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The paradox-breaking panRAF plus SRC family kinase inhibitor, CCT3833, is
effective in mutant KRAS-driven cancers
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Background: KRAS is mutated in w90% of pancreatic ductal adenocarcinomas, w35% of colorectal cancers and w20%
of non-small-cell lung cancers. There has been recent progress in targeting G12CKRAS specifically, but therapeutic options
for other mutant forms of KRAS are limited, largely because the complexity of downstream signaling and feedback
mechanisms mean that targeting individual pathway components is ineffective.
Design: The protein kinases RAF and SRC are validated therapeutic targets in KRAS-mutant pancreatic ductal
adenocarcinomas, colorectal cancers and non-small-cell lung cancers and we show that both must be inhibited to
block growth of these cancers. We describe CCT3833, a new drug that inhibits both RAF and SRC, which may be
effective in KRAS-mutant cancers.
Results: We show that CCT3833 inhibits RAF and SRC in KRAS-mutant tumors in vitro and in vivo, and that it inhibits
tumor growth at well-tolerated doses in mice. CCT3833 has been evaluated in a phase I clinical trial (NCT02437227) and
we report here that it significantly prolongs progression-free survival of a patient with a G12VKRAS spindle cell sarcoma
who did not respond to a multikinase inhibitor and therefore had limited treatment options.
Conclusions: New drug CCT3833 elicits significant preclinical therapeutic efficacy in KRAS-mutant colorectal, lung and
pancreatic tumor xenografts, demonstrating a treatment option for several areas of unmet clinical need. Based on these
preclinical data and the phase I clinical unconfirmed response in a patient with KRAS-mutant spindle cell sarcoma,
CCT3833 requires further evaluation in patients with other KRAS-mutant cancers.
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INTRODUCTION

Lung cancer [w90% of which are non-small-cell lung cancers
(NSCLC)] is themost common cancer worldwide and in the UK
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has a 5-year overall survival (OS) of only 15%.1,2 Colorectal
cancer (CRC) is the third most common cancer1 and in the UK
has a 5-year OS of 60%2, and pancreatic ductal adenocarci-
noma (PDAC) is the tenth most common cancer in the UK and
has the poorest prognosis with 5-year OS of only 5%.2 These
poor survival rates are partly due to a lack of treatment op-
tions. Surgery is the preferable treatment of NSCLC, PDAC and
CRC, butmost patients present late with inoperable advanced
disease and so receive systemic therapy.3,4 Targeted therapies
are licensed for NSCLC (EGFR, ALK, ROS1 indications) and CRC
(KRAS wild-type), but KRAS-mutated cancer remains an area
of unmet clinical need. Critically, KRAS is mutated in w20%
NSCLC,w90% PDAC andw35% CRC.5 These patients receive
conventional chemotherapy or immunotherapy, often with
limited efficacy and potential toxicity4,6,7 except for KRAS-
mutant NSCLC patients who benefit from immune check-
point inhibitors compared with KRAS wild-type patients.8,9
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Thus, although RAS (KRAS, NRAS, HRAS) is mutated in
w25% of all cancers, treatment of these patients is chal-
lenging.10 Notably, direct inhibitors of KRAS are limited to
the p.G12C KRAS-mutant,11-13 so an alternative is to target
downstream effectors in the RAF/MEK/ERK pathway, which
has led to the development of RAF, MEK and ERK drugs.14

However, in KRAS-mutant cells, BRAF-selective drugs such
as vemurafenib (PLX4032) and dabrafenib15 cause para-
doxical hyperactivation of the RAF-ERK pathway through
formation of BRAF-CRAF homo- and hetero-dimers.16 Un-
fortunately, targeting MEK downstream of RAF with drugs
such as trametinib17 is ineffective in KRAS-mutant cancers
because of feedback mechanisms18 and adverse side-ef-
fects,19 and therefore these drugs have been unsuccessful
in KRAS-mutant PDAC, CRC and NSCLC.20,21

