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Abstract
The low incidence of pediatric severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and the asso-
ciated multisystem inflammatory syndrome (MIS-C) lack a unifying pathophysiological explanation, impeding effective 
prevention and therapy. Activation of the NACHT, LRR, and PYD domains-containing protein (NLRP) 3 inflammasome 
in SARS-CoV-2 with perturbed regulation in MIS-C, has been reported. We posit that, early age physiological states and 
genetic determinants, such as certain polymorphisms of renin-angiotensin aldosterone system (RAAS) molecules, promote 
a controlled RAAS hyperactive state, and form an evolutionary landscape involving an age-dependent erythropoietin (EPO) 
elevation, mediating ancestral innate immune defenses that, through appropriate NLRP3 regulation, mitigate tissue injury and 
pathogen invasion. SARS-CoV-2-induced downregulation of angiotensin-converting enzyme (ACE)2 expression in endothe-
lial cells (EC), impairment of endothelial nitric oxide (NO) synthase (eNOS) activity and downstream NO bioavailability, 
may promote a hyperactive RAAS with elevated angiotensin II and aldosterone that, can trigger, and accelerate NLRP3 
inflammasome activation, while EPO-eNOS/NO abrogate it. Young age and a protective EPO evolutionary landscape may 
successfully inhibit SARS-CoV-2 and contain NLRP3 inflammasome activation. By contrast, increasing age and falling EPO 
levels, in genetically susceptible children with adverse genetic variants and co-morbidities, may lead to unopposed RAAS 
hyperactivity, NLRP3 inflammasome dysregulation, severe endotheliitis with pyroptotic cytokine storm, and development 
of autoantibodies, as already described in MIS-C. Our haplotype estimates, predicted from allele frequencies in population 
databases, are in concordance with MIS-C incidence reports in Europeans but indicate lower risks for Asians and African 
Americans. Targeted Mendelian approaches dissecting the influence of relevant genetic variants are needed.
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Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) infection, the cause of the coronavirus disease 2019 
(COVID-19) pandemic, remains a continuing global threat. 
Despite the usually asymptomatic or mild SARS-CoV-2 in 
children, the latent multisystem inflammatory syndrome sec-
ondary to SARS-CoV-2 observed in this particular popula-
tion (MIS-C) is worrisome [1, 2]. MIS-C remains a diagno-
sis of exclusion with elusive pathophysiological mechanisms 
[3]. Its rare occurrence (annual incidence of two per 100,000 
individuals under 21) and ethnic disparities suggest a genetic 
predisposition [1–3]. Kawasaki disease (KD), KD Shock 
Syndrome, and MIS-C appear to be on the same immuno-
pathological continuum, in which host immune responses 

 *	 Konstantinos I. Papadopoulos 
	 kostas@thaistemlife.co.th

1	 Department of Research and Development, THAI StemLife 
Co., Ltd., 566/3 THAI StemLife Bldg., Soi Ramkhamhaeng 
39 (Thepleela 1), Prachaouthit Rd., Wangthonglang 10310, 
Bangkok, Thailand

2	 Occupational and Environmental Health Services, Feelgood 
Lund, Ideon Science Park, Scheelevägen 17, 223 63 Lund, 
Sweden

3	 Department of Laboratory Medicine, Changi General 
Hospital, Singapore 529889, Singapore

4	 Department of Medicine, National University of Singapore, 
Singapore 119228, Singapore

http://orcid.org/0000-0003-0041-7853
http://orcid.org/0000-0002-7488-8271
http://orcid.org/0000-0002-7814-8836
http://crossmark.crossref.org/dialog/?doi=10.1007/s13577-022-00819-w&domain=pdf


	 K. I. Papadopoulos et al.

1 3

precipitate vascular endothelial inflammation and a cytokine 
storm that result in cardiomyopathy and enteropathy [4]. 
Indeed, endothelial hyperinflammation-endotheliitis is the 
pathophysiological hallmark of acute, severe COVID-19 
and MIS-C [5–7]. MIS-C, however, displays an even greater 
degree of inflammation, increased levels of circulating 
SARS-CoV-2 spike (S) protein, dysregulated inflammasome 
activation with pyroptosis, and presence of autoantibodies 
[8–10].

