brandt, M. D., Hubner, M., and Storch, A. (2012). Brief report: adult hippocam-
pal precursor cells shorten S-phase and total cell cycle length during neuronal
differentiation. Stem Cells 30, 2843–2847. doi: 10.1002/stem.1244

Burke, K., Cheng, Y., Li, B., Petrov, A., Joshi, P., Berman, R., et al. (2006).
Methylmercury elicits rapid inhibition of cell proliferation in the developing
brain and decreases cell cycle regulator, cyclin E. Neurotoxicology 27, 970–981.
doi: 10.1016/j.neuro.2006.09.001

Ceccatelli, S., Dare, E., and Moors, M. (2010). Methylmercury-induced
neurotoxicity and apoptosis. Chem. Biol. Interact. 188, 301–308. doi:
10.1016/j.cbi.2010.04.007

Cheng, Y., Black, I. B., andDicicco-Bloom, E. (2002). Hippocampal granule neuron
production and population size are regulated by levels of bFGF. Eur. J. Neurosci.
15, 3–12. doi: 10.1046/j.0953-816x.2001.01832.x

Choi, B. H., Lapham, L. W., Amin-Zaki, L., and Saleem, T. (1978). Abnormal
neuronal migration, deranged cerebral cortical organization, and diffuse white
matter astrocytosis of human fetal brain: a major effect of methylmercury
poisoning in utero. J. Neuropathol. Exp. Neurol. 37, 719–733.

Clarkson, T., and Magos, L. (2006). The toxicology of mercury and its chemical
compounds. Crit. Rev. Toxicol. 36, 609–662. doi: 10.1080/10408440600845619

Cornford, E. M., Braun, L. D., and Oldendorf, W. H. (1982). Developmental
modulations of blood-brain barrier permeability as an indicator of changing
nutritional requirements in the brain. Pediatr. Res. 16, 324–328.

Crump, K. S., Kjellstrom, T., Shipp, A. M., Silvers, A., and Stewart, A. (1998).
Influence of prenatal mercury exposure upon scholastic and psychological test
performance: benchmark analysis of a New Zealand cohort. Risk Anal. 18,
701–713.

Davidson, P., Cory-Slechta, D., Thurston, S., Huang, L.-S., Shamlaye, C., Gun-
zler, D., et al. (2011). Fish consumption and prenatal methylmercury expo-
sure: cognitive and behavioral outcomes in the main cohort at 17 years from
the Seychelles child development study. Neurotoxicology 32, 711–717. doi:
10.1016/j.neuro.2011.08.003

Debes, F., Budtz-Jorgensen, E., Weihe, P., White, R. F., and Grandjean, P. (2006).
Impact of prenatal methylmercury exposure on neurobehavioral function at age
14 years. Neurotoxicol. Teratol. 28, 536–547. doi: 10.1016/j.ntt.2006.02.005

Deng, W., Aimone, J., and Gage, F. (2010). New neurons and new memories:
how does adult hippocampal neurogenesis affect learning and memory? Nature
reviews. Neuroscience 11, 339–350. doi: 10.1038/nrn2822

Eisch, A. J., Cameron, H. A., Encinas, J. M., Meltzer, L. A., Ming, G. L.,
and Overstreet-Wadiche, L. S. (2008). Adult neurogenesis, mental health,
and mental illness: hope or hype? J. Neurosci. 28, 11785–11791. doi:
10.1523/JNEUROSCI.3798-08.2008

Frontiers in Neuroscience | www.frontiersin.org 11 May 2015 | Volume 9 | Article 150

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Obiorah et al. Hippocampal developmental vulnerability to MeHg

Encinas, J., Vaahtokari, A., and Enikolopov, G. (2006). Fluoxetine targets early pro-
genitor cells in the adult brain. Proc. Natl. Acad. Sci. U.S.A. 103, 8233–8238. doi:
10.1073/pnas.0601992103

Encinas, J. M., and Sierra, A. (2012). Neural stem cell deforestation as the main
force driving the age-related decline in adult hippocampal neurogenesis. Behav.
Brain Res. 227, 433–439. doi: 10.1016/j.bbr.2011.10.010

Falluel-Morel, A., Lin, L., Sokolowski, K., McCandlish, E., Buckley, B., and
Dicicco-Bloom, E. (2012). N-acetyl cysteine treatment reduces mercury-
induced neurotoxicity in the developing rat hippocampus. J. Neurosci. Res. 90,
743–750. doi: 10.1002/jnr.22819

Falluel-Morel, A., Sokolowski, K., Sisti, H. M., Zhou, X., Shors, T. J., and Dicicco-
Bloom, E. (2007). Developmental mercury exposure elicits acute hippocam-
pal cell death, reductions in neurogenesis, and severe learning deficits during
puberty. J. Neurochem. 103, 1968–1981. doi: 10.1111/j.1471-4159.2007.04882.x

Farioli-Vecchioli, S., Mattera, A., Micheli, L., Ceccarelli, M., Leonardi, L., Saraulli,
D., et al. (2014). Running rescues defective adult neurogenesis by shortening
the length of the cell cycle of neural stem and progenitor cells. Stem Cells 32,
1968–1982. doi: 10.1002/stem.1679

Flagstad, P., Glenthoj, B. Y., and Didriksen, M. (2005). Cognitive deficits
caused by late gestational disruption of neurogenesis in rats: a preclin-
ical model of schizophrenia. Neuropsychopharmacology 30, 250–260. doi:
10.1038/sj.npp.1300625

Fox, D. A., Grandjean, P., De Groot, D., and Paule, M. G. (2012). Developmental
origins of adult diseases and neurotoxicity: epidemiological and experimental
studies. Neurotoxicology 33, 810–816. doi: 10.1016/j.neuro.2011.12.016

Gourevitch, R., Rocher, C., Le Pen, G., Krebs,M. O., and Jay, T.M. (2004).Working
memory deficits in adult rats after prenatal disruption of neurogenesis. Behav.
Pharmacol. 15, 287–292. doi: 10.1097/01.fbp.0000135703.48799.71

Grandjean, P., Weihe, P., White, R., Debes, F., Araki, S., Yokoyama, K., et al.
(1997). Cognitive deficit in 7-year-old children with prenatal exposure to
methylmercury. Neurotoxicol. Teratol. 19, 417–428.

Harada, M., Akagi, H., Tsuda, T., Kizaki, T., and Ohno, H. (1999). Methylmercury
level in umbilical cords from patients with congenital Minamata disease. Sci.
Total Environ. 234, 59–62.

Hare, M. F., and Atchison, W. D. (1995). Nifedipine and tetrodotoxin delay
the onset of methylmercury-induced increase in [Ca2+]i in NG108-15 cells.
Toxicol. Appl. Pharmacol. 135, 299–307.

Hazane, F., Krebs, M. O., Jay, T. M., and Le Pen, G. (2009). Behavioral perturba-
tions after prenatal neurogenesis disturbance in female rat. Neurotox. Res. 15,
311–320. doi: 10.1007/s12640-009-9035-z

Hodge, R., Kowalczyk, T., Wolf, S., Encinas, J., Rippey, C., Enikolopov, G., et al.
(2008). Intermediate progenitors in adult hippocampal neurogenesis: Tbr2
expression and coordinate regulation of neuronal output. J. Neurosci. 28,
3707–3717. doi: 10.1523/JNEUROSCI.4280-07.2008

Kaur, P., Aschner, M., and Syversen, T. (2007). Role of glutathione in deter-
mining the differential sensitivity between the cortical and cerebellar regions
towards mercury-induced oxidative stress. Toxicology 230, 164–177. doi:
10.1016/j.tox.2006.11.058

Kempermann, G. (2011). Adult Neurogenesis 2: Stem Cells and Neuronal Develop-

ment in the Adult Brain. New York, NY: Oxford University Press.
Kempermann, G., Jessberger, S., Steiner, B., and Kronenberg, G. (2004). Mile-

stones of neuronal development in the adult hippocampus. Trends Neurosci.
27, 447–452. doi: 10.1016/j.tins.2004.05.013

Kisby, G., and Spencer, P. (2011). Is neurodegenerative disease a long-latency
response to early-life genotoxin exposure? Int. J. Environ. Res. Public Health
8, 3889–3921. doi: 10.3390/ijerph8103889

Kjellstrom, T., Kennedy, P., Wallis, S., and Mantell, C. (1986). Physical and
Mental Development of Children with Prenatal Exposure to Mercury from Fish.

Stage 1: Preliminary Tests at Age 4, Report 3080. Solna: National Swedish
Environmental Protection Board.

Kjellstrom, T., Kennedy, P.,Wallis, S., Stewart, A., Friberg, L., Lind, B., et al. (1989).
Physical and Mental Development of Children with Prenatal Exposure to Mer-

cury from Fish. Stage II: Interviews and Psychological Tests at Age 6, Report 3642.
Solna: National Swedish Environmental Protection Board.

Liddelow, S. A., Temple, S., Mollgard, K., Gehwolf, R., Wagner, A., Bauer, H., et al.
(2012). Molecular characterisation of transport mechanisms at the developing
mouse blood-CSF interface: a transcriptome approach. PLoS ONE 7:e33554.
doi: 10.1371/journal.pone.0033554

Limke, T. L., Bearss, J. J., and Atchison, W. D. (2004). Acute exposure to
methylmercury causes Ca2+ dysregulation and neuronal death in rat cerebel-
lar granule cells through an M3 muscarinic receptor-linked pathway. Toxicol.
Sci. 80, 60–68. doi: 10.1093/toxsci/kfh131

Matsumoto, H., Koya, G., and Takeuchi, T. (1965). Fetal Minamata disease. A
neuropathological study of two cases of intrauterine intoxication by a methyl
mercury compound. J. Neuropathol. Exp. Neurol. 24, 563–574.

Morken, T. S., Sonnewald, U., Aschner, M., and Syversen, T. (2005). Effects of
methylmercury on primary brain cells in mono- and co-culture. Toxicol. Sci.
87, 169–175. doi: 10.1093/toxsci/kfi227

Myers, G. J., Davidson, P. W., Cox, C., Shamlaye, C. F., Tanner, M. A., Choisy, O.,
et al. (1995a). Neurodevelopmental outcomes of Seychellois children sixty-six
months after in utero exposure to methylmercury from a maternal fish diet:
pilot study. Neurotoxicology 16, 639–652.

Myers, G. J., Davidson, P. W., Cox, C., Shamlaye, C. F., Tanner, M. A., Marsh,
D. O., et al. (1995b). Summary of the Seychelles child development study
on the relationship of fetal methylmercury exposure to neurodevelopment.
Neurotoxicology 16, 711–716.

Myers, G. J., Marsh, D. O., Davidson, P. W., Cox, C., Shamlaye, C. F., Tanner, M.,
et al. (1995c). Main neurodevelopmental study of Seychellois children follow-
ing in utero exposure to methylmercury from a maternal fish diet: outcome at
six months. Neurotoxicology 16, 653–664.

NAS. (2000).National Research Council (US) Committee on the Toxicological Effects

of Methylmercury.Washington, DC: The National Academies Press.
Nokia, M. S., Anderson, M. L., and Shors, T. J. (2012). Chemotherapy disrupts

learning, neurogenesis and theta activity in the adult brain. Eur. J. Neurosci. 36,
3521–3530. doi: 10.1111/ejn.12007

Philbert, M. A., Billingsley, M. L., and Reuhl, K. R. (2000). Mechanisms
of injury in the central nervous system. Toxicol. Pathol. 28, 43–53. doi:
10.1177/019262330002800107

Rasband, W. (1997–2012). ImageJ. Bethesda, MD: U.S. National Institutes of
Health.

Rice, D., and Barone, S. (2000). Critical periods of vulnerability for the developing
nervous system: evidence from humans and animal models. Environ. Health
Perspect. 108(Suppl. 3), 511–533. doi: 10.1289/ehp.00108s3511

Rodier, P. M., Aschner, M., and Sager, P. R. (1984). Mitotic arrest in the developing
CNS after prenatal exposure to methylmercury. Neurobehav. Toxicol. Teratol.
6, 379–385.

Roels, H. A., Bowler, R. M., Kim, Y., Claus Henn, B., Mergler, D., Hoet,
P., et al. (2012). Manganese exposure and cognitive deficits: a growing
concern for manganese neurotoxicity. Neurotoxicology 33, 872–880. doi:
10.1016/j.neuro.2012.03.009

Saunders, N. R., and Mollgard, K. (1984). Development of the blood-brain barrier.
J. Dev. Physiol. 6, 45–57.

Schlessinger, A. R., Cowan, W. M., and Gottlieb, D. I. (1975). An autoradio-
graphic study of the time of origin and the pattern of granule cell migra-
tion in the dentate gyrus of the rat. J. Comp. Neurol. 159, 149–175. doi:
10.1002/cne.901590202

Seri, B., García-Verdugo, J., Collado-Morente, L., McEwen, B., and Alvarez-Buylla,
A. (2004). Cell types, lineage, and architecture of the germinal zone in the adult
dentate gyrus. J. Comp. Neurol. 478, 359–378. doi: 10.1002/cne.20288

Sierra, A., Beccari, S., Diaz-Aparicio, I., Encinas, J., Comeau, S., and Trem-
blay, M.-È. (2014). Surveillance, phagocytosis, and inflammation: how never-
resting microglia influence adult hippocampal neurogenesis. Neural Plast.

2014:610343. doi: 10.1155/2014/610343
Sierra, A., Encinas, J., Deudero, J., Chancey, J., Enikolopov, G., Overstreet-

Wadiche, L., et al. (2010). Microglia shape adult hippocampal neurogene-
sis through apoptosis-coupled phagocytosis. Cell Stem Cell 7, 483–495. doi:
10.1016/j.stem.2010.08.014

Simmons-Willis, T. A., Koh, A. S., Clarkson, T. W., and Ballatori, N. (2002).
Transport of a neurotoxicant by molecular mimicry: the methylmercury-L-
cysteine complex is a substrate for human L-type large neutral amino acid
transporter (LAT) 1 and LAT2. Biochem. J. 367, 239–246. doi: 10.1042/BJ200
20841

Sokolowski, K., Falluel-Morel, A., Zhou, X., and Dicicco-Bloom, E. (2011).
Methylmercury (MeHg) elicits mitochondrial-dependent apoptosis in develop-
ing hippocampus and acts at low exposures. Neurotoxicology 32, 535–544. doi:
10.1016/j.neuro.2011.06.003

Frontiers in Neuroscience | www.frontiersin.org 12 May 2015 | Volume 9 | Article 150

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Obiorah et al. Hippocampal developmental vulnerability to MeHg

Sokolowski, K., Obiorah, M., Robinson, K., McCandlish, E., Buckley, B., and
Dicicco-Bloom, E. (2013). Neural stem cell apoptosis after low-methylmercury
exposures in postnatal hippocampus produce persistent cell loss and ado-
lescent memory deficits. Dev. Neurobiol. 73, 936–949. doi: 10.1002/dneu.
22119

Stergiopoulos, A., Elkouris, M., and Politis, P. K. (2014). Prospero-related home-
obox 1 (Prox1) at the crossroads of diverse pathways during adult neural fate
specification. Front. Cell. Neurosci. 8:454. doi: 10.3389/fncel.2014.00454

Tanaka, R., Tainaka, M., Ota, T., Mizuguchi, N., Kato, H., Urabe, S., et al. (2011).
Accurate determination of S-phase fraction in proliferative cells by dual fluores-
cence and peroxidase immunohistochemistry with 5-bromo-2’-deoxyuridine
(BrdU) and Ki67 antibodies. J. Histochem. Cytochem. 59, 791–798. doi:
10.1369/0022155411411090

Trasande, L., Landrigan, P. J., and Schechter, C. (2005). Public health and economic
consequences of methyl mercury toxicity to the developing brain. Environ.
Health Perspect. 113, 590–596. doi: 10.1289/ehp.7743

Tury, A., Mairet-Coello, G., and Dicicco-Bloom, E. (2012). The multiple roles of
the cyclin-dependent kinase inhibitory protein p57(KIP2) in cerebral cortical
neurogenesis. Dev. Neurobiol. 72, 821–842. doi: 10.1002/dneu.20999

Vega, C. J., and Peterson, D. A. (2005). Stem cell proliferative history in tis-
sue revealed by temporal halogenated thymidine analog discrimination. Nat.
Methods 2, 167–169. doi: 10.1038/nmeth741

Wagner, J. P., Black, I. B., and Dicicco-Bloom, E. (1999). Stimulation of neona-
tal and adult brain neurogenesis by subcutaneous injection of basic fibroblast
growth factor. J. Neurosci. 19, 6006–6016.

Wang, L., Ohishi, T., Shiraki, A., Morita, R., Akane, H., Ikarashi, Y., et al. (2012).
Developmental exposure to manganese chloride induces sustained aberration
of neurogenesis in the hippocampal dentate gyrus of mice. Toxicol. Sci. 127,
508–521. doi: 10.1093/toxsci/kfs110

Weiss, B., Clarkson, T. W., and Simon, W. (2002). Silent latency periods in
methylmercury poisoning and in neurodegenerative disease. Environ. Health
Perspect. 110(Suppl. 5), 851–854. doi: 10.1289/ehp.02110s5851

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2015 Obiorah, McCandlish, Buckley and DiCicco-Bloom. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permit-

ted, provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 13 May 2015 | Volume 9 | Article 150

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Hippocampal developmental vulnerability to methylmercury extends into prepubescence
	Introduction
	Materials and Methods
	Ethics Statement
	Experimental Animals
	Methylmercury
	BrdU and EdU Administration and Detection
	Tissue Collection and Preparation
	Immunohistochemistry
	Image Analysis
	Doublecortin Analysis

	Inductively Coupled Plasma Mass Spectrometry
	Statistical Evaluation

	Results
	Perinatal MeHg Exposure Leads to Reduced Neurogenesis at Adolescence
	Prepubescent Rats are Vulnerable to MeHg
	MeHg Vulnerability Is Diminished by Early Adolescence
	Transfer of MeHg Across The BBB Does Not Diminish During the Postnatal Period

	Discussion
	Effects of Perinatal MeHg on Adolescent Neurogenesis
	MeHg Vulnerability Diminishes by Early Adolescence

	Acknowledgments
	References