With a pressing need for different approaches for KRAS-
mutant cancers, here we describe a new drug for this indi-
cation. The protein kinase SRC is a master regulator of cancer
cell proliferation, metastasis and invasion, and it also poten-
tiates cancer processes such as neo-angiogenesis.22 SRC-
family kinases (SFKs) are associated with pathogenesis of
many cancers, particularly late-stage disease, where its
increased activity and expression are associated with disease
progression and poorer prognosis. Critically, SRC is a validated
target in KRAS-mutant CRC,23 PDAC22,24 and NSCLC22,25 and it
is known that G12CKRAS and SRC inhibitors work synergistically
to inhibit G12CKRAS NSCLC cell proliferation.26

In this study, we describe CCT3833, a new combined
panRAF and SRC inhibitor. We show that CCT3833 does not
drive paradoxical activation of the RAF/MEK/ERK pathway
in KRAS-mutant cells and that its ability to exert dual inhi-
bition of RAF and SRC provides effective therapy in pre-
clinical KRAS-mutant PDAC, CRC and NSCLC models. We
show that CCT3833 is superior to single-agent panRAF or
SRC inhibitors and comparable with combination panRAF þ
SRC inhibitors in standard two-dimensional tissue culture
and more significantly, in three-dimensional spheroids,
which are of intermediate complexity between standard
monolayer cultures in vitro and tumors in vivo.

Importantly, CCT3833 has been investigated in a phase I
dose-escalation clinical trial (NCT02437227) including 31
patients with solid tumors, of whom at least 10 were known
to be KRAS-mutant. We report an unconfirmed partial
response and prolonged clinical benefit from CCT3833 in
one of these patients, diagnosed with a KRAS-mutant
spindle cell sarcoma. This was the only patient with an
unconfirmed partial response on trial. Spindle cell sarcomas
are connective tissue tumors characterized by spindle-
shaped cells, and are typically treated with anthracyclines,
but with limited and variable responses.27 Here, we
describe a patient with a spindle cell sarcoma presenting a
p.G12V KRAS mutation. The patient displayed early disease
progression following surgical resection, was not a candi-
date for doxorubicin chemotherapy and did not respond to
the multikinase inhibitor pazopanib. Despite being in the
dose escalation phase, CCT3833 achieved a progression-free
survival (PFS) of >10 months, and we provide compre-
hensive analysis of the mechanism of action of CCT3833 in
270 https://doi.org/10.1016/j.annonc.2020.10.483
KRAS-mutant cancers to reveal how this patient and others
could benefit from this agent.

MATERIALS AND METHODS

Cell culture

Cell lines were cultured under standard conditions. Human
PDAC cell lines (except for MIA-PaCa2) were a gift from
Dr Claus Jorgensen, Calu-1 and H460 cells were a gift from
Dr Michela Garofalo and H2009 NSCLC cells were a gift
from Dr John Brognard. All other human cell lines were
from the American Type Culture Collection (ATCC). Short
tandem repeat profiles were routinely compared with
known ATCC fingerprints and cells were routinely ensured
to be mycoplasma free by PCR. Mouse KPC PDAC cells were
a gift of Professor Owen Sansom, or were isolated and
established in house from transgenic mice as described.24

Cells were cultured in Dulbecco’s modified Eagle’s Me-
dium or RPMI-1640 medium supplemented with 10% fetal
bovine serum and 1% penicillin/streptomycin. Short-term
growth inhibition assays, long-term cell proliferation as-
says and tumor spheroid assays were carried out as detailed
in Supplementary Methods, available at https://doi.org/
10.1016/j.annonc.2020.10.483. A list of the cell lines used
and their KRAS status is detailed in Supplementary Table S1,
available at https://doi.org/10.1016/j.annonc.2020.10.483.
Mouse allograft/xenograft studies