Viral infections, including SARS-CoV-2, summon innate 
immune system intracellular pattern recognition receptors 
(PRRs) that detect pathogen-associated molecular patterns 
(PAMPs), such as viral RNA, proteins, and cell wall frag-
ments, and danger-associated molecular patterns (DAMPs) 
released from damaged host cells [11–17]. One of the most 
studied PRRs, the NACHT, LRR, and PYD domains-con-
taining protein 3 (NLRP3), senses PAMPs or DAMPs and 
triggers signaling cascades to assemble cytosolic, oligo-
meric, protein platforms called inflammasomes [11, 17]. 
Following a two-step process of priming and activation, 
canonical NLRP3 inflammasome activation leads, through 
caspase-1 activation, to cytokine (interleukin (IL)-1β and 
IL-18) release, and gasdermin D (GSDMD)-induced pyrop-
tosis, a form of lytic, inflammatory programmed cell death 
[11, 17]. Controlled, canonical inflammasome activation 
and moderate pyroptosis is necessary to effectively con-
tain an infection [18, 19]. Dysregulated NLRP3 inflamma-
some activation in response to acute SARS-CoV-2 infection 
associates with COVID-19 severity symptoms, indicating 
a crucial role in the pathophysiology underlying the mas-
sive inflammation observed in severe and fatal cases [13, 
20–22]. Additionally, secretory phospholipase A2 increase 
in acute pediatric COVID-19 and MIS-C implies an active 
role for inflammasome activation in their pathogeneses [23]. 
Furthermore, non-canonical (involving caspase 4/5) NLRP3 
inflammasome activation, also leading to canonical NLRP3 
inflammasome activation, appears unique for MIS-C [8]. If 
uninhibited, aberrant activation of pyroptosis leads to mas-
sive DAMPs release, able to amplify and perpetuate uncon-
trolled inflammatory immune responses, potentially leading 
to autoantibody formation and autoimmunity [24]. Stringent 
host regulation of NLRP3 inflammasome activation is neces-
sary, to avoid detrimental inflammatory reactions, as seen in 
numerous autoinflammatory and autoimmune diseases [18, 
19, 24]. Thus, loss of control of inflammasome regulation 
in genetically predisposed children, could potentially pave 
the way towards MIS-C [22, 25].

SARS-CoV-2 spike protein (S) interaction with angi-
otensin-converting enzyme (ACE) 2 has been shown 
to downregulate ACE2 expression in endothelial cells 
(EC) and impair endothelial nitric oxide (NO) synthase 
(eNOS) activity and downstream NO bioavailability 
[6, 7]. ACE2 has an important role in counterbalancing 

renin-angiotensin aldosterone system (RAAS) activa-
tion of ACE in the vascular endothelium of the lungs and 
kidneys by cleaving circulating angiotensin II (Ang II) to 
Ang 1–7 and promoting eNOS activation (Fig. 1) [26]. 
Therefore, putative ACE2 activity and signaling is essen-
tial to maintain homeostatic endothelial biology. Consti-
tutive NO production by ECs is also involved in main-
taining normal endothelial function and defense against 
insults, injuries, and inflammation [27, 28]. Bioavailable 
NO potently inhibits leukocyte adhesion and displays 
significant antithrombotic, antiproliferative, antioxida-
tive, immunoregulatory and microbicidal properties [27, 
28]. Thus, through the latent suppression of endothelial 
expression of ACE2 and eNOS/NO, SARS-CoV-2 may 
promote a state of RAAS hyperactivity with elevated Ang 
II levels and impaired NO bioavailability that trigger and 
accelerate NLRP3 inflammasome activation, contributing 
to the endotheliitis, and resultant organ injuries observed 
in MIS-C (Fig. 1) [6, 7, 15, 29–34].

