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We inspect the role of binding energy (BE) on second-order and third-order nonlinear optical (NLO) properties 
of doped 𝐺𝑎𝐴𝑠 quantum dot (QD). In the study ample stress is given on understanding the role of noise on the 
manifestations of these NLO properties. The profiles of these NLO properties are analyzed mainly on the basis 
of variation of two important criteria viz. peak-shift and peak-height as a function of BE. Both these features 
depend on the presence of noise, its pathway (mode) of introduction and sometimes on the identity of the NLO 
properties. The findings of the study deem significance in realizing the binding energy-dependence of the said 
NLO properties of low-dimensional semiconductor materials when noise contribution becomes noticeable.
1. Introduction

Tremendous enhancement in the research on low-dimensional semi-
conductor systems (LDSS) e.g. quantum wells (QWLs), quantum wires 
(QWRs) and quantum dots (QDs) has been envisaged over the last cou-
ple of decades. The said enhancement can be justified from two different 
but highly related angles; technological and pedagogical. The tech-
nological angle deals with the widespread application of LDSS in the 
manufacture of high-output microelectronic and optoelectronic devices 
such as QD lasers, solar cells, single electron transistors and quantum 
computers. Simultaneously, the pedagogical angle involves rejuvena-
tion of many fundamental concepts of quantum mechanics. Sudden 
rise in the level of delicacy of LDSS physics occurs with the introduc-
tion of impurity (dopant). The increased delicacy has its roots in the 
newly formed interaction between the original LDSS confinement po-
tential and the dopant potential. The resultant effective confinement 
potential discernibly modifies the nonlinear optical (NLO) properties of 
LDSS from that of a dopant-free condition. LDSS possess special status 
for displaying enhanced NLO properties. Thus, the modulation of NLO 
properties of LDSS by impurity is quite interesting and accentuates rig-
orous research works [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 
36].

Presence of noise markedly affects the efficacy of LDSS-based de-
vices. Noise can make its entry to the system by using some external 
‘modes’ or ‘pathways’, among which additive and multiplicative are the 
two most common ones. These two pathways can be distinguished de-
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pending on how noise gets engaged with the system coordinates. Noise, 
thus introduced, conspicuously changes the physical properties of the 
system through the alteration of the effective confinement potential. 
Importantly, such change in the physical properties of LDSS has been 
found to be dependent on the mode of introduction of noise men-
tioned before. Therefore, exploration of noise-induced modulations of 
the physical properties of LDSS draws sincere attention.

Recently we have studied the influence of noise-binding energy in-
terplay on a magnetic property viz. diamagnetic susceptibility (DMS) 
of doped QDs [37]. Current study endeavors to carry out an in-depth 
scrutiny of how the interplay between noise and binding energy (BE)

can fine-tune three important NLO properties of 2-d 𝐺𝑎𝐴𝑠 QD viz. 
electro-optical effect (EOE) [38, 39, 40], third-order nonlinear optical sus-

ceptibilities (TONOS) [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51] and 
total optical dielectric function (TODF) [52]. Thus, the present study 
shows some new innovation with respect to our previous study [37]. 
Among the mentioned NLO properties EOE and TONOS stand for the 
second-order and third-order nonlinear phenomena, respectively. TODF 
deserves importance since an extended inspection which commences 
from it culminates into understanding the effective optical properties of 
the dot-matrix composite systems because of dielectric mismatch. In this 
context BE of LDSS deems importance as any alteration in BE noticeably 
affects the physical properties of LDSS, including the NLO properties [5, 
13, 19]. Thus, such study appears significant even from a technological 
viewpoint. In the present work the 𝑥 − 𝑦 confinement is described by 
harmonic oscillator potential and the 𝑧-confinement is offered by a ver-
tical magnetic field. In addition, an electric field of strength 𝐹 is applied 
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to the system along 𝑥 and 𝑦-directions. The QD is doped with Gaussian 
impurity and at the same time is subjected to Gaussian white noise ap-
plied via additive and multiplicative pathways (modes). The study makes 
a close scrutiny of how the interplay between BE and noise engineers 
the above NLO properties with substantial thrust on the influence of the 
noise mode.

2. Methods

The system delineated above may be expressed by the Hamiltonian 
(𝐻0):

𝐻0 =𝐻 ′
0 + 𝑉𝑖𝑚𝑝 + |𝑒|𝐹 (𝑥+ 𝑦) + 𝑉𝑛𝑜𝑖𝑠𝑒. (1)

𝐻 ′
0 is the impurity-free Hamiltonian and 𝑒 is the electronic charge. Use 

of effective mass approximation leads to

𝐻 ′
0 =

1
2𝑚∗
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𝑚∗ and 𝜔0 represent the effective mass of the electron and the harmonic 
confinement frequency, respectively. The vector potential A is given by 
𝐴 = (𝐵𝑦, 0, 0), where 𝐵 is the strength of the magnetic field. 𝐻 ′

0 can be 
alternatively written as
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√
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𝑐
) and 𝜔𝑐(=

𝑒𝐵

𝑚∗𝑐
) are the effective confinement frequency 

in the 𝑦-direction and the cyclotron frequency, respectively.
𝑉𝑖𝑚𝑝 stands for the impurity (dopant) potential and has the form 

𝑉𝑖𝑚𝑝 = 𝑉0 𝑒−𝛾
[
(𝑥−𝑥0)2+(𝑦−𝑦0)2

]
. Here (𝑥0, 𝑦0), 𝑉0 and 𝛾−1∕2 refer to the 

dopant location, impurity strength and the available space under the 
influence of impurity potential, respectively. The use of such Gaussian 
impurity potential as a modification of the confinement potential was 
first introduced by Szafran et al. in the context of exciton spectrum of 
a quantum ring [53]. Such Gaussian impurity has also drawn the at-
tention of several other researchers [54, 55, 56, 57, 58]. Adamowski 
studied the screening effect of the 𝐿𝑂 phonons of the 𝐷− center con-
fined by a Gaussian potential QD, 𝑉 (𝑟) = 𝑉0 𝑒𝑥𝑝[−(

𝑟

𝑅
)2] [56]. Gaussian 

potential stands for the finite depth and range of QD confinement po-
tential. Gaussian potential is a smooth potential and therefore is a good 
approximation to the impurity potential in electrostatic quantum dots 
[57], in which the spatial restriction originates from an inhomogeneous 
electric field. In self-assembled quantum dots with a composition mod-
ulation [59], the impurity potential can also be represented by the 
Gaussian potential [58]. Such Gaussian potentials can be assumed to 
simulate nanocrystals fabricated by means of colloidal chemical syn-
thesis [60, 61, 62].

The quantity 𝑉𝑛𝑜𝑖𝑠𝑒 of eqn. (1) takes care of the externally intro-
duced Gaussian white noise characterized by zero average and spatial 
𝛿-correlation. Such application of noise to the system can be done in two 
separate modes (known as additive and multiplicative) which indeed 
govern the system-noise interaction. Mathematically speaking, noise in-
volves a spatially 𝛿-correlated function [𝑓 (𝑥, 𝑦)] which assumes a Gaus-
sian distribution (produced by Box-Muller algorithm) having strength 𝜁
and is described by the set of conditions

⟨𝑓 (𝑥, 𝑦)⟩ = 0, (4)

the zero average condition, and

⟨𝑓 (𝑥, 𝑦)𝑓 (𝑥′, 𝑦′)⟩ = 2𝜁𝛿
[
(𝑥, 𝑦) − (𝑥′, 𝑦′)

]
, (5)

the spatial 𝛿-correlation condition. The additive and multiplicative 
pathways of introduction of noise can be written as

𝑉𝑛𝑜𝑖𝑠𝑒 = 𝜆1𝑓 (𝑥, 𝑦), (6)

for additive pathway and
2

𝑉𝑛𝑜𝑖𝑠𝑒 = 𝜆2𝑓 (𝑥, 𝑦)(𝑥+ 𝑦), (7)