All animal procedures were carried out in accordance with
National Home Office regulations under the Animals (Sci-
entific Procedures) Act 1986 under license PPL-70/7635 and
PPL-70/7701 and within guidelines set out by the CRUK
Manchester Institute and The Institute of Cancer Research
Animal Welfare and Ethical Review Bodies, and described in
accordance with Animal Research: Reporting of In Vivo Ex-
periments (ARRIVE) guidelines. In vivo efficacy and phar-
macodynamics studies were carried out as detailed in
Supplementary Methods, available at https://doi.org/10.
1016/j.annonc.2020.10.483.
Statistics

For graphs, mean values are shown and error bars represent
standard error of the mean unless stated otherwise, (*) P �
0.05 (Student’s or Welch’s t-test as indicated). All in vitro
experiments were carried out in triplicate unless otherwise
stated.

RESULTS

CCT3833 is a panRAF plus SFK inhibitor

CCT3833, (1-[3-tert-butyl-1-[(3-fluoro-phenyl)-1H-pyrazol-5-
yl]3-[2-fluoro-4(3-oxo-3,4-dihydropyrido[2,3-b]pyrazin-8-
yloxy)phenyl]urea; Figure 1A) is a panRAF inhibitor that
inhibits V600EBRAF at 34 nM and CRAF at 33 nM (Figure 1B,
Supplementary Table S2, available at https://doi.org/10.
1016/j.annonc.2020.10.483). In selectivity screens
CCT3833 is mostly inactive against other kinases, with the
Volume 32 - Issue 2 - 2021
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Figure 1. CCT3833 is a panRAF/SRC inhibitor active in KRAS-mutant cells.
(A) CCT3833 chemical structure. (B) In vitro enzyme assay for V600EBRAF or CRAF and (C) SRC or LCK incubated with increasing concentrations of CCT3833. (D) CCT3833
docked into BRAF binding site (pdb4JVG). Inset, detailed CCT3833 interactions with allosteric site (top), ATP binding site (bottom) of BRAF (turquoise). (E) CCT3833
docked into CRAF binding site (homology model derived from pdb4JVG) (orchid). Inset, CCT3833 interactions with allosteric site (top), ATP binding site (bottom). (F)
CCT3833 docked into SRC binding site (pdb4AGW) (green). Inset, interactions of CCT3833 with allosteric site (top) and ATP binding site (bottom). (G) Immunoblot for
ppERK/ERK and ppSFK/SRC in HCT-116 and A549 cells after 4 h with dimethyl sulfoxide (first lane) or CCT3833 (0.6, 1.2, 2.5, 5, 10 mM respectively). LCK, lymphocyte-
specific protein tyrosine kinase; SFK, SRC-family kinase.
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important exception of SFKs (Supplementary Figure S1A,
available at https://doi.org/10.1016/j.annonc.2020.10.483)
with SRC inhibition at 27 nM inhibition of the SFK
lymphocyte-specific protein tyrosine kinase at 19 nM
(Figure 1C, Supplementary Table S2, available at https://doi.
org/10.1016/j.annonc.2020.10.483).

Docking studies predict that CCT3833 is a type II inhibitor
that binds to the inactive ‘DFG-out’ conformation of
BRAF,28 and to CRAF and SRC through similar mechanisms
(Figure 1D-F). Specifically, the pyridopyrazinone moiety is
predicted to interact with the kinase hinge, the central ar-
omatic ring occupies the ATP binding pocket and the pyr-
azole ring elaborates into an allosteric site created by the
DFG moving into the ‘out’ conformation (Figure 1D-F).
Moreover, the tert-butyl group is predicted to elaborate
into a hydrophobic pocket and the terminal fluoro-
substituted phenyl ring points towards the activation loop
in all three kinases (Figure 1D-F). These binding similarities
indicate how CCT3833 inhibits both RAF and SRC and we
confirm that CCT3833 inhibits both ERK (ppERK; down-
stream of CRAF) and SFK (ppSFK) phosphorylation in a dose-
dependent manner in HCT-116 (CRC), A549 (NSCLC)
(Figure 1G) and MIA-PaCa2 (PDAC) cells (Supplementary
Figure S1B, available at https://doi.org/10.1016/j.annonc.
2020.10.483). Our docking studies predict a steric clash
would occur between the pyridopyrazinone moiety of
CCT3833 and a T338I (the so-called gatekeeper residue)
Volume 32 - Issue 2 - 2021
substitution in chicken SRC (Supplementary Figure S2A,
available at https://doi.org/10.1016/j.annonc.2020.10.483)
and accordingly, we show that CCT3833 inhibits wild-type
SRC but not T341ISRC (the human equivalent of T338I) in
either HEK-293 or HCT-116 cells (Supplementary Figure S2B-E,
available at https://doi.org/10.1016/j.annonc.2020.10.483),
supporting our predictions for binding mechanism.
CCT3833 inhibits KRAS-mutant cancer cell growth