Despite the resulting imbalance in ACE and ACE2 activi-
ties during latent SARS-CoV-2-related disease, amplified 
in children by lower ACE2 expression, prior work suggests 
that the host leverages the higher circulating levels of Ang 
II to evoke erythropoietin (EPO) secretion in an effort to 
restore eNOS activity and homeostatic NO signaling (Fig. 1) 
[35–43]. Elevated EPO with enhanced eNOS/NO pathway 
activity, and subsequently increased NO generation and bio-
availability, is known to suppress the NLRP3 inflammasome, 
potentially effectively inhibiting early SARS-CoV-2 replica-
tion and cell entry, and the development of endotheliitis [32, 
44–50]. Such an ancestral, evolutionary landscape involv-
ing an age-dependent EPO elevation, is already known to 
occur at an early age and provides the host with a fitness 
advantage against malaria while forming constraints against 
pathogen adaptation and invasion [39]. All molecules in the 
above evolutionary landscape involving RAAS-EPO-eNOS 
interactions are under significant genetic control aiming to 
support, augment, and extend this early age EPO elevation 
and eNOS activity upon insult, as witnessed by protec-
tive single nucleotide polymorphisms (SNPs) in malaria 
[39, 51–53]. Increasing age and SNPs for members of the 
RAAS hormonal axis and NOS3, the gene responsible for 
eNOS expression, may differentially and significantly impact 
EPO secretion, NO production and bioavailability, and sub-
stantially influence regulation of inflammasome activation 
in genetically susceptible children [27, 28, 54]. Synergism 
with other genetic variants like the fibroblast growth factor 
(FGF) 23, reportedly associated with KD, may aggravate 
endothelial dysfunction, and adversely impact the heart 
[55]. The purpose of this narrative review is to provide key 
insights into the evolutionary landscape of EPO-mediated 
eNOS regulation and the genetic jigsaw of SNPs involving 
the above molecules that may disturb this signaling axis and 
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affect NLRP3 regulation, potentially contributing to MIS-C 
pathobiology (Fig. 2).

EPO‑eNOS interactions suppress NLRP3 
inflammasome activation and promote 
protection against SARS‑CoV‑2 in children

NLRP3 inflammasome activation in SARS-CoV-2 may 
occur through, at least, five different pathways: (1) directly 
through PAMPs recognition of virus-IgG complexes, viral 
RNAs and proteins, S-protein-ACE2 interaction [14, 15, 22]; 
(2) SARS-CoV-2-induced RAAS hyperactivity increases 
Ang II, a well-known trigger of NLRP3 inflammasome 
activation through the Ang II type 1 receptor (AT1R), in the 
heart, lung, kidney and bowel [15, 21, 56–62]; (3) increased 
aldosterone due to SARS-CoV-2-induced RAAS hyperactiv-
ity increases the expression of the NLRP3 inflammasome, 

known to play a crucial role in aldosterone-induced vas-
cular damage [33, 34]; (4) elevated Ang II also stimulates 
the upregulation of stimulator of interferon genes (STING), 
a powerful meditator of innate immunity, known to medi-
tate heart inflammation and fibrosis by activating NLRP3 
inflammasome and GSDMD-induced pyroptosis [63–65]; 
and finally, (5) eNOS-NO pathway impairments have been 
reported to accelerate NLRP3 inflammasome activation 
while the NLRP3 inflammasome perpetuates its activation 
through downregulation and proteolysis of eNOS [32, 61, 
66, 67].

It is well-known that an initial innate immune response, 
involving activation of the NLRP3 inflammasome (pathway 
1: PAMPs-induced), is a necessary antiviral frontline defense 
and limits pathogen dissemination until the adaptive immu-
nity arm commences its antibody-driven warfare [11]. By 
contrast, dysregulated inflammasome control with pathologi-
cal inflammasome hyperactivation, as might occur through 
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Fig. 1   Schematic representation of the renin-angiotensin aldosterone 
system (RAAS) cascade, RAAS regulation of erythropoietin (EPO), 
and interactions with the fibroblast growth factor (FGF)23/α-Klotho 
system. Single nucleotide polymorphisms (SNPs) leading to RAAS 
hyperactivity and FGF23 elevation are presented. Upon binding of 
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 
to angiotensin-converting enzyme (ACE)2, ACE/ACE2 imbalance 
arises, earlier in children due to lower ACE2 expression, and ampli-
fied by the ACE2 T-allele, leading to RAAS hyperactivity with angio-
tensin II (Ang II) elevation, further augmented by the ACE D-allele. 
The angiotensinogen (AGT) G-allele increases AGT, RAAS’ primary 
substrate, while the Ang II type 1 receptor gene (AGTR1) C-allele 