for the multiplicative pathway. 𝜆1 and 𝜆2 are two arbitrary parame-
ters in case of additive and multiplicative noise, respectively. In reality, 
there exist a variety of physical situations in which external noise can 
be realized and bears interest. In these situations one deals with sys-
tem which experiences fluctuations which are not self-originating. These 
fluctuations can be due to a fluctuating environment or can be conse-
quence of an externally applied random force. Whereas additive noise 
does not interfere with the system coordinate the multiplicative ana-
logue depends on the instantaneous value of the variables of the system. 
It does not scale with system size and is not necessarily small [63, 64]. 
We can regard the external noise as an external field which drives the 
system [64]. Experimentally, external noise can be generated by using 
a function generator (Hewlett-Packard 33120A) and its characteristics, 
viz. Gaussian distribution and zero mean can be maintained [65]. The 
external noise could be introduced multiplicatively using a circuit that 
enables to drive the nonlinear element by using the voltage from an 
external source [66].

Now, the construction of Hamiltonian matrix (𝐻0) [cf. eqn. (1)] has 
been carried out using the direct product basis of the harmonic os-
cillator eigenstates. The matrix elements corresponding to all the four 
components of eqn. (1) have been derived using the basis function men-
tioned above. It is followed by diagonalization of 𝐻0 to compute the 
energy levels and the eigenstates of the system. The routine conver-
gence test has been done during diagonalization.

For the computation of different NLO properties it is required to 
consider an ensemble of QDs and how it interacts with a polarized 
monochromatic electromagnetic field of angular frequency 𝜔. Such an 
analysis implicitly assumes that the wavelength of propagating electro-
magnetic wave is higher than the QD size. Driven by this assumption 
we can envisage the wave with nearly unaltered amplitude along QD 
and the electric dipole approximation gets justified. Now, exploiting 
customary density matrix approach and iterative procedure the expres-
sions of EOE [39], TONOS [43, 44, 45] and TODF [52] can be obtained 
under appropriate conditions [67].

Thus, the expression of EOE coefficient is given by [39]

𝜒𝐸𝑂𝐸 =
8𝑒3𝜎𝑠
𝑛4
𝑟
𝜀30ℏ

2
𝑀2

𝑖𝑗
𝛿𝑖𝑗 .

𝜈2Γ4[(
𝜔𝑖𝑗 − 𝜈

)2 + Γ2
]
.

[(
𝜔𝑖𝑗 + 𝜈

)2 + Γ2
] . (8)

In the above expression 𝜀0 is the vacuum permittivity, 𝑒 is the abso-
lute value of electron charge, 𝜎𝑠 is the carrier density, 𝑀𝑖𝑗 = 𝑒⟨𝜓𝑖|�̂� +
�̂�|𝜓𝑗⟩, (𝑖, 𝑗 = 1, 2) is the matrix elements of the dipole moment, 𝛿𝑖𝑗 =|𝑀𝑖𝑖 −𝑀𝑗𝑗 |, 𝜓𝑖(𝜓𝑗 ) are the eigenstates, 𝑛𝑟 is the static component of re-
fractive index and 𝜔𝑖𝑗 = (𝐸𝑖 −𝐸𝑗 )∕ℏ is the transition frequency, Γ = 1∕𝜏
is the relaxation rate with 𝜏 as the relaxation time.

Using similar approach as stated above, within second-order per-
turbation theory, TONOS corresponding to optical mixing between two 
incident light beams with frequencies 𝜈1 and 𝜈2 is given by [43, 44, 45]

𝜒 (3)(−2𝜈1 + 𝜈2; 𝜈1, 𝜈1,−𝜈2) =
−2𝑖𝑒4𝜎𝑠𝑀4

𝑖𝑗

𝜀0ℏ
3
[
𝑖(𝜔𝑖𝑗 − 2𝜈1 + 𝜈2) + Γ

]
.
[
𝑖(𝜈2 − 𝜈1) + Γ

]
×
[

1
𝑖(𝜔𝑖𝑗 − 𝜈1) + Γ

+ 1
𝑖(𝜈2 −𝜔𝑖𝑗 ) + Γ

]
, (9)

Pursuing Xie [43, 44, 45], in the present study we consider 𝜈1 = −𝜈2 = 𝜈

for simplicity.
Following Vahdani, considering optical transition between two 

states |𝜓0⟩ and |𝜓1⟩, the linear [𝜒 (1)(𝜈)] and the third-order nonlinear 
[𝜒 (3)(𝜈)] electric susceptibilities can be written as [52]

𝜒 (1)(𝜈) =
𝜎𝑠|𝑀01|2

𝐸01 − ℏ𝜈 − 𝑖ℏΓ
, (10)

and
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Fig. 1. Plots of EOE against ℎ𝜔 for four different values of BE: (a) noise-free state, (b) ADN operates and (c) MLN operates. In these plots (i) 𝐵𝐸 = 25 meV, 
(ii) 𝐵𝐸 = 75 meV, (iii) 𝐵𝐸 = 125 meV and (iv) 𝐵𝐸 = 200 meV. (d) Plot of EOE peak values vs BE: (i) noise-free state, (ii) ADN operates and (iii) MLN operates.
𝜒 (3)(𝜈) = −
𝜎𝑠|𝑀01|2|�̃�|2
𝐸01 − ℏ𝜈 − 𝑖ℏΓ

.

[
4|𝑀01|2(

𝐸01 − ℏ𝜈
)2 + (ℏΓ)2

−
(
𝑀11 −𝑀00

)2(
𝐸01 − 𝑖ℏΓ

)(
𝐸01 − ℏ𝜈 − 𝑖ℏΓ

)] . (11)

As stated by Vahdani, the linear and third-order nonlinear ODFs are 
related to 𝜒 (1)(𝜈) and 𝜒 (3)(𝜈) as follows [52]:

𝜖(1)(𝜈) = 1 + 4𝜋𝜒 (1)(𝜈), (12)

and

𝜖(3)(𝜈) = 4𝜋𝜒 (3)(𝜈). (13)

The TODF is given by

𝜖(𝜈) = 𝜖(1)(𝜈) + 𝜖(3)(𝜈). (14)

The ground state binding energy 𝐸𝐵 can be written as

𝐸𝐵 =𝐸0 −𝐸, (15)

where 𝐸 and 𝐸0 are the energies of the ground state with and without 
impurity, respectively.

3. Results & discussion

We have used 𝜀 = 12.4 and 𝑚∗ = 0.067𝑚0 (𝑚0 is the mass of free 
electron). The values of a few important quantities are kept fixed at: 
ℏ𝜔0 = 250.0 meV, 𝑉0 = 280.0 meV, 𝐵 = 20.0 T, 𝐹 = 100 kV/cm, 𝑟0 = 0.0
nm and 𝜁 = 1.0 × 10−4, where 𝜁 is the noise strength. The BE value has 
been considered up to 200 meV [68, 69]. We also use the abbreviations 
ADN and MLN to represent additive noise and multiplicative noise, re-
spectively.

Fig. 1 depicts the change of EOE with energy of incoming photon 
(ℎ𝜔) for four different values of BE (25 meV, 75 meV, 125 meV and 
200 meV) without noise [Fig. 1a] and when ADN [Fig. 1b] and MLN 
[Fig. 1c] are applied. Under a noise-free ambience a regularly increas-
3

ing BE depletes the EOE peak height and causes blue-shift of EOE peak 
[39, 40]. Above observation indicates that an enhancement in BE aug-
ments the system confinement and quenches the spatial spread of the 
eigenstates. The amplified confinement eventually amplifies the energy 
intervals among the eigenstates and causes the blue-shift of EOE peaks. 
And the reduced spatial stretch of the eigenstates decreases the mutual 
overlap between them leading to drop in the EOE peak height. Thus, 
in absence of noise, low BE of the system is preferred for production of 
large EOE. Presence of noise (both ADN and MLN) results into unshifted

EOE peak as BE increases. However, the peak height enhances (de-
creases) with BE when ADN (MLN) is introduced. It, therefore, becomes 
evident that high (low) BE of the system is appropriate for emergence 
of large EOE under applied ADN (MLN). The plot of peak values of EOE 
as a function of BE under different conditions [Fig. 1d] runs in confor-
mity with above findings as it depicts a steady drop in the peak value 
with BE under noise-free state and when MLN is present. The same plot 
also evinces growth in the peak value with BE when ADN is present.

Figs. 2(a-d) depict the TONOS profiles relevant to BE change under 
different conditions. Under noise-free condition, the TONOS peaks dis-
play blue-shift and fall of peak height with gradual increase of BE of the 
system [Fig. 2a] [70]. It thus becomes evident that there occur ampli-
fication in the energy separation and reduction in the extent of mixing 
between the eigenfunctions as BE steadily increases. The said amplifi-
cation originates from the increased quantum confinement effect that 
follows an increase in BE. The increased confinement also diminishes 
the spatial stretch of wave functions thereby decreasing the dipole tran-
sition matrix elements. The fall in the TONOS peak height with BE thus 
becomes obvious. Hence, without noise, a low BE appears to be con-
ducive for emergence of large TONOS. Introduction of noise leads to 
diverse behavior in the variation of TONOS peak height with gradual 
enhancement of BE. The said diversity is linked with the mode of in-
troduction of noise [Figs. 2(b-c)]. Introduction of ADN (MLN) leads to 
rise (fall) in the TONOS peak height with increase in BE. However, 
both under applied ADN and MLN the TONOS peaks remain nearly un-

shifted as BE increases. Thus, generation of large TONOS needs high 
(low) BE of the system when ADN (MLN) is applied. Above findings are 
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Fig. 2. Plots of TONOS against ℎ𝜔 for four different values of BE: (a) noise-free state, (b) ADN operates and (c) MLN operates. In these plots (i) 𝐵𝐸 = 25 meV, 
(ii) 𝐵𝐸 = 75 meV, (iii) 𝐵𝐸 = 125 meV and (iv) 𝐵𝐸 = 200 meV. (d) Plot of TONOS peak values vs BE: (i) noise-free state, (ii) ADN operates and (iii) MLN operates.

Fig. 3. Plots of TODF against ℎ𝜔 for four different values of BE: (a) noise-free state, (b) ADN operates and (c) MLN operates. In these plots (i) 𝐵𝐸 = 25 meV, 
(ii) 𝐵𝐸 = 75 meV, (iii) 𝐵𝐸 = 125 meV and (iv) 𝐵𝐸 = 200 meV. (d) Plot of TODF peak values vs BE: (i) noise-free state, (ii) ADN operates and (iii) MLN operates.
corroborated by TONOS peak value vs BE [Fig. 2d] plot under various 
conditions. The plot reveals fall in the TONOS peak value with increase 
in BE without noise and when MLN is present. On contrary, TONOS 
peaks depict steady rise with increase in BE when ADN operates.

Figs. 3(a-d) exhibit the TODF profiles related to BE without noise ef-
fect [Fig. 3a] and when ADN [Fig. 3b] and MLN [Fig. 3c] are present. 
4

Under all circumstances the TODF peaks display prominent drop in the 
peak height as BE increases. The observation reflects enhanced con-
finement accompanying the increase in BE under different situations. 
The enhanced confinement forces the wave function to localize and de-
pletes its overlapping ability manifested through drop in the TODF peak 
height. Thus, a small value of BE would be essential to generate large 
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TODF under all conditions. The TODF peak shift, on the other hand, 
depends on the existence/non-existence of noise. The TODF peaks dis-
play blue-shift (no shift) in absence (presence) of noise [52] indicating 
enlargement of energy interval without noise as BE increases. The plot 
of peak value of TODF vs BE [Fig. 3d] shows persistent decrease with 
increase in BE under all conditions and complies with the previous find-
ings.

4. Conclusion

Modulation of a few important NLO properties (EOE, TONOS and 
TODF) of doped QD by the variation of binding energy has been inves-
tigated. In this context the role of noise is thoroughly scrutinized. EOE 
and TONOS display steady fall as BE increases without noise and when 
MLN operates. However, in presence of ADN, above two NLO proper-
ties reveal persistent amplification with increase in BE. On the other 
hand, TODF decreases with increase in BE under all conditions. Thus, 
the rise/fall of NLO properties with BE depends on the existence/non-
existence of noise, the noise mode and also on the particular NLO 
properties concerned. The pattern of peak-shift of the NLO properties 
with BE is conspicuously linked with the presence of noise although 
we do not find any remarkable role played by the noise mode. All the 
NLO properties invariably delineate blue-shift (no shift) with increase 
in BE when noise becomes absent (present). The observations bear im-
portance in the study of NLO properties of LDSS when noise displays 
some crucial role.
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