The data above show that CCT3833 is a panRAF inhibitor that
also inhibits SRC. Notably, RAF and SRC are validated targets in
RAS-mutant cancers, because RAF signals downstream of
oncogenic KRAS, and SFKs drive cancer cell proliferation and
survival. Accordingly, we show that CCT3833 is active against a
panel of KRAS-mutant PDAC, CRC and NSCLC cell lines,
whereas it is less potent against KRAS/BRAF wild-type cells
(Figure 2A, Supplementary Table S1, available at https://doi.
org/10.1016/j.annonc.2020.10.483). Moreover, compared
with other RAF inhibitors, in short-term growth assays
CCT3833 inhibits HCT-116 growth more potently than the
clinically evaluated panRAF inhibitors TAK-632, ARQ736 and
MLN-2480 (Figure 2B, Supplementary Figure S3A, available at
https://doi.org/10.1016/j.annonc.2020.10.483). We also
show that CCT3833 is more effective than the multikinase
inhibitor sorafenib or the BRAF-mutant selective inhibitors
PLX4720 and dabrafenib, and that only the MEK inhibitor
https://doi.org/10.1016/j.annonc.2020.10.483 271
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Figure 2. CCT3833 is active in KRAS-mutant cells via on target modulation.
(A) CCT3833 GI50s in KRAS-mutant and D24WTKRAS cell lines. (B-D) Proliferation of HCT-116 (B), SW620 (C), A549 (D) cells treated with increasing concentrations of the
indicated drugs. (E) Immunoblot for ppERK/ERK and ppSFK/SRC in HCT-116, SW620 and A549 cells after 4 h with dimethyl sulfoxide (DMSO) (CTL), PLX4720, CCT3833,
sorafenib, TAK-632 (all at 1 mM), or trametinib (20 nM). SFK, SRC-family kinase.
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trametinib is more potent than CCT3833 at inhibiting HCT-116
cells (Figure 2B, Supplementary Figure S3A, available at
https://doi.org/10.1016/j.annonc.2020.10.483). We observe
similar responses in SW620 (CRC; Figure 2C, Supplementary
Figure S3B, available at https://doi.org/10.1016/j.annonc.
2020.10.483), A549 (Figure 2D), MIA-PaCa2 (Supplementary
Figure S3C and D, available at https://doi.org/10.1016/
j.annonc.2020.10.483) and Calu-1 cells (NSCLC, Supple-
mentary Figure S3E, available at https://doi.org/10.1016/
j.annonc.2020.10.483), where CCT3833 inhibits growth
more effectively than all other RAF inhibitors, with only tra-
metinib being significantly more potent.

Although the panRAF inhibitor TAK-632, and the BRAF
inhibitors PLX4720 and dabrafenib inhibit BRAF more
potently than CCT3833 in in vitro enzyme assays, CCT3833 is
more potent at inhibiting KRAS-mutant cancer cell growth,
so we examine downstream signaling. In HCT-116, SW620,
A549, MIA-PaCa2 and Calu-1 cells, PLX4720 induces para-
doxical activation of the ERK pathway and although sor-
afenib and TAK-632 inhibit ppERK, they are less potent than
CCT3833 in their ability to do so (Figure 2E, Supplementary
Figure S3F-G, available at https://doi.org/10.1016/j.
annonc.2020.10.483). Note also that PLX4720, sorafenib
and TAK-632 do not inhibit ppSFK in these cells, whereas
CCT3833 potently inhibits ppSFK (Figure 2E, Supplementary
272 https://doi.org/10.1016/j.annonc.2020.10.483
Figure S3F-G, available at https://doi.org/10.1016/j.
annonc.2020.10.483). Finally, although trametinib inhibits
ppERK more effectively than CCT3833 in these cells, unlike
CCT3833 it fails to inhibit ppSFK (Figure 2E, Supplementary
Figure S3F-G, available at https://doi.org/10.1016/j.
annonc.2020.10.483).
RAF and SFK must both be inhibited to block KRAS-mutant
cancer growth

Thus, CCT3833 inhibits both CRAF and SRC in KRAS-mutant
cancers and so we investigate the contribution of these two
activities to the inhibition of long-term cell growth.
We show that CCT3833 induces significant caspase-3/7
activation, whereas PLX4720, sorafenib, trametinib and
TAK-632 do not activate caspase-3/7 to the same extent
(Figure 3A, Supplementary Figure S3H, available at https://
doi.org/10.1016/j.annonc.2020.10.483). Accordingly, in
long-term clonogenic proliferation assays, only CCT3833
fully inhibits HCT-116, SW620, A549 and MIA-PaCa2 cell
growth, whereas colonies are still evident with PLX4720,
sorafenib, TAK-632 and also trametinib (Figure 3B,
Supplementary Figure S3I and J, available at https://doi.
org/10.1016/j.annonc.2020.10.483). These findings are
confirmed in two additional human PDAC cell lines
Volume 32 - Issue 2 - 2021
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(Supplementary Figure S4, available at https://doi.org/10.
1016/j.annonc.2020.10.483). Note also that the inhibitors
are used at doses to reflect safe plasma exposure achiev-
able in vivo. Thus, trametinib is used at 20-30 nM, the
maximum tolerated patient plasma concentration,17,29

whereas CCT3833 is used at 1 mM, below the well-
tolerated mouse plasma concentration in vivo (vide infra).

To assess whether it is necessary to inhibit both ERK and
SRC pathways in KRAS-mutant cells, we combine known
panRAF and SRC inhibitors. As shown earlier, TAK-632 in-
hibits ppERK but not ppSFK and conversely, we show that
the SRC inhibitor saracatinib inhibits ppSFK but not ppERK
(Figure 4A). Moreover, together these agents mimic the
effects of CCT3833 (Figure 2E) and inhibit both ppERK and
ppSFK (Figure 4A). In long-term clonogenic growth assays,
neither TAK-632 nor saracatinib alone inhibit colony for-
mation, whereas together they do inhibit colony formation,
both in HCT-116 cells and in H23 lung adenocarcinoma cells,
again mimicking the effects of CCT3833 alone (Figure 4B,
Supplementary Figure S5A, available at https://doi.org/10.
1016/j.annonc.2020.10.483). We also assess another SRC
inhibitor, bosutinib. Alone, bosutinib does not activate
caspase-3/7, but it co-operates with TAK-632 to activate
these pro-apoptosis enzymes (Figure 4C) mimicking the
effect of CCT3833 alone. Moreover, TAK-632 and bosutinib
co-operate to inhibit the short-term growth of HCT-116,
SW620 (Figure 4D-E), A549 and MIA-PaCa2 cells
(Supplementary Figure S5B, available at https://doi.org/
Volume 32 - Issue 2 - 2021
10.1016/j.annonc.2020.10.483), again mimicking the effect
of CCT3833 alone. Notably, the combinations of saracatinib
plus TAK-632 or bosutinib plus TAK-632 both inhibit the
growth of SW620 tumor spheroids similarly to CCT3833
alone, whereas the response to the single agents is signif-
icantly less (Figure 4F).
CCT3833 inhibits KRAS-mutant tumor growth

Next, we assess CCT3833 in vivo. We show that CCT3833
has good oral bioavailability in mice, excellent pharmaco-
kinetic properties (Figure 5A, Supplementary Table S3,
available at https://doi.org/10.1016/j.annonc.2020.10.483),
achieves plasma and tumor concentrations well above the
GI50 for the target cancer cells and does not accumulate
following daily oral doses (Supplementary Table S3,
available at https://doi.org/10.1016/j.annonc.2020.10.483,
Figure 2A).

We tested CCT3833 in a mouse model of PDAC driven by
oncogenic KRAS and inactivating mutation of the tumor
suppressor TP53 (KPC cells24). We confirm, commensurate
with our human cell observations, that, CCT3833 is more
effective than the other pathway inhibitors apart from
trametinib at blocking KPC cell growth in short-term pro-
liferation assays, but only CCT3833 completely abrogates
growth of these cells in long-term assays (Figure 5B and C,
Supplementary Figure S6A and B, available at https://doi.
org/10.1016/j.annonc.2020.10.483). Accordingly, CCT3833
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is more potent at inducing caspase-3/7 activation
(Supplementary Figure S6C and D, available at https://doi.
org/10.1016/j.annonc.2020.10.483). We show CCT3833
blocks ERK and SFK phosphorylation and suppresses tumor
growth in KPC cells grown as allografts in mice (Figure 5D-F,
Supplementary Figure S7A, available at https://doi.org/10.
1016/j.annonc.2020.10.483). Critically, CCT3833 inhibits a
human KRAS-mutant PDAC patient-derived xenograft
(PDX)(Figure 5G, Supplementary Figure S7B, available at
https://doi.org/10.1016/j.annonc.2020.10.483).

Importantly, we show that CCT3833 is effective in other
human KRAS-mutant cells in vivo. It inhibits ppERK and
ppSFK in SW620 xenografts and suppresses the growth of
these CRC tumors in immunocompromised mice (Figure 5H
and I, Supplementary Figure S7C and D, available at https://
doi.org/10.1016/j.annonc.2020.10.483). Finally, CCT3833
also inhibits ppERK and ppSFK in lung A549 cells and more
importantly, at doses that are well tolerated in mice
274 https://doi.org/10.1016/j.annonc.2020.10.483
(Supplementary Figure S8, available at https://doi.org/10.
1016/j.annonc.2020.10.483), CCT3833 inhibits ERK and
SRC, and causes regression of A549 tumors xenografts in
mice (Figure 5J and K), and it mediates a significant
reduction in the size of foci in the A549 pseudo metastasis
tail vein injection model (Supplementary Figure S7E-I,
available at https://doi.org/10.1016/j.annonc.2020.10.483).
CCT3833 improves progression-free survival in a patient
with G12VKRAS spindle cell sarcoma

A previously fit patient aged in their 70s presented with a 1
year history of non-specific symptoms and was diagnosed
with a large intra-abdominal mass associated with the
pancreas and invading into the liver parenchyma
(Figure 6A). This was resected and histopathological
assessment revealed a lobulated tumor composed of ill-
defined fascicles of spindle cells, with oval to elongated
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Figure 5. In vivo efficacy of CCT3833 in PDAC, CRC and NSCLC.
(A) CCT3833 pharmacokinetics studies carried out in BALB/c mice: plasma concentrations at timepoint 18 h show concentration of w1 mM when administered by oral
gavage. P.O. ¼ oral administration (10 mg/kg); I.V. ¼ intravenous administration (2 mg/kg) in 5% dimethyl sulfoxide (DMSO), 95% water. (B) Proliferation for KPC mouse
cells with different drugs. (C) Long-term proliferation of KPC cells, 9 days with DMSO (CTL), CCT3833, TAK-632 (all at 1 mM), trametinib (20 nM). (D) Immunoblot
quantification of ppERK/ERK in tumors from the biomarker study in KPC allografts, by oral gavage (p.o.) 4 days with vehicle control (5% DMSO/water), PLX4720 90 mg/kg
or CCT3833 (40 mg/kg). See Supplementary Figure S7A, available at https://doi.org/10.1016/j.annonc.2020.10.483, for the blots, *P � 0.05 Student’s t-test. (E)
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moderately pleomorphic nuclei, pale eosinophilic cytoplasm
and up to 9 mitoses per 10 high powered fields, later
classified as a spindle cell sarcoma NOS (not otherwise
specified). Immunohistochemistry was diffusely positive for
CD34, but negative for other markers including S-100,
SOX10, DOG1, CD117, SMA, desmin, AE1-3, EMA, CD21 and
CD23. Moreover, the tumor was negative for the NAB2-
STAT6 fusion transcripts.

One year after tumor resection, the patient presented
with a multifocal intra-abdominal recurrence, which was
inoperable. Although it was later diagnosed as spindle cell
sarcoma, due to some histopathological features, it was
276 https://doi.org/10.1016/j.annonc.2020.10.483
treated as a malignant solitary fibrous tumor. The patient
commenced on the multikinase inhibitor pazopanib, but
had extensive disease progression at first radiological
assessment after only 12 weeks of treatment (Figure 6A and
B, Table 1, Supplementary Table S4, available at https://doi.
org/10.1016/j.annonc.2020.10.483). The patient was not a
candidate for doxorubicin chemotherapy and molecular
testing was carried out using a 19-gene MassArray assay
(Sequenom Oncocarta v1.0, San Diego, CA), which revealed
a KRAS C35G>Tp.Gly12Val mutation, so the patient was
enrolled on to the phase I trial of CCT3833 (NCT02437227)
and was allocated to the lead-in dose CCT3833 (75 mg once
Volume 32 - Issue 2 - 2021
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Table 1. Patient scan marker lesion measurements (RECIST version 1.1) at baseline and on treatment.

Weeks from diagnosis Drug Cycle Lesion1 Lesion2 Lesion3 Lesion4 Lesion5 Total (cm) % Change

62.7 e 0 1.5 2.2 3.0 1.0 0.5 8.2a 0
75.7 Pazopanib 3 2.2 2.5 4.0 1.5 0.9 11.1 þ35
95.9 e 0 3.3 3.1 4.7 2.1 1.0 14.2a 0
104.3 CCT3833 2 2.9 3.7 4.5 2.0 0.9 14.0 �1
112.3 CCT3833 4 2.9 3.4 4.2 2.3 0.5 13.3 �6
118.6 CCT3833 6 2.6 2.7 4.1 2.4 0.5 12.3 �13
128.3 CCT3833 8 1.7 2.2 3.6 2.0 0.5 10.0b �30
138.6 CCT3833 10 1.7 2.7 4.5 2.9 0.0 11.8 þ18
143.3 CCT3833 11 1.8 3.0 4.8 3.2 0.0 12.8 þ28

a Baseline measurements.
b Nadir.
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a day, continuous dosing). Scans were taken at baseline and
every 8 weeks during CCT3833 treatment (Figure 6B). In
stark contrast to the progression seen with pazopanib, each
of the scans after commencing CCT3833 treatment show
stable disease with achievement of an unconfirmed partial
response after eight cycles as defined by RECIST 1.1
(Figure 6B, Table 1, Supplementary Table S4, available at
https://doi.org/10.1016/j.annonc.2020.10.483). As a non-
RECIST progression was seen on imaging after cycle 10,
the patient underwent intrapatient dose escalation to 300
mg once daily, but a scan on cycle 11 (Table 1) confirmed
RECIST disease progression and the patient discontinued
treatment on day 17 of cycle 12.

DISCUSSION

Herein, we report that the new inhibitor, CCT3833, medi-
ated an unconfirmed partial response in a patient with
aggressive KRAS-mutant spindle cell sarcoma who was not
eligible for surgery or chemotherapy, and who did not
respond to the multikinase inhibitor pazopanib. Despite
being in the dose-escalation phase of the clinical trial
(NCT02437227), at 75 mg p.o. qd continuous dosing of
CCT3833, the patient achieved progression-free survival for
8 months, and did not progress until the 12th cycle of
treatment. Together with our preclinical data, this indicates
that CCT3833 has potential for the treatment of KRAS-
mutant tumors. Specifically, our preclinical data demon-
strate that CCT3833 is effective in KRAS-mutant CRC, NSCLC
and PDAC due to its dual anti-panRAF plus anti-SRC activity.
RAF is a validated target directly downstream of oncogenic
RAS, and SRC is also a validated therapeutic target in CRC,
NSCLC and PDAC, where it is hyperactivated and drives
cell proliferation and metastasis.22-25 Accordingly, SRC in-
hibitors cooperate with drugs that target the EGFR/RAS
pathway.26,30,31

Our findings that CCT3833 inhibits the growth of KRAS-
driven murine PDAC in vitro, and in vivo, are aligned to the
literature, validating SRC as a therapeutic target in PDAC,
where its overexpression or hyperactivation are markers of
poor clinical outcome.24 Moreover, SRC inhibitors are active
in preclinical PDAC models and achieve minor clinical re-
sponses in PDAC patients.22 SRC is similarly overexpressed
or hyperactivated in CRC23 and moreover, BRAF-mutant CRC
cells can switch between RAF/MEK/ERK and receptor tyro-
sine kinase signaling,32 so cell growth is only prevented
Volume 32 - Issue 2 - 2021
when both pathways are inhibited. This plasticity may
explain the shorter duration of response to BRAF and MEK
inhibitors in CRC21 and may also underpin why mutant KRAS
opposes the antitumor effects of EGFR inhibitors in CRC.33

Notably, MEK and EGFR inhibitors cooperate to block
EGFR inhibitor-resistant CRC tumor growth,33 and we pro-
pose therefore that CCT3833 is effective in CRC because it
targets the two key pathways downstream from mutant
RAS and the hyperactivated receptor tyrosine kinases such
as EGFR. Similarly, synergistic efficacy has been shown
in vivo by inhibiting the MAPK pathway plus SRC in KRAS/
PIK3CA double-mutant CRC cells.34

Finally, SRC and ERK signaling are both critical for the
growth of KRAS-mutant NSCLC.20,25 Clinical trials with tra-
metinib in KRAS-mutant NSCLC patients, alone or in com-
bination with chemotherapy, show that single agent MEK
inhibitors achieve no improvement compared with
chemotherapy and that toxicity limits their clinical use in
combination.19,20 Again, we posit that CCT3833 is effective
in NSCLC because of its ability to simultaneously inhibit SRC
and ERK signaling. Critically, CCT3833 mediates tumor
regression in G12SKRAS-mutant NSCLC xenografts, so it could
be considered for treatment of KRAS-mutant NSCLC pa-
tients who fail chemotherapy and/or immunotherapy.

In summary, we describe the discovery of CCT3833, a
new panRAF/SRC inhibitor, and show that it is effective in
KRAS-mutant cancer models, because RAF and SRC are
central nodes in KRAS-mutant cancers. CCT3833 differs from
the RAF dimer inhibitor LY300912035 because it also inhibits
SRC and is effective in PDAC.We posit that CCT3833 inhibits
tumor growth in RAS-mutant models through on-target in-
hibition of BRAF and CRAF, and additional on-target inhi-
bition of SRC. Critically, CCT3833 induces tumor cell death
and elicits therapeutic efficacy at well-tolerated doses in
mice, and it is evaluated in patients in a phase I clinical trial,
achieving a proof-of-concept unconfirmed clinical response
in a patient with aggressive KRAS-mutant spindle cell sar-
coma who was not eligible for other treatments. Taken
together, our data support the further clinical evaluation of
CCT3833 in patients with KRAS-mutant cancers.
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