amplifies Ang II action. Elevated FGF23, further potentiated by its 
C-allele, will lower 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3), 
in turn increasing renin and sustaining a RAAS hyperactive state. 
FGF23 elevation lowers α-Klotho, both negatively impacting on 
eNOS and NO generation. Interactions between Ang II and FGF23 
promote adverse cardiac pathology. Elevated Ang II will raise EPO 
levels that through the EPO- endothelial nitric oxide (NO) synthase 
(eNOS) cascade will attempt to restore NO impairments and inhibit 
SARS-CoV-2 replication and cell entry. Ang II effects through the 
Ang II type 2 (AT2R) and Mas receptors (MasR) lead to delayed and 
sustained NO increases offering additional cardiovascular protection
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pathways 2–5, is associated with massive inflammation, oxi-
dative stress, fibrosis, and cytokine storm with bystander 
tissue damage [21, 68]. In this disconcerted milieu, EPO 
has the potential to alleviate inflammation and elicit tissue 
protection though activation of survival pathways (eNOS/
NO) and inhibition of pro-inflammatory cascades (IL-1β) 
[32, 45, 47–50]. EPO has been repeatedly reported to allevi-
ate ischemic sequalae and inflammation in the heart, lung, 
kidney, and central nervous system through abrogation of 
NLRP3 inflammasome activation [48, 50, 69, 70].

A highly significant, age-dependent, anemia-independent 
EPO elevation, highest in the youngest but declining dur-
ing a child’s development, has been reported during the first 
13 years of life [39, 51]. Maximum EPO response occurs very 
early, prior to the age of 5, at a time when cerebral malaria 
and MIS-C are uncommon [39, 71]. This origin of this age-
dependent EPO elevation is unknown but could be attrib-
uted to the significantly higher, age- and genotype-related 
ACE activities in serum, physiologically found in newborns, 
healthy children, and teenagers but not in adults [35–37, 72, 
73]. A lower nasal ACE2 expression in newborns and children, 
would appear to further amplify ACE activities [40–42]. These 
early age, physiological states promoting a controlled RAAS 
hyperactive state with elevated EPO levels, can consequently 

enhance EPO-eNOS/NO pathway responsiveness, and poten-
tially mediate protection against SARS-CoV-2; indeed, chil-
dren below the age of 5 generally experience asymptomatic 
or mild SARS-CoV-2 infections [1, 38, 44, 74]. Furthermore, 
working in tandem, EPO-augmenting SNPs of the RAAS 
hormonal axis and eNOS activity amplifying NOS3 SNPs 
will ensure abundant catalysts and substrates to sustain EPO 
generation and NO bioavailability to exert protective effects 
over a wider age span, potentially beyond age 13, as seen in 
young Indian adults with malaria (Fig. 1) [44–47, 52, 53, 75]. 
We posit that, in children, this age-dependent EPO elevation 
within the EPO evolutionary landscape, can effectively contain 
an acute SARS-CoV-2 infection and appropriately regulate the 
initial SARS-CoV-2-PAMP-induced NLRP3 inflammasome 
activation, while the ensuing SARS-CoV-2-induced RAAS 
hyperactivity with Ang II and aldosterone elevations could be 
leveraged to further enhance EPO secretion [35–37], rather 
than aggravating an ongoing NLRP3 inflammasome activation 
through pathways 2–5 [12–16, 34, 44, 63]. Under the protec-
tion of this evolutionary landscape, consequent inflammatory 
and ischemic sequalae in the lung, heart, kidney, and central 
nervous system, can be prevented by EPO-mediated abroga-
tion of further NLRP3 inflammasome activation involving 
pathways 2–5 [48–50, 69, 70]. It is, however, obvious that 
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Fig. 2   Schematic interactions between endothelial nitric oxide (NO) 
synthase (eNOS) activity modulations by erythropoietin (EPO), age, 
and genetic determinants for members of the renin-angiotensin aldos-
terone system (RAAS) hormonal axis, nitric oxide synthase (NOS)3, 
β-common receptor (βcR), and fibroblast growth factor (FGF)23, 
may result in opposing effects in NO generation and bioavailability, 
differentially impacting nucleotide-binding oligomerisation domain 
(NOD)-like receptor protein 3 (NLRP3) inflammasome activation. 
Genetically augmented EPO levels through relevant SNPs for mem-
bers of the RAAS hormonal axis along with eNOS activating SNPs 
will synergistically enhance NO generation and bioavailability, sub-

sequently resulting in an extended age span for SARS-CoV-2 protec-
tion, successful NLRP3 inflammasome regulation, and asymptomatic/
mild infections. Genetic determinants for members of the RAAS 
hormonal axis and NOS3, that are unable to counteract a declining 
EPO due to increasing age, may result in an unopposed RAAS and 
FGF23 proinflammatory state, possibly potentiated by angiotensin 
II type 1 receptor autoantibodies (AT1-AA), that through a cytokine 
storm and gravely reduced NO bioavailability, induce NLRP3 inflam-
masome dysregulation, and predispose for multisystem inflammatory 
syndrome in children (MIS-C) with cardiac and/or enteric affliction
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children can still get infected by SARS-CoV-2, and that some 
may progress to MIS-C [1, 2]. Attenuation of the EPO-eNOS/
NO protection provided by this EPO evolutionary landscape, 
through increasing age and adverse genotypes, may allow 
augmented, perpetual NLRP3 inflammasome activation, ulti-
mately resulting in a cataclysmic COVID-19 cytokine storm 
and MIS-C in genetically susceptible individuals (Fig. 2) [12, 
15, 22, 39, 72, 73].

While available information on EPO levels in SARS-
CoV-2 patients is sparse and limited to adults, it is also sup-
portive of a protective effect. Nasopharyngeal swab samples 
in asymptomatic or mild COVID-19 patients, demonstrate 
2.6 times elevated EPO mRNA levels, correlating well with 
whole blood [76]. Profound EPO elevation in moderate 
cases, significant decline with disease advancement, and 
profoundly low EPO levels in severe disease, have all been 
recently reported [77, 78]. EPO’s strong negative correlation 
with thromboembolism and tissue injury markers imply that 
its induction may counter the adverse effects of a COVID-19 
cytokine storm [77]. These findings collectively lend support 
to the protective link between elevated EPO and asympto-
matic or mild/moderate COVID-19 [76–80].

Lastly, a child’s immune system and EPO physiology 
may contribute to initial protection from severe SARS-
CoV-2 infection by modulating host systemic immunologi-
cal response towards increased tolerance [81, 82]. EPO-
regulated increases in circulating CD71+ erythroid cells 
(abundant in children while absent in adults) contribute to an 
attenuated inflammatory response to pathogens, lowering the 
burden of infection in this age group [81, 82]. Furthermore, 
EPO mediates reduction of auto- and alloantibody forma-
tion [83], while its binding to T cell-expressed EPO receptor 
(EPOR) inhibits Th17 cell induction preventing collateral 
damage and autoimmune pathology [84]. Loss of EPO pro-
tection may allow immune autoreactivity and development 
of agonist AT1R autoantibodies (AT1-AA) perpetuating 
Ang II pro-inflammatory actions, even in the absence of 
ACE D-allele, as reported in long COVID-19 patients [85]. 
AT1-AA correlate with blood pressure dysregulation and 
COVID-19 disease severity and could account for the 6–8-
week lag observed in MIS-C (Fig. 2) [85, 86]. Finally, while 
endothelial progenitor cell (EPC) mobilization through the 
hematopoietic actions of EPO may contribute to additional 
tissue protection [45], EPO loss may allow pyroptotic 
NLRP3 damage of host stem cell reservoir, jeopardizing 
the proliferative potential of the vascular endothelium [15].

The NO genetic pathway to MIS‑C

Suppression of eNOS appears to be a critical determinant of 
SARS-CoV-2 infection severity as suggested by improved 
COVID-19 outcomes with the use of a wide range of 

repurposed drugs with known capacity for eNOS activa-
tion (e.g., fluvoxamine, dehydroepiandrosterone (DHEA)/
DHEA-sulfate (DHEAS), raloxifene, and metformin) 
(Fig. 2) [87–90]. Furthermore, as lower soluble eNOS lev-
els were associated with worse acute respiratory distress 
syndrome (ARDS) severity in adults with COVID-19, these 
data suggest that eNOS may be an important therapeutic 
target during SARS-CoV-2 infection to mitigate serious lung 
complications [91]. Interestingly, inhibitory effects of NO on 
NLRP3 have been reported through NO-mediated inhibition 
of caspase-1, IL-1β, and IL-18 release, suggesting an obliga-
tory role of eNOS in mediating anti-inflammatory effects 
and endothelial protection, with grave cardiovascular conse-
quences when NO bioavailability is deranged [32, 45, 47, 61, 
67, 92]. Furthermore, demonstrating a critical link between 
EPO and eNOS effects, NO can induce expression of the 
EPOR and EPO, while cardio-, reno- and vasculoprotective 
effects of EPO are eNOS-dependent as eNOS antagonism 
or ablation abrogate them [45–47, 50]. Evidently, eNOS 
activity-reducing SNPs impairing NO generation and bio-
availability, could accelerate NLRP3 inflammasome dys-
regulation, allowing the development of systemic hyperin-
flammation/cytokine storm, subsequently leading to MIS-C 
in genetically predisposed children [32, 54, 93].

NOS3 genetic polymorphisms

Impairments of the eNOS/NO pathway through uncoupling, 
inhibition, and/or genetic polymorphisms, and the resulting 
reduced availability of NO, accelerate NLRP3 inflamma-
some activation and progression of endothelial dysfunc-
tion through infiltration of proinflammatory macrophages 
[32]. Commonly researched NOS3 polymorphisms and their 
functional effects are summarized in Table 1 [54, 74, 93]. 
Numerous studies have demonstrated important clinical 
implications of eNOS activity-reducing polymorphisms in 
hypertension and anti-hypertensive treatment, pre-eclamp-
sia, coronary artery disease (CAD) and KD, thrombosis, 
metabolic syndrome, obesity, and diabetes [54, 94, 95]. 
Malaria, Dengue, and Puumala Hanta virus infections have 
all been associated with NOS3 polymorphisms [52, 53, 96]. 
NO production may vary up to 30.5%, as reported from 
genotype-based simulations of combined NOS3 polymor-
phisms, with obvious clinical implications for endothelial 
dysfunction in several diseases [54, 93, 97]. Haplotype 
differences between ethnicities may underlie disparities in 
susceptibility to a variety of diseases involving alterations 
in NO formation and could thus also explain ethnic differ-
ences in MIS-C incidence [93]. While the C-b-Asp haplo-
type may enhance eNOS expression and NO production, the 
C–4b–Glu haplotype is associated with lower NO formation 
in healthy Caucasian and African Americans, but also in 
CAD in patients and their first-degree relatives [98–100]. 
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NOS3 haplotype-related variability in vasculoprotective NO 
bioavailability may consequently affect NLRP3 regulation 
and be the tipping point for MIS-C development (Fig. 2) 
[32, 66].

Genetic polymorphisms in members of the RAAS 
hormonal axis

As RAAS activity is an important regulator of eNOS activ-
ity, genetic polymorphisms for molecules in the RAAS sign-
aling axis (Table 2) are likely to have significant impact on 
NO generation, NLRP3 regulation, and endothelial inflam-
mation during MIS-C (Fig. 2) [15, 21, 56–62, 103, 104]. 
Polymorphisms of the ACE gene explain 20–50% of the 
variability in ACE levels and up to 15% of hypertensive 
cases [105]. Given the fundamental role of RAAS in car-
diovascular homeostasis and SARS-CoV-2, RAAS molecule 
polymorphisms could significantly modulate Ang II activity 
and increase the risk of a RAAS-induced hyperinflamma-
tion with excessive NLRP3 inflammasome activation, when 
increasing age and co-inherited eNOS activity-reducing 
NOS3 haplotypes, attenuate EPO effects (Fig. 1, 2) [15, 21, 
22, 30, 56–62, 104, 106–110].

By contrast, combination of the ACE D-/ACE2 T-alleles 
with the NO enhancing C-b-Asp haplotype, as opposed to 

the NO reducing C-b-Glu haplotype, associate with pro-
tection against malaria through increased Ang II and NO 
bioavailability [52, 53]. In females, specifically, the ACE2 
T-allele by further reducing ACE2 expression, may be 
instrumental in Ang II elevation, enhancing EPO levels, 
and potentially conferring protection against SARS-CoV-2 
[52, 111]. SNPs involving all the above-mentioned RAAS 
molecules, (ACE/ACE2/AGT/AGTR1), while protective in 
malaria, have been implicated in severe adult COVID-19 
outcomes (Table 2) [104, 106, 115]. Their net haplotype 
effect could significantly impact Ang II and EPO levels, 
eNOS activity, NO generation and bioavailability, perturb-
ing NLRP3 inflammasome regulation, endothelial function, 
peripheral vascular resistance, and blood pressure (Table 2) 
[52, 57, 58, 108–110, 116].

FGF23 genetic polymorphisms

Elevated FGF23 (a phosphaturic hormone), reduced 
α-Klotho (α-kl: an anti-ageing hormone, vasculoprotec-
tive factor, and FGF23 co-receptor), and RAAS hyperac-
tivity are critically linked to reduced eNOS activity and 
NO bioavailability, NLRP3 inflammasome activation, 
endothelial dysfunction, and adverse cardiovascular pathol-
ogy [117–121]. FGF23 directly suppresses ACE2 and 

Table 1   NOS3 single nucleotide 
polymorphisms (SNP) that 
may impact eNOS activity in 
children and contribute to a 
presentation of MIS-C

Only those polymorphisms with results relevant to the aim of the review have been included
Asp aspartate, NOS3 nitric oxide synthase 3, siRNA short intronic repeat RNA

NOS3 SNP Alleles Impact on NOS3/NO production References

rs1799983
(c.894G > T)

T-allele
(Asp)

Decreased NOS3 availability, activity, NO production [54, 93, 95, 100, 101]

rs2070744
(g.786 T > C)

C-allele Reduced NOS3 transcriptional activity and expression [54, 93, 95, 101]

rs61722009
(VNTR4a/4b)

4b-allele Increased siRNA, reduced NOS3 expression [54, 93, 101, 102]

rs3918226
(g.665C > T)

T-Allele Reduced NOS3 expression [54, 93]

Table 2   Genetic polymorphisms in members of the RAAS axis

Only those polymorphisms with results relevant to the aim of the review have been included
ACE2 angiotensin-converting enzyme 2, AGT​ angiotensinogen, AGTR1 angiotensin II, type 1 receptor gene, Ang II angiotensin II, RAAS renin-
aldosterone angiotensin system

SNPs in the RAAS axis Allele Impact on RAAS References

rs4343
ACE I/D

D-Allele Ang II increase (direct through elevated ACE levels) [52, 53, 108–110]

rs2106809
ACE2 C/T

T-Allele Ang II increase (indirect through lower ACE2 levels tipping 
balance towards ACE)

[52, 108–112]

rs5186
AGTR1 A/C

C-allele Increased Ang II response [104, 113, 114]

rs5050
AGT​ A/G

G-allele Higher plasma AGT​ [103]
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1,25-dihydroxyvitamin D3 thereby increasing Ang II and 
renin expression, respectively (Fig. 1) [119]. Both these 
actions promote further RAAS upregulation and are obvi-
ously potentiated by the ACE D- and ACE2 T-alleles [117, 
118]. Moreover, elevated FGF23 adversely regulates innate 
immune responses towards a pro-inflammatory state, block-
ing myocardial macrophage transition to M2 and resolu-
tion of inflammation [117]. Furthermore, elevated FGF23 
decreases endothelial α-kl expression, severely impacting 
eNOS activation and NO synthesis (additionally reduced by 
relevant NOS3 SNPs), while EPO mitigates reductions in 
renal α-Klotho expression (Fig. 1) [118, 122, 123]. Increased 
EPO and α-kl, both effectively abrogate NLRP3 inflamma-
some activation, preventing the maturation of proinflamma-
tory cytokines IL-1β and IL-18 and pyroptotic cell death 
[48, 70, 120, 124, 125]. As FGF23 expression is under the 
control of IL-1β, the product of an activated NLRP3 inflam-
masome, alleviating NLRP3 activation would lower IL-1β 
and not only reduce FGF-23 production, but also minimize 
local and systemic inflammatory responses [121]. Elevated 
Ang II stimulates systemic release of FGF-23 and its ectopic 
expression in the heart, subsequently augmenting the adverse 
cardiac effects of Ang II (Fig. 2) [117]. Significantly higