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Abstract: The extensive usage of antibiotics and the rapid emergence of antimicrobial-resistant mi-
crobes (AMR) are becoming important global public health issues. Many solutions to these problems
have been proposed, including developing alternative compounds with antimicrobial activities, man-
aging existing antimicrobials, and rapidly detecting AMR pathogens. Among all of them, employing
alternative compounds such as phytochemicals alone or in combination with other antibacterial
agents appears to be both an effective and safe strategy for battling against these pathogens. The
present review summarizes the scientific evidence on the biochemical, pharmacological, and clin-
ical aspects of phytochemicals used to treat microbial pathogenesis. A wide range of commercial
products are currently available on the market. Their well-documented clinical efficacy suggests that
phytomedicines are valuable sources of new types of antimicrobial agents for future use. Innovative
approaches and methodologies for identifying plant-derived products effective against AMR are also
proposed in this review.

Keywords: phytochemicals; antibiotic resistance; complementary medicine; herbal medicine; clini-
cal applications

1. Introduction

According to various surveys, there is a direct relationship between the increased use
of antibiotics and the creation of resistant bacteria. The appearance of resistant microorgan-
isms to drugs leads to the currently available treatment regimes becoming less effective
or totally ineffective [1–4]. As a result, this has become a prominent issue and a serious
concern for global health agencies such as the World Health Organization, Centers for
Disease Control, and regional health ministries. Additionally, it represents a challenging
problem for the medical fraternity [5,6]. In addition, the effectiveness of antibiotics has
been substantially reduced by the existence of different resistance mechanisms. Of these,
the major reasons are antibiotic inactivation by enzyme production, alteration of drug
targets, changes in cell permeability, the intrinsic expression of efflux pumps, and biofilm
formation. The last one, in particular, acts as a defense against drugs and contributes to the
sustained persistence of resistant bacteria.

The first antibiotic, penicillin, was discovered by Alexander Fleming in 1928. Since
then, other β-lactam antibiotics identified include cephalosporins, carbapenems, and
monobactams. They all contain a four-membered cyclic ring consisting of three carbon
atoms and one nitrogen atom. The nitrogen atom is attached to the β-carbon relative to the
carbonyl group, and hence the name β-lactam is used.
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Fleming [7] reported that several bacteria in the colityphoid group were not inhibited
by penicillin. Subsequent work by Abraham and Chain [8] identified an enzyme in Gram-
negative Escherichia coli, penicillinase, capable of destroying penicillin. This enzyme, now
referred to as β-lactamase, is responsible for destroying the β-lactam ring in penicillin
and other β-lactam antibiotics. Initially, very few bacteria produced β-lactamase, but the
overuse of antibiotics has resulted in its widespread production by Gram-negative bacteria
rendering them resistant to many life-saving antibiotics. Among the many strategies being
investigated to overcome these resistant bacteria is to inhibit the β-lactamase enzyme.
Synthetic compounds have been developed for inhibiting β-lactamase. However, concerns
regarding their toxicity have resulted in a concerted effort to find safer plant sources
of inhibitors.

In addition, mobile genetic elements such as plasmids, insertion sequences, trans-
posons, and integrative conjugative elements all play an important role in developing
resistance against antibacterial agents [4].

Under these circumstances and to overcome this problem, identifying alternative or
complementary approaches is urgently needed to prevent and treat microbial infections.
One such approach employs naturally occurring compounds with potential antibacterial
activities [3,9–13]. Herbal medicines are rich in various compounds, such as alkaloids,
flavonoids, terpenoids, coumarins, tannins, antimicrobial peptides, and steroids, which
can be used as an alternative or complement to conventional antibiotics [14–18]. These
compounds exert their antimicrobial activities via different mechanisms, including (I)
structural disruption of the bacterial cell and increase in cell permeability and leakage of
cell constituents, (II) alterations in the bacterial cell wall and cell membrane, (III) losing
ATP, (IV) inhibition of protein synthesis, (V) intracytoplasmic damage, pH disturbance,
DNA damage and (VI) inhibition of quorum sensing among bacteria [10,19–21]. Plant-
derived compounds are generally less expensive, safer to use in terms of side effects, and
more readily available than their synthetic counterparts [21,22]. Therefore, the isolation
and characterization of plant-derived substances with suitable antibacterial activities are
integral for developing natural antibacterial agents.

Despite a significant increase in publications on this topic, mechanisms of action
and their clinical use have remained elusive. This review describes different aspects of
phytochemicals, such as identification, characterization, and evaluation of their biological
activities. In the next step, we will explain the valuable findings of preclinical and clinical
studies of some phytomedicine in the market worldwide.

We conducted a systematic review and searched different databases such as PubMed,
Embase, Scopus, Web of Science, and Google Scholar without time limitations.

2. Isolation, Characterization, and Bioassays of Phytochemicals

As mentioned earlier, using naturally occurring compounds with potential antibacte-
rial activities has been considered an alternative or complementary in treating infectious
diseases. Therefore, identifying bioactive components and understanding their properties
play a vital role in evaluating phytochemicals [23,24]. Conventional screening methods,
including disk diffusion, TLC-direct bioautography, and broth microdilution antibiotic sen-
sitivity test, have been used extensively to screen the antimicrobial activities of extracts and
purely natural compounds. These methods have helped discover almost every antibiotic
available in the market and the identification of drug susceptibility. Despite the advantages
of well-established procedures, classical methods suffer from several limitations such as
unsatisfactory test speed, high cost, and low reliability.

Moreover, these methods provide no information about the mechanism of action of
the crude extract or pure natural product that leads to the rediscovery of the compounds
with a similar mechanism of action. Thus, several studies tried to offer some solutions to
overcome some of the drawbacks mentioned above. This section will discuss the recent
advanced development of the methods used for antimicrobial screening of phytochemicals
against antibiotic-resistant microorganisms.
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2.1. Microfluidic Technology

Establishing a high-throughput screening platform with high resolution and speed
has attracted natural products to discover antibacterial drugs. Although droplet-based
microfluidic technology is nascent, it continues to show promise in many biomedical fields
and has revolutionized our understanding of single-cell interactions [25].

Recent studies confirmed the capability of microfluidic technology to rapidly and pre-
cisely screen novel antibiotic candidates, specifically against antibacterial-resistant mutants.

Dhayakaran et al. [25] developed a 3D microfluidic device to assess the antibacterial
activity of synthesized soy peptides PGTAVFK and IKAF-KEATKVDKVVVLWTA against
Pseudomonas aeruginosa and Listeria monocytogenes. The bottom layer was a glass layer;
24 incubation chambers were in the middle polydimethylsiloxane layer, and in the final
layer were concentration generating gradients. Using the device, the authors were able
to determine the antimicrobial activity of the peptides based on their optical density at
600 nm easily without any need for prior serial dilution. These devices can be successfully
employed to screen huge libraries of natural products or crude extracts and substantially
reduce the time needed for high-throughput screening. While a considerable effort has been
spent establishing microfluidic technology to screen natural products against cancer [26],
there are very few studies on the antibacterial drug screening of natural products using
this technology. Future studies are desperately needed in this field.

2.2. Host-Pathogen Co-Culture Assay

Co-culturing of human cell lines and pathogenic bacteria in the presence of a natural
antimicrobial product or crude extract can simultaneously determine the efficacy and toler-
ability of the antibacterial candidates. Human cell lines are incubated with an antibacterial
candidate and then infected with the desired pathogenic bacteria in this method. In this
way, the minimal inhibitory concentration or dose and the selectivity index are determined
precisely. This is beneficial for optimization and high-throughput screening because of
time- and cost-efficiencies [27].

In this regard, Haque et al. [28] evaluated the antimicrobial activity of semisynthetic
derivatives of betulin as a triterpenoid natural product. Two derivatives showed promising
activity against Gram-positive bacteria in broth microdilution assays. However, in the host-
pathogen co-culture assay, weak or no activity was observed for derivatives. Further studies
in the presence of an increased albumin concentration showed that betulin derivatives
could potently bind to albumin present in human cell line culture media. Hence, the
host-pathogen co-culture assay can predict a drug candidate’s serum protein binding
potential and guides the researcher through therapeutic potential and pharmacokinetics in
the primary steps of antibiotic drug discovery from natural products.

2.3. Colorimetric Assay of pH

A high-throughput screening method that is sensitive and robust gives more detailed
information than the minimum bactericidal concentration (MBC) and minimum inhibitory
concentration (MIC) and is highly desirable for finding natural products with a novel
mechanism of action. Such a method was proposed by Ymele-Lek et al. [29], who used
thymol blue and bromothymol blue as pH-sensitive dyes. As fermentation can decrease the
pH of the culture medium, using these dyes coupled with the colorimetric assay enabled
the authors to screen 39,000 crude extracts and find suitable candidates to inhibit bacterial
sugar fermentation. This simple colorimetric assay led to the identification of a broad-
spectrum antimicrobial natural product, mirandamycin. Further studies revealed that
mirandamycin is active against E. coli, P. aeruginosa, methicillin-resistant Staphylococcus
aureus (MRSA), and Mycobacterium tuberculosis.

These studies indicate that the development of novel screening methods has the same
importance and impact as screening novel sources of natural products on antibacterial
drug discovery.
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2.4. In Silico Screening

With over 300,000 entries in SciFinder that have never been tested for their antibacte-
rial activity, natural products are valuable sources of compounds that can be harnessed
for discovering future antibacterial drugs [30]. However, the rapid exploitation of such
potential with conventional methods of screening seems impossible. Using the advantages
of in silico, however, one can successfully screen a plethora of entries in a database to
identify chemical structures that can inhibit critical enzymes in bacteria in a matter of a few
days. This method has several advantages, including ease of access and saving time and
money. However, there are some limitations, i.e., these screenings can only be performed
on proteins and enzymes whose 3D protein crystal structure is available in the appropriate
databases [31].

An example of such a successful approach was recently published by Skariyachan
and co-workers [32]. They filtered 236 natural compounds from the Super Natural II
database for the ADMET properties using the PreADMET and SwissADME websites.
Six lead compounds were selected for further docking studies in the binding site of pro-
teins that are significantly involved in antibiotic resistance in Acinetobacter baumannii,
including orotate phosphoribosyltransferase (PyrE), Orotidine 5′-phosphate decarboxylase
(PyrF), outer membrane protein 38 (Omp38), and Protein RecAm. Among the natural
drug ligands, 16-epiestriol exhibited the best binding potential to all proteins, especially
PyrE, with a −7.3 kcal/mol binding energy. In vitro studies revealed that 16- epiestriol at
200 µg/mL could significantly inhibit clinically isolated multidrug-resistant A. bauman-
nii [32]. 16-Epiestriol is considered a lead compound, and by chemical optimization, more
potent compounds can be synthesized in the future to overcome the antibacterial resistance
in A. baumannii. This study demonstrates that a rational design of in silico screening studies
may be valuable in the possible post-antibiotic era.

3. Mechanistic Insights on Phytochemicals

Phytochemicals show promising results in overcoming the resistance development of
resistance in bacterial pathogens and combating bacterial infections. These compounds can
restore the clinical application of conventional antibiotics by increasing their potency and
avoiding the development of resistance. The antibacterial properties of phytochemicals
are related to chemically interference with the function or synthesis of vital components
and circumventing the mechanism of antibacterial resistance. Different mechanisms have
been mentioned in antibacterial actions that inhibit bacterial cell-wall biosynthesis and
cell membrane destruction, inhibiting bacterial protein biosynthesis, DNA replication
and repairing, and metabolic pathways [33,34]. In addition, different mechanisms are
involved in bacterial resistance to an antibiotic, such as overexpression of the efflux pumps,
destroying the antibacterial agents, structural modification of porins, and modification of
antibiotics [33,35]. Therefore, inhibition of them is an integral part of combating antibiotic
resistance [3]. Phytochemicals based on their chemical structures and properties could
exhibit antibacterial actions via one or more of these mechanisms [4]. Based on structures,
they are categorized into major groups of alkaloids, tannins, carbohydrates, and glycosides,
terpenoids, flavonoids, steroids, and coumarins [36]. These compounds have particular
clinical value because their bioactivity generally does not lead to resistance. Some important
plant-derivative compounds with antibacterial activities and their mechanism of action are
illustrated in Figure 1.

Polyphenols show antibacterial activity against a broad spectrum of bacteria. Among
them, flavanols, flavonols, and phenolic acids exhibit the highest activities because of
(I) inhibiting bacterial virulence factors including enzymes and toxins, (II) interacting
with the cytoplasmic membrane or reducing the pH values, (III) suppressing biofilm
formation, (IV) exerting synergistic effects with conventional antibiotics, and (V) reducing
the extracellular polysaccharide (EP) activity and acting as EP inhibitors (EPIs) [37–39].
Phenolic compounds that are produced in relatively high concentrations show promising
EPI activity against pathogenic bacteria. They could inhibit cell wall biosynthesis and
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critical enzymes such as urease, sortase A and dihydrofolate reductase. The Fabaceae
family has the most phenolic derivative compounds among botanical families [35].

Figure 1. Antibacterial mechanism of action of plant-derivative compounds.

It should be noted that their activity is mainly weak and also non-specific. However,
in some cases, target specificity among phytochemicals has been reported. For example,
coumarins have high activity against S. aureus, while no activity against Gram-negative
bacteria has been observed [40].

Zhao et al. [41] extracted, purified, and identified a specific β-lactamase inhibitor
in green tea, epigallocatechin gallate (EGCG). They tested it on 21 clinical isolates of
penicillinase-producing S. aureus. In addition to direct binding with peptidoglycan in the
bacterial cell membrane, ECGG exhibited a dose-dependent inhibition of penicillinase ac-
tivity with a 50% inhibition at a concentration of 10 µg/ml. A later study by Zhao et al. [42]
reported restoring the antibacterial activity of β-lactams (cefotaxime and imipenem) in the
presence of EGCG against a series of β-lactamase producing bacteria, including 21 S. aureus,
6 E. coli, 3 Klebsiella pneumonia, and 8 Serratia marcescens strains. The in vitro studies showed
the effectiveness of ECGG in β-lactamase activity inhibition and restoring the antibacterial
activities of penicillin. However, in vivo studies exhibited less effectiveness due to the
intracellular location of the enzymes and the protective permeability barrier of the cell
walls and cell membranes [43].

An interesting flavonoid, galangin, was reported in the rhizomes of the perennial plant
Alpinia officinarum by Eukeb et al. [44]. Galangin was effective in reversing the β-lactam
antibiotic resistance of S. aureus. This led Sirlwong and co-workers [45] to examine the
synergism between several other flavonoids, quercetin or kaempferol, in combination
with amoxicillin for their ability to overcome amoxicillin-resistant Staphylococcus epidermis
(ARSE). The synergy between quercetin and amoxicillin proved to be very effective by
inhibiting peptidoglycan synthesis in the bacterial cell membrane, inhibiting β-lactamase
activity, increasing cell membrane permeability, and increasing protein amide I and II, and
decreasing fatty acids in the bacterial cells. The authors pointed out the need to determine
their safety and efficacy using animal and human subjects.



Antibiotics 2021, 10, 1044 6 of 33

The increased resistance of Streptococcus spp. to antibiotics is one of the significant
causes of mastitis. This condition is an inflammation of the mammary gland that results
in major economic losses to the dairy industry [46]. To combat this problem, Maia and
co-workers [47] isolated guttiferone-A and 7-epiclusianone from the fruits of Garcinia
brasiliensis, a tree native to the Amazon and widely cultivated in Brazil. The pharmacologi-
cal properties of these two bioactive compounds, particularly their antimicrobial properties
against S. aureus and Bacillus cereus [48], suggested their possible prevention of metastasis.
Synergistic effects were evident between 7-epiclusianone and guttiferone-A with ampicillin
or gentamicin. At levels below their MIC values, both compounds reversed the antibiotic
resistance of Streptococcus agalactine and Streptococcus uberis. Neither compounds were
cytotoxic, and their strong binding of β-lactamase could explain the reversal of ampicillin
resistance. Their potential for the treatment of bovine mastitis appears promising.

A root canal infection such as apical periodontitis is a severe problem worldwide.
The infection is primarily caused by the growth of Prevotella spp., Porphyromonas spp.,
Fusobacterium spp., Enterpcococcus spp., and Candida spp. While chemical irritants are used
to eliminate these multidrug-resistant organisms, they generally fail, with the residual
organisms causing tissue necrosis, gastritis, and local inflammation. To overcome this prob-
lem, Sriramkumar et al. [49] undertook the homology modeling of the β-lactamase protein
from Staphylococcus sciuri and docking studies with 4-butanylanisole and 9-ocatadecene.
These phytochemicals were extracted from Garcinia imberti, a flowering plant of the family
Clusiaceae growing in India. Both compounds exhibited favorable inhibitory activity of
β-lactamase by binding with the conserved amino acids glutamine, asparagine, lysine, and
phenylalanine at their active site. Based on this information, antimicrobial compounds can
be tailored for a specific organism, such as S. sciuri.

Resveratrol is another phenolic compound with potential antibacterial properties. It is
active against multidrug-resistant (MDR) Gram-negative bacteria with MICs ranging from
32 µg/mL to 128 µg/mL. The possible mechanism of action is related to the inhibition of
the efflux pump activities [50,51].

Sophoraflavanone G is another potent antibacterial agent. This compound can inhibit
the growth of MRSA via different mechanisms such as interacting with peptidoglycan and
inhibiting cell wall biosynthesis [52,53].

Baicalein is an effective bactericide. The results of the study indicated that this
compound had pronounced antibacterial activities on S. aureus. The mechanism could
affect bacterial membrane penetrability, inhibit protein synthesis, and influence SDH, MDH,
and DNA topoisomerase I and II activities to exert the antibacterial functions [54].

Quercetin and luteolin are other phenolic compounds with promising antibacterial
activities. These compounds can increase cytoplasmic membrane permeability, caused
irregular cell shape, peptidoglycan, and CM damage, and decrease nucleic acid content but
increase proteins in bacterial cells. Luteolin and quercetin propose the potential to develop
adjuncts to conventional antibiotics to treat infectious diseases [55].

Alkaloids are another important group of compounds that possess antibacterial prop-
erties. They are heterocyclic nitrogen compounds with highly variable chemical structures.
Their antibacterial activities have been proven, and many studies have reported that they
can play a significant role in treating infectious diseases. Their mechanism of action might
be due to the enzymatic alterations affecting physiological processes, including inhibition
of DNA synthesis and repair mechanisms by intercalating nucleic acids [9,56,57]. Isoquino-
lines, aporphines, quinolones, and phenanthrenes are the most critical alkaloid groups
with suitable antibacterial activities [35].

It was shown that berberine had certain inhibitory effects on four common bacteria
with MICs for E. coli, B. subtilis, S. aureus, and Salmonella were 2.40, 3.60, 3.30, and 3.95
mg/mL, respectively. Scanning electron microscopy showed that berberine damaged
the morphology of the bacterial cells and ruptured the cells, leading to the leakage of
intracellular sub-stances. Consequently, the nucleic acid content in the bacterial suspension
was increased remarkably. The polyacrylamide gel electrophoresis analysis indicated
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that berberine could inhibit protein synthesis. Additionally, this compound could reduce
the Na+/K+-ATPase activity of the cell mem-brane. Therefore, berberine inhibited the
expression of bacterial proteins by destroying the cell membrane structures, which finally
leads to the death of the cells so that it can exert good antibacterial effects and can be used
as a valuable antibacterial agent [58].

Reserpine as an inhibitor of efflux pumps was shown to reduce the resistance of MRSA
strains to conventional antibiotics [59].

Sanguinarine, a benzophenanthridin alkaloid, strongly induced fila-mentation in
Gram-positive and -negative bacteria and prevented bacterial cell division by inhibiting cy-
tokinesis. Sanguinarine inhibited bacterial division by perturbing FtsZ assembly dynamics
in the Z ring. These observations support the hypothesis that the assembly and bundling
of FtsZ play an important role in bacterial growth cytokinesis. Thus sanguinarine may be
used as a lead compound to develop FtsZ-targeted antibacterial agents [60].

The investigations of the competitive binding of antibiotics and caffeine with DNA
show that at physiological concentrations of antibiotic and caffeine (mM), the dominant
mechanism influencing the affinity of the antibiotic with DNA is the displacement of bound
antibiotic molecules from DNA due to caffeine-DNA complexation. These observations
explain the protector actions of caffeine [61]. Sulfur-containing compounds are another
critical group of phytochemicals with antibacterial and antifungal activities. They have
exerted antibacterial activities against both Gram-positive and -negative bacteria. In ad-
dition, it has been shown that plants with high concentrations exert a broad spectrum of
antimicrobial activities [62].

Allicin exhibited promising antifungal activities against different pathogens. The
putative mechanisms of action are influencing DNA replication, mitochondrial translation,
and chromatids cohesion. These pro-cesses play a critical role in yeast cells’ cell cycle,
growth, and viability [63].

Isothiocyanates derived from cruciferous plants reveal antibacterial activity. They
showed antibacterial activities against E. coli, K. pneumonia, S. aureus, S. epidermidis,
B. subtilis, and E. faecalis. E. coli strains. They are effective against different pathogenic
bacteria and act by at least two mechanisms depending on bacteria species. These com-
pounds exert their antibacterial effects by acting on cell membranes and leakage of cellular
metabolites [64,65].

The coumarins are heterocyclic compounds found in various plants. They exert a wide
range of bioactive properties such as anticoagulant, antibacterial, antiviral, antioxidant, anti-
inflammatory, antitumor, and enzyme inhibition. The antibacterial activity of coumarins is
mainly due to inhibiting bacterial DNA gyrase, preventing supercoiling [66].

The dichloromethane extract of Prangos hulusii has yielded nine known and one new
prenylated coumarins. The root extract and its prenylated coumarins exhibit antibacte-
rial activities against nine stand-ards and six clinically isolated strains at concentrations
between 5 and 125 µg/mL [67].

Aegelinol and agasyllin showed antibacterial activities against nine ATCC and the
same clinically isolated Gram-positive and -negative bacterial strains. At a concentration
between 16 and 125 mg/mL, both coumarins showed remarkable antibacterial effects
against Gram-negative and -positive bacteria [68].

Terpenes or isoprenoids are widely outspread in nature, have high biological activity.
They show a broad spectrum of antibacterial activities via different mechanisms. Their
mechanism is closely associated with their lipophilic features. Monoterpenes preferentially
could impact the membrane structures and increase the fluidity and permeability, altering
the topology of its proteins and making disturbances across the respiration chain [69]. In
addition, they could change the membrane permeability without cell lysis.

Carvacrol is a monoterpenic phenol, biosynthesized from γ-terpinene through p-
cymene. This compound occurs in aromatic plants and many essential oils of the Labiatae
family. Carvacrol is reported to have a wide range of biological properties, including
antibacterial activities. Compared to other volatile compounds present in essential oils, the
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compound shows higher antibacterial power because of the phenol ring, which confers
hydrophobicity and also the presence of the free hydroxyl group. Carvacrol is active
against many Gram-positive and -negative human pathogenic bacteria. In particular, it
is very effective in controlling foodborne pathogens, such as E. coli, Salmonella, and B.
cereus [70,71].

Thymol is a carvacrol isomer also known as “hydroxy cymene”. The compound pos-
sesses antibacterial activities against a wide range of species, including biofilm-embedded
microorganisms [72].

Table 1. The most prevalent natural antibacterial compounds with the related mechanism of action.

Compound Chemical Structure Active against
(MIC/MBC Values)

Class of
Phytochemicals Mechanism of Action Ref.

Piperine
Staphylococcus aureus and

Bacillus subtilis (MIC values
of 225 µg/mL)

Alkaloids

Inhibition of efflux pump [73,74]

Berberine
Candida albicans

(MIC values ranging
from 125 to 500 µg/ml)

DNA intercalation; inhibiting
RNA polymerase, DNA gyrase,
and topoisomerase IV, and IA;
inhibiting protein biosynthesis,

Inhibition of cell division

[75–77]

Dictamnine Saccharomyces cerevisiae
(MIC value of 64 µg/ml) Inhibiting type II topoisomerase [78,79]

Reserpine Inhibition of efflux pump [80]

Sanguinarine
carbapenem-resistant

Serratia marcescens
(MIC90 of 32 µg/ml)

Inhibiting replication
and transcription [81,82]

Chanoclavine Inhibition of efflux pump [83]

Conessine

Micrococcus luteus
ATCC 9341

(MIC value of
15.6 µg per disc)

Inhibition of efflux pump [84,85]

Chelerythrine

MRSA (MIC values ranged
from 2 to 4 µg/mL) and

extended-spectrum
β-lactamases Escherichia coli

(MIC values varied from
16 to 256 µg/mL)

Damaging the bacterial cells [86,87]

Matrine E. coli and Bacillus subtilis
(12.5 µg/mL)

Inhibiting the synthesis
of proteins [88,89]
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Table 1. Cont.

Compound Chemical Structure Active against
(MIC/MBC Values)

Class of
Phytochemicals Mechanism of Action Ref.

Camptothecin Cleaving the intermediate
complex of DNA topoisomerase I [90]

Caffeine
P. aeruginosa

(MIC value of 200
µg/mL)

Interaction with the quorum
sensing proteins and inhibiting

biofilm formation
[91,92]

Allicin C. albicans
(MIC value of 8 µg/ml)

Organosulfur

Inhibiting sulfhydryl-dependent
enzymes, inhibiting the DNA and

protein synthesis
[93,94]

Ajoene
Histoplasma capsulatum

(MIC values varied from
2.5 to 5 µg/mL)

Inhibiting sulfhydryl-dependent
enzymes [93,95]

Isothiocyanates

Attacking the sulfhydryl groups
of enzymes, damaging the cell
wall integrity, and leakage of

cellular metabolites

[96]

Diallyl
Sulfides

C. albicans
(MIC value of 500 µg/ml)

Inhibiting glutathione (GSH)
S-transferase (GST) activity.
Interaction with the quorum

sensing proteins and inhibiting
biofilm formation

[97,98]

Diallyl
trisulfide

(Allitridin)

Destructing the bacterial cell
membrane. Decreasing the

activity of the bacterial membrane
transporter system.

[99]

Resveratrol

Multidrug resistant
(MDR) Gram-negative

(MICs ranging from
32 µg/mL to 128 µg/mL)

Polyphenolic
compounds

Inhibition of efflux pump [50,51]

Baicalein S. typhimurium (MIC
value of 64 µg/ml) Inhibition of efflux pump [54,100]

Biochanin A
S. aureus

(MIC values varied from
64 to 512 µg/mL)

Inhibition of efflux pump [100,101]

Chrysosplenol-
D Inhibition of efflux pump [102]
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Table 1. Cont.

Compound Chemical Structure Active against
(MIC/MBC Values)

Class of
Phytochemicals Mechanism of Action Ref.

Chrysoplenetin Inhibition of efflux pump [102]

Silybin Inhibition of efflux pump [103]

Kaempferol Inhibition of efflux pump [104]

Quercetin
Aspergillus fumigatus

(MIC values of
16–64 µM)

Inhibition of efflux pump,
Interacting with some

crucial enzymes such as
β-lactamase, and cell
membrane disruption

[45,105]

Guttiferone-A β-lactamase inhibition [48]

4-Butanylanisole β-lactamase inhibition [49]

Gallic acid
Cell membrane

disruption, and Mg2+

Chelation
[106]

Epigallocatechin
gallate

S. aureus
(MIC values of

7.81–62.5 µg/mL)

Inhibiting the B subunit of
DNA gyrase, penicillinase,

and β-lactamase
[41–43,107,108]

3-p-trans-
Coumaroyl-2-

hydroxyquinic
acid

Damaging the cytoplasmic
membrane [109]

Hydroxycinnamic
acids

(p-Coumaric,
Caffeic, and Ferulic

acids)

Interfering with membrane
integrity [110]
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Table 1. Cont.

Compound Chemical Structure Active against
(MIC/MBC Values)

Class of
Phytochemicals

Mechanism of
Action Ref.

Naringenin
Interacting with

some crucial
enzymes

[111–113]Eriodictyol
Streptococcus mutans and

P. aeruginosa
(MIC values of 1 mg/mL)

Interacting with
some crucial

enzymes

Taxifolin Helicobacter pylori
(MIC = 625 µg/mL)

Interacting with
some crucial

enzymes

Curcumin
Shigella dysenteriae and

Campylobacter jejuni
(MIC values of 256 µg/mL)

Damaging the cell
membranes [114,115]

Apigenin
Interacting with

some crucial
enzymes

[116]

Sophoraflavanone G MRSA
(MIC values of 0.5–8 µg/mL)

Interacting with
peptidoglycan and
inhibiting cell wall

biosynthesis

[52,53]

Acetosyringone S. cerevisiae
(MIC = 24 mM)

Depolarization of the
bacterial cell
membrane

[117,118]

Chlorogenic acid

Providencia alcalifaciens,
Moraxella catarrhalis, S. aureus,

and E. coli
( MIC values of 60 to 100 µM)

Interacting with
some crucial

enzymes
[119]

Galangin S. aureus
(MIC = 32 µg/mL)

Damaging of the
cytoplasmic

membrane and
inhibition of
β-lactamase

[44,120]

Genistein

Inhibition of efflux
pump [121]

Ononin
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Table 1. Cont.

Compound Chemical Structure Active against
(MIC/MBC Values)

Class of
Phytochemicals Mechanism of Action Ref.

Tangeritin

Cell membrane
disruption, DNA
gyrase inhibition,
Reduced protein

synthesis,
Interacting with some

crucial enzymes
[122]

5,6,7,4’-
Tetramethoxyflavone

Cell membrane
disruption, DNA
gyrase inhibition

Chrysin H. pylori
(MIC = 6.25 µg/mL)

Cell membrane
disruption, DNA
gyrase inhibition

[123,124]

Luteolin

S. aureus
(MIC = 16–32 µg/mL)

and
Listeria monocytogenes
(MIC = 32–64 µg/mL)

Cell membrane
disruption, DNA
gyrase inhibition,
Type III secretion

inactivation,
Interacting with some

crucial enzymes

[125–127]
Myricetin S. aureus

(MIC = 256 µg/mL)

DNA
gyrase inhibition,
Type III secretion

inactivation,
Interacting with some

crucial enzymes

Nobiletin

Cell membrane
disruption, DNA
gyrase inhibition,
Reduced protein

synthesis,
Interacting with some

crucial enzymes

Totaral

Reduced
expression of
enterotoxins,

multi-drug efflux
pump inhibitor

[128]

Tannic acid S. aureus
(MIC = 512 µg/mL) Ion binding [129,130]

(+)-Catechin MRSA
(MIC = 78.1–156.2 µg/ml)

Inhibition of bacterial gene
expression [131,132]
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Table 1. Cont.

Compound Chemical Structure Active against
(MIC/MBC Values)

Class of
Phytochemicals Mechanism of Action Ref.

Aegelinol
S. aureus, S. thypii, Enterobacter

cloacae and E. earogenes
(MIC = 16 µg/mL)

Coumarins

Cell membrane
Disruption

[68,133]

Agasyllin
S. aureus, S. thypii, Enterobacter

cloacae and E. earogenes
(MIC = 32 µg/mL)

Cell membrane
Disruption

Osthole DNA gyrase inhibitor [134]

Clorobiocin

Inhibiting of DNA
topoisomerase type II

(DNA gyrase)
[135–137]

Novobiocin S. aureus and S. gallinarum
(MIC = 2 and 0.25 mg/L)

Coumermycin
A1

Bergamottin

Inhibition of efflux pump [138,139]

6-Geranyl
coumarin

Gallbanic acid

Daphnetin

P. fluorescens and Shewanella
putrefaciens

(MIC values were 0.16 and
0.08 mg/mL, respectively)

Cell membrane
Disruption, Type III

secretion
inactivation

[140–142]

Esculetin Ralstonia pseudosolanacearum
(MIC = 125 mg/mL)
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Table 1. Cont.

Compound Chemical Structure Active against
(MIC/MBC Values)

Class of
Phytochemicals

Mechanism of
Action Ref.

Umbelliferone R. pseudosolanacearum
(MIC = 325 mg/mL)

Carvacrol Streptococcus pyogenes
(MIC = 125 µg/mL)

Terpenes

Disrupting cell
membrane integrity,
Inhibition of efflux

pump

[143–147]

Thymol B. cereus
(MIC = 0.625 mg/mL)

Soyasaponin V
Inhibition of the New

Dehli Metallo-β-
lactamase 1

Eugenol
E. coli

(MIC ranging from
0.0312 to 8 µg/mL)

Disrupting cell
membrane integrity

α-Pinene
H. pylori

( MIC ranged from
275 to 1100 µg/mL)

Limonene
Standard S. aureus

(MIC = 256 µg/mL) and resistant
P. aeruginosa (MIC = 512 µg/mL)

Menthol C. albicans
(MIC 90 were 1.6 to 25 µg/mL)

Farnesol Lactobacillus spp.
(MIC = 1500 µM)

Disrupting cell
membrane integrity [148–153]

Nerolidol

S. aureus (MIC = 1 mg/mL),
S. mutans (MIC = 4 mg/mL),

P. aeruginosa (MIC = 0.5 mg/mL),
and K. pneumoniae

(MIC = 0.5 mg/mL).

Carvone

Inhibiting the
transformation of

cellular yeast to the
filamentous

[154]
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Table 1. Cont.

Compound Chemical Structure Active against
(MIC/MBC Values)

Class of
Phytochemicals

Mechanism of
Action Ref.

Ursolic acid Carbapenem-resistant E. cloacae
(MIC = 0.1 mg/mL)

Disrupting cell
membrane integrity

and inhibition of
β-lactamase

[155,156]

α-Amyrin [157]

Cinnamaldehyde E. coli
(MIC = 780 µg/mL)

Disrupting cell
membrane integrity,

Decreasing
membrane potential,

and metabolic
activity

[158,159]

Artemisinin Free radicals
formation [160]

Linalool P. aeruginosa
(MIC = 431 µg/mL)

Disrupting cell
membrane integrity,

changing in the
nucleoid morphology,
and interfering with
cellular respiration

[161–163]

Sabinene Multi drug-resistant strains
(MIC ≥ 1024 µg/mL)

Disrupting cell
membrane integrity
and inhibiting DNA

synthesis

[164,165]

α-Terpineol E. coli
(MIC ≥ 0.78 µg/mL)

Lossing
membrane-bound
autolytic enzymes,

the cytoplasm
leakage and inability

to osmoregulate

[166,167]

Citronellol Trichophyton rubrum
(MIC values from 8 to 1024µg/mL)

Deteriorating
membrane integrity [168,169]

α-Bisabolol
Propionibacterium acnes

and S. epidermidis
(MIC = 75 and 37.5 µg/mL)

Disrupting cell
membrane integrity [170,171]

Gram-positive bacteria are commonly more susceptible to terpenes than Gram-negative
ones [172].
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Catteau et al. [157] obtained a dichloromethane extract from the leaf of the shea butter
tree (Vitellaria paradoxa) in which the triterpenic acids, ursolic acid (UA), and oleanolic acids
(OA) were identified as major constituents. Both of these compounds, in the presence of
β-lactams, restored the efficacy of the antibiotics against MRSA. UA proved more effective
than OA with MIC values of 8–16 mg/L and 32–128 mg/L for UA and OA, respectively.
Their ability to inhibit β-lactamase of living bacteria was observed among the different
mechanisms, but this was not evident in bacteria lysates, suggesting an indirect mechanism
was involved in the inhibition.

Horie et al. [144] reported the synergistic effects of soybean saponins on the antimi-
crobial activity of β-lactam antibiotics against S. aureus strains producing β-lactamases.
In the presence of crude saponins, there was a significant decrease in the activities of
β-lactamases, including the New Dehli Metallo-β-lactamase 1 (NDM-1). The latter had not
been reported to be inhibited by any of the current β-lactamase inhibitors. The individual
saponin components examined showed that the presence of 200 µg/mL soysaponin V sig-
nificantly (p < 0.001) inhibited NDM-1 compared to equivalent levels of either soysaponin I
or soysaponin B. The combination of soy saponins and β-lactam antibiotics was proposed
as a new therapeutic modality, particularly against bacteria encoding NDM-1. Table 1
shows the most prevalent natural antibacterial compounds with the related mechanism
of action.

4. Preclinical and Clinical Studies on Antibacterial Effects of Phytochemicals

Many antimicrobial herbal medicines show antimicrobial activities that may serve
as possible treatment alternatives to conventional antimicrobial regimens for infections
sensitive to conventional antibacterial agents and resistant strains of microorganisms.
As part of the efforts to broaden the employment of herbal medicines to treat infectious
diseases, preclinical and clinical testing guidelines for phytochemicals should ensure
consistency in formulation, efficacy, and safety. Finally, phytodrugs, original medications
obtained from medicinal plants, have been preclinically tested and then licensed in a
particular country through clinical trials. They are usually a complex of two or more
biologically active constituents.

Considering the vast number of natural compounds that have been identified in the
last two centuries, only a very small number of them have already been examined under
clinical trials. Also, at the same time, hundreds of similar projects are being performed in
preclinical evaluations in the clinical laboratory. Table 2 summarizes information about
some of the important herbal-derived products as antibacterial agents in human health care.

4.1. Concentrated Herbal Extract Granules TRA

Urinary tract infections (UTIs) are among the most common infections and are a
frequent reason for hospitalization and antimicrobial therapy. Increasing antimicrobial
resistance has stimulated interest in the non-antibiotic prevention of UTIs [173]. The stan-
dardized concentrated herbal extract granules TRA were used in the “Tokoro Combination”
and “Rehmannia and Akebia Formula” The product was prepared in small granules, includ-
ing concentrated herbal extract granules of "Tokoro Combination"(50%) and “Rehmannia
and Akebia Formula" (50%). The Ministry of Health and Welfare in Taiwan has already
approved both medicines as ethical drugs. The major components in this product were
diosgenin, yamogenin, betulin, oleanolic acid, hederagenin, akeboside, β-sitosterol, stig-
masterol, inositol, catalpol, glycyrrhizin, etc. Clinical trials.gov identifier (NCT number) of
this study is “NCT04272437”.

4.2. Uva Ursi Extract

Arctostaphylos uva-ursi (bearberry extract arbutin) has been traditionally used to treat
UTI symptoms. Antiseptic and antimicrobial properties of uva-ursi have been proved,
attributed to hydroquinones and tannins. Uva-ursi is concentrated in the urine and has
shown to be effective against bacteria causing UTIs 173]. It is safe, and only mild adverse
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events such as gastrointestinal complaints have been described previously. The detailed
investigation did not reflect any toxicity related to the ingestion of uva-ursi. Limited
clinical data from small studies suggest that uva-ursi effectively prevents UTIs in high-risk
patients [174,175]. Using uva-ursi as a first-line treatment option is effective in resolving
UTI symptoms and reducing antibiotic use. It also leads to favorable effects on resistance
rates. Clinical trials.gov identifier (NCT number) of this study is “NCT03151603”.

Table 2. Examples of t herbal-derived products as antibacterial agents in clinical trials or markets.

Compound or Product Sources or Ingredient Indications

Concentrated herbal extract granules TRA Traditional Chinese Medicine Urinary tract infections

Uva ursi extract Uva ursi Urinary tract infections

Monoselect Macrocarpon Vaccinium spp. Urinary tract infections

Anthocran Vaccinium spp. Urinary tract infections

Cysticlean Vaccinium spp. Urinary tract infections

UVA-E Arctostaphylos uva-ursi, Taraxacum officinale Urinary tract infections

Pylorin polyherbal formulation Helicobacter pylori Infection

Sanguiritrin Macleaya cordata and Macleaya microcarpa Acute intestinal infections and
wound infections

Eucalimin
Consisted of triterpene phenol aldehyde and

triterpenoid that isolated from foliage and shoots of
Eucalyptus Viminalis Labill

Pharyngitis, laryngitis, and sinusitis

Scutellaria baicalensis Georgi Scutellaria baicalensis Georgi Pathopyretic sores, ulcers or pustules

Houttuynia cordata Thunb Pseudorabies herpesvirus

Berberine Berberis vulgaris Gastrointestinal infections

Mastic Pistacia lentiscus resin H. pylori Infection

GutGard Glycyrrhiza glabra extract H. pylori Infection

Listerine eucalyptol, menthol, methyl salicylate, and thymol Oral infections

Parodontax
Commiphora myrrha, Echinacea purpurea, Krameria
triandra, and Matricaria recutita extracts; Mentha

arvensis, M. x Piperita and Salvia officinalis essential oils
Oral infections

Myrtol Citrus limon, Citrus sinensis, Eucalyptus globulus, and
Myrtus communis essential oils Chronic and acute bronchitis

Tea tree oil TTO, Melaleuca alternifolia essential oil Mild to moderate acne

4.3. Vaccinium spp.

Many researchers have suggested that cranberry, Vaccinium macrocarpon, is active
against UTIs. The plant belongs to the Ericaceae family and can be potentially active against
E. coli, the leading cause of bacteria-mediated UTIs, by reducing bacterial attaching to the
bladder’s walls. The bacteria are then more likely to be washed out during urination [176].
It could also inhibit the binding of bacteria to gastrointestinal mucosa [177]. Cranberry
contains proanthocyanidins that are stable phenolic compounds and contribute to the
anti-adhesion activity against E. coli. Therefore, by its consumption, the biofilm forma-
tion of Gram-negative and Gram-positive uropathogens such as S. aureus, P. aeruginosa,
K. pneumonia, and Proteus mirabilis was reduced [178,179].

Cranberry also contains other biologically active constituents like anthocyanidin,
catechin, flavanols, myricetin, quercetin, and phenolics, responsible for its activities [180].

Due to the health benefits of cranberry extract, different commercial formulations exist
in the market, such as Monoselect Macrocarpon, Anthocran, and Cysticlean. In acute situa-
tions, 2–3 capsules/tablets should be taken two to four times per day, and for prevention,
one capsule/tablet 2–3 times daily are recommended [181].

Blueberry, Vaccinium myrtillus, has also extensively been used to treat and prevent
UTI. Blueberry extracts contain similar constituents as cranberry extracts, with the extracts
possessing similar anti-adhesive activities against uropathogenic bacteria. The bacteria
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are significantly less able to adhere to the bladder walls. Tannins are the most active
constituents of blueberry extracts against UTI [182,183].

4.4. Sanguiritrin

Sanguiritrin is an original phytomedicine initially developed by scientists at the
Institute of Medicinal and Aromatic Plants (VILAR, Russia). It has been made from the
upper part of the plants Macleaya cordata and Macleaya microcarpa and has a different
alkaloid composition. It mainly comprises the bisulfates of two benzophenanthridine
alkaloids (sanguinarine and chelerythrine), isolated from the stems and leaves of these
plants [184,185]. In vitro studies showed that sanguiritrin in concentrations 1–100 µg/mL
could effectively suppress the growth of 130 laboratory strains of both Gram-positive and
Gram-negative bacteria [40].

Additionally, sanguiritrin was effective against isolated strains resistant to one or more
conventional antibiotics. Long-term exposure to this product and multiple passages of the
bacterium in its presence did not lead to the development of phytodrug resistance [40]. The
primary mechanism of antibacterial action of sanguiritrin is disruption of bacterial cell wall
integrity and nucleotide structures and suppression of bacterial nuclease [186]. Treatment
with sanguiritrin of S. aureus led to single or multiple perforations in the bacterial cell wall
and fragmentation [184].

In conclusion, sanguiritrin and other phytodrugs containing benzophenanthridine
alkaloids should be considered to treat infections caused by MDR bacteria.

4.5. Eucalimin

Eucalimin is a phytodrug constituent of triterpene phenol aldehyde and triterpenoid
isolated from foliage and shoots of Eucalyptus viminalis Labill [187]. The coupling of
phloroglucinol and sesquiterpene constituents is believed to be responsible for this and sim-
ilar products [188,189]. This product is effective against the growth of Gram-positive bacte-
ria, including clinical isolates of resistant bacteria. However, it was less effective against
Gram-negative bacteria and fungi [40]. The antibacterial activities of this product were
tested against both Gram-positive and Gram-negative bacteria, with the results showing
higher antibacterial activities against Gram-positive bacteria. Gram-positive clinically iso-
lates Staphylococcus (MIC 1.9–31.2 µg/mL), Streptococcus (Streptococcus pneumonia and
Streptococcus viridans, MIC 1.9–31.2 µg/mL, Streptococcus faecalis, MIC 0.5–1.9 µg/mL),
and Corynebacterium diphtheriae (MIC 3.9–62.5 µg/mL). Gram-positive clinically iso-
lates of Staphylococcus (MIC 1.9–31.2 µg/mL), Streptococcus (Streptococcus pneumonia and
Streptococcus viridans, MIC 1.9–31.2 µg/mL, Streptococcus faecalis, MIC 0.5–1.9 µg/mL),
Corynebacterium diphtheriae (MIC 3.9–62.5 µg/mL). These results demonstrated the high
sensitivity of Gram-positive bacteria to eucalimin. Only Gram-negative bacteria from
families of Acinetobacter and Enterobacteriaceae, Serratia genus, were relatively sensitive
to this product (MIC < 125 µg/mL) [40]. Clinical trials suggest that eucalimin is highly
efficacious in treating various conditions, including pharyngitis, laryngitis, sinusitis, otitis,
colpitis, and cervical erosion.

4.6. Scutellaria baicalensis Georgi

The radix of Scutellaria baicalensis Georgi (SB), is an important medicinal herb in
Japanese and Chinese pharmacopeia. It is traditionally used for inflammatory and infec-
tious diseases, including pathopyretic sores, ulcers, or pustules [190]. The antibacterial
functions of SB are due to the active compound baicalein [191]. The mechanism could affect
bacterial membrane penetrability, inhibit protein synthesis, and influence SDH, MDH, and
DNA topoisomerase I and II to exert antibacterial activities [54,192]. This compound is
effective against a wide range of pathogenic bacteria such as S. aureus, Streptococcus mutans,
S. pneumonia, E. coli, P. aeruginosa, Salmonella enterica, S. epidermidis, and Propionibacterium
acnes [193,194]. A study demonstrated that baicalein exhibited synergistic activities against
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some extended-spectrum β- lactamases positive K. pneumonia strains, especially when
combined with cefotaxime, inhibiting CTX-M-1 mRNA expression [195].

The mode of action in combination therapy showed that baicalein with antibiotics
caused peptidoglycan and morphological damage, increasing cytoplasmic membrane
permeability and protein concentrations and decreased cellular fatty acid and nucleic acid
concentrations [196].

The results of another study demonstrated that baicalein could remarkably reverse
the ciprofloxacin resistance of MRSA, possibly by inhibiting the NorA efflux pump activity.
The inhibition of MRSA pyruvate kinase via baicalein could also lead to a deficiency of
ATP, which might further contribute to the antibacterial properties of baicalein against
MRSA [197].

Arweiler et al. [198] compared the effects of toothpaste with SB extract (0.5%) with
placebo for treatment of gingivitis in 40 participants. The results showed that gingivitis
symptoms in the treated group significantly improved compared to the control group.

A study showed that baicalein combined with antibiotics resulted in a higher survival
rate in mice severely infected with S. suis. At the same time, baicalein can be combined
with meropenem against MRSA [199].

Another study showed that baicalein has synergistic antibacterial effects with linezolid
in the in vivo model against MRSA biofilms. Furthermore, the inhibitory effects were more
pronounced when baicalein was combined with linezolid [200].

4.7. Houttuynia Cordata Thunb.

Houttuynia cordata Thunb. (HC) is used to treat various diseases such as purulent, sup-
puration, sores, pustules, and respiratory infections in the Chinese pharmacopeia [40,201].
Houttuynin is the main antibacterial ingredient of HC. This compound and its deriva-
tives are used alone or combined with conventional antibiotics to combat infectious dis-
eases [202–204]. HC was found to exhibit anti-biofilm activities against MRSA by in-
hibiting interleukin-8 (IL-8) and C-C motif chemokine ligand 20 production in human
keratinocytes [205]. Kim et al. [206] suggested the HC extract could effectively treat intracel-
lular bacterial infections caused by Salmonella, Brucella, Listeria, Bordetella, and Helicobacter.
The essential oils of this plant, such as methyl nonyl ketone, bornyl acetate, and β- myrcene,
showed antibacterial properties [207]. Another study indicated that the flavonoids of HC
had suitable antibacterial activities on Bacillus subtilis. The possible antibacterial mechanism
is to disintegrate the cell wall, make the cell collapse, and cause content leakage [208].

HC injections were used to treat upper respiratory tract infections and pneumonia,
and the results demonstrated that HC injections showed better antipyretic effects than
antibiotics in adults [209].

An aqueous extract of HC exhibited virulence reduction activities in Salmonella ty-
phimurium-infected BALB/c mice. After a lethal dose of S. typhimurium, the mortality
rate in the untreated extract group was 100% on the 7th day. Still, at the doses of 25, 50,
and 100 µg/mL of extract, groups survived until 11, 17, and 23 days. These data suggest
that HC aqueous extract is stable and beneficial in treating bacterial infection, including
intracellular replicating pathogens [206].

4.8. Berberine

The emergence of antibacterial resistance highlights the need for new therapeutic ap-
proaches to ensure the continued effectiveness of conventional antibiotic therapy regimens.
Berberine is an alkaloid that has been widely used as an anti-infective agent in traditional
medicine. It possesses antibacterial activities against a wide range of microorganisms alone
or in combination with antibiotics routinely [210–212].

It was shown that the effective concentration of berberine is above 64 µg/mL because
of the poor absorption in oral consumption retained in the intestine, reaching a high con-
centration with distinct benefits for treating intestinal infectious diseases and diarrhea [213].
The encapsulated form of berberine in the yeast cell of Saccharomyces cerevisiae has also
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been shown to have higher stability and bioavailability due to the wall material acting as
a barrier, increasing solubility, and sustained release of active material. Berberine-loaded
microcapsules had improved MIC against E. coli and S. aureus compared to berberine
alone [214,215]. Berberine has different forms, but the most important ones with proper an-
tibacterial activities are hydrochloride, sulphate, and tannate [216]. Clinical studies showed
that a single administration of berberine tannate and its combination with sulfadimidine
and neomycin effectively treated acute infective diarrhea in experiments conducted with
55 and 127 children, respectively [217,218]. Compared with standard antibiotic therapy
regimens, the recovery of children with acute diarrhea was faster when administering
berberine tannate [219].

The hydrochloride form of berberine was found to be more effective than chloram-
phenicol in 356 and 264 individual cases of patients infected by cholera [35], and the
combination of berberine with chloramphenicol and streptomycin exhibited better cura-
tive actions on 129 cases of acute diarrheal disorders such as gastroenteritis and bacillary
dysentery [220,221].

Apart from the application of berberine in treating gastrointestinal infections, this
compound could combat other infections such as urinary tract infections. The in vivo tests
were conducted to assess the antibacterial activities of berberine on uropathogenic E. coli
strains. Galleria mellonella as an infection model was used to confirm berberine’s ability
to reduce bacterial adhesion and invasion proprieties of E. coli on human bladder cells.
The results indicated that increasing the surviving larvae infected with pathogens reduced
circulating uropathogenic E. coli strains in larvae hemolymph [210].

In another study, the efficacy and safety of berberine hydrochloride, amoxicillin, and
rabeprazole triple therapy versus bismuth-containing quadruple therapy (amoxicillin, clar-
ithromycin, rabeprazole, and bismuth) in the first eradication treatment of Helicobacter pylori
were assessed. It is hypothesized that berberine hydrochloride, amoxicillin, and rabepra-
zole triple therapy are non-inferior to bismuth-containing quadruple therapy. Clinical
trials.gov identifier (NCT number) of this study is “NCT04697186”.

4.9. Mastic

Mastic is a semi-translucent pastel yellow-to-white resin obtained from Pistacia lentis-
cus. It comprises polymer cis-1,4-poly-β- myrcene, triterpenoids, sterols, and simple
phenolics [216]. It also contains about 2% of an essential oil composed mainly ofα-pinene,
producing weak antibacterial activities against H. pylori. However, α-terpineol and (E)-
methyl isoeugenol, minor constituents of mastic essential oil, showed significant inhibitory
effects against H. pylori strains [222,223]. In addition, mastic extract containing arabino-
galactan proteins inhibited neutrophil activation and growth of H. pylori, suggesting its
role in eliminating helicobacter infections [224].

This compound has been used in various dietary supplements and traditional medicines
in different dosage forms such as capsules, oil extracts, and tablets for the protection and
treatment of gastrointestinal health, gastric ulcers, healing peptic, relief of gastric and
intestinal inflammation and also used as a natural treatment for H. pylori infections. In
recent decades, several clinical trials were performed to evaluate the effect of mastic in H.
pylori eradication. A double-blind clinical trial was carried out with 38 patients, and mastic
was given orally (1 g daily). After two weeks of consumption, the results showed that
relieving symptoms and healing duodenal ulcers were significantly more effective than
placebo [225]. Additionally, administering 350 mg of mastic three times a day for 14 days
to 52 patients demonstrated an effect on eradicating H. pylori [226]. The other study was
performed with five H. pylori-infected patients and three healthy controls who received
1 g of mastic daily for two months. The results showed the inhibitory effects on H. pylori
neutrophil-activating protein involved in H. pylori-related gastric pathologies [227].
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4.10. GutGard

GutGard encapsulated standardized root extract of Glycyrrhiza glabra contains flavonoids
(more than 10% w/w), mainly glabridin and glabrol, along with saponins (glycyrrhizin), and
phenylpropanoids (eicosanyl caffeate and docosyl caffeate). GutGard exhibited in vitro
anti-H. Pylori activities with MIC values ranging from 32 to 100 µg/mL. In addition,
glabridin has MIC values of 12.5 µg/mL against various strains, including clarithromycin
and amoxicillin-resistant [228,229]. Moreover, an aqueous extract of G. glabra significantly
inhibited the adhesion of H. pylori to human stomach tissue. Its anti-adhesive proper-
ties were related to the polysaccharides, which did not have direct toxic effects against
H. pylori [230].

This product could be used as an herbal supplement to combat H. pylori infections
and their symptoms. It is claimed that GutGard can reduce abdominal fullness and pain,
belching, bloating, dyspepsia, nausea, and H. pylori loading. It should be noted that
different regulatory agencies such as the Committee on Herbal Medicinal Products (HMPC)
of the European Medicines Agency (EMA) approve G. glabra root for the relief of digestive
symptoms, such as burning sensation and dyspepsia. A randomized, double-blind placebo-
controlled study with 107 H. pylori-infected patients received orally 150 mg of GutGard
once daily for 60 days. The results revealed a significant decrease in the H. pylori gastric
load compared to a placebo group, with the product safe and well-tolerated [231]. Other
clinical experiments carried out with deglycyrrhizinised G. glabra extract clearly showed
the product’s effectiveness in treating and preventing gastric ulcers [232,233].

4.11. Listerine

Listerine Antiseptic Mouthwash is one of the highest-selling products in the United
States and other markets. This product comprises essential oils from Eucalyptus spp.,
Gaultheria spp., Mentha × piperita, and Thymus vulgaris. It contains a mixture of their
main constituents, eucalyptol and thymol, responsible for the antimicrobial activities,
menthol and methyl salicylate, local anesthetic, and cleaning agent, respectively [234]. The
long-term plaque- and gingivitis-reducing properties of this product have been confirmed
in several clinical trials. For example, in a study by Sharma et al. [235], Listerine was
remarkably more effective in controlling gingivitis and plaque formation than the control
group. In another study, both Listerine and chlorhexidine mouthwashes significantly
reduced plaque formation and gingivitis compared to the control [236]. The superiority
of rinsing with Listerine in reducing plaque and gingivitis was demonstrated compared
to rinsing with cetylpyridinium chloride or hydroalcoholic (control) solutions [237]. The
ability of this product to reduce gingivitis- and plaque-reducing was also be found in other
similar studies [238,239].

4.12. Parodontax

Parodontax (GlaxoSmithKline, Brentford, UK) is a toothpaste (also available as a
mouthwash) composed of the extracts of Commiphora myrrha, Echinacea purpurea, Krame-
ria triandra, and Matricaria recutita together with the essential oils from Mentha arvensis,
M. x piperita, and Salvia officinalis. M. recutita and S. officinalis have been used traditionally
to treat minor ulcers and inflammations of the mouth and throat [216]. The in vitro antimi-
crobial activities of Parodontax and its herbal components, S. officinalis essential oil, were
tested. The results showed a significant effect against C. albicans with MIC values ranging
from 16 to 2780 µg/mL. The essential oil of another herbal ingredient, M. arvensis, also
inhibited the growth of Prophyromonas gingivalis in both planktonic and biofilm forms with
relatively high MBC values ranging from 6 and 26 mg/mL, respectively [240,241].

In a clinical study conducted with eight adult volunteers, this product significantly
reduced dental plaque regrowth after four days and plaque vitality over a period of 24 h
compared to a control group [242]. The efficacy of Parodontax on the reduction of plaque
and gingivitis was also demonstrated in a randomized, double-blind controlled study, a
28-day trial performed with 48 volunteers with established gingivitis [243]. In another
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study, the product showed antimicrobial activities against oral biofilms of different compo-
sitions (for example, of Actinomyces naeslundii and Streptococcus oralis) and maturational
status [244].

4.13. Myrtol

Myrtol, a herbal medical product, is sold in gelatin capsule form and is recommended
for reducing the risk of acute exacerbations from chronic bronchitis. A distillation procedure
obtains it from various essential oils such as Citrus limon, Citrus sinensis, E. globulus, and
M. communis. The monoterpenes D-limonene, eucalyptol, and α- pinene are the major
biological active substances in this product [216]. The product shows a wide range of
biological properties such as antimicrobial, mucociliary clearance, anti-inflammatory, and
antioxidant [245]. HMPC approves E. globulus leaves and essential oil as a traditional herbal
medicinal product used to relieve cough associated with cold. The product has proven
to effectively treat acute and chronic respiratory infections in both adults and children in
several clinical trials [246–248]. Myrtol was compared to prescription drugs cefuroxime
and ambroxol in the double-blind, placebo-controlled study with 681 patients suffering
acute bronchitis. The results showed it was superior to the control group and comparable
to the prescribed drugs for faster and more complete recovery [248].

4.14. Tea Tree Oil

One of the best-known examples of topical herbal antiseptics is tea tree oil (TTO). It is
composed of essential oil from M. alternifolia leaves. It is commonly sold in a pure form
and is part of cosmetic products, including antiseptic wipes, balms, body lotions, creams,
deodorants, gels, shampoos, and ointments [216]. HMPC approved TTO to treat small boils
(furuncles and mild acne), minor superficial wounds, and insect bites to relieve itching and
irritation. Several clinical trials demonstrated the antimicrobial properties of TTO against
various important bacterial skin infections, dermatophytes, and dandruff [249–251]. Two
clinical trials confirmed TTO activity against acne. 124 patients were randomly divided
into groups in the first trial and treated with 5% TTO and 5% benzoyl peroxide. Both
treatments had significant effects on reducing the number of lesions [249]. In another
clinical trial with 60 patients, the effect of 5% TTO gel was compared with the placebo
group. The TTO group was significantly more effective in reducing lesion count after
45 days, whereas the adverse effects were tolerable and similar to those of the placebo [250].
TTO 10% cream, 5% body wash, chlorhexidine 4%, and silver sulfadiazine 1% were used
for MRSA decolonization of superficial skin sites and skin lesions. This study indicated
that the TTO formulations were more effective than the drug control groups [251]. In a
randomized controlled trial with 391 patients, the 5% TTO body wash was able to prevent
MRSA colonization with respect to the standard non-medicated body wash. However,
there were no significant differences between the two groups; TTO was evaluated as safe
and well-tolerated [252]. In a randomized, double-blind clinical trial with 104 patients, the
efficacy of 10% w/w TTO cream in the treatment of athlete’s foot was compared with 1%
tolnaftate and placebo creams.TTO cream reduced the symptomatology of the athlete’s
foot as effectively as tolnaftate [253].

5. Conclusions

New resistant bacterial strains have led to a paradigm shift from conventional antibi-
otic therapy to alternative approaches. Plants represent an attractive source of antimicrobial
agents with therapeutic potential as alternatives or potentiators of antibiotics. The high
chemical diversity of active constituents found in plants makes them a potential source of
antibacterial agents. To this end, identifying new and valuable antibacterials from plants
and testing their antibacterial properties are crucial and need to be carefully studied. Two
reasons may play pivotal roles among several reasons to employ herbal-derived com-
pounds for combating bacterial infections. First, these compounds could provide other
mechanisms of antibacterial action with respect to conventional antibiotics. Second, the
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use of unique traditional knowledge of herbal medicine provides the excellent potential to
generate biocompatible, cost-effective, and promising solutions and will hasten the discov-
ery of new antibacterial agents. Therefore, in silico, in vitro, and in vivo tests and models
have been developed to evaluate phytomedicines’ antibacterial activities, mechanism of
action, and biological fate. Understanding their mechanisms of action helps us choose the
appropriate phytomedicine for a specific situation and particular microorganism.

Despite the rapid increase in publications on antibacterial plant compounds, few
plant-derived drugs are still in clinical use. This might be because phytomedicines often
require complex combinational effects between their bioactive compound to synergize the
activities of their components. Therefore, examining combinations of plant compounds
with conventional antibiotics may be a more fruitful line of research.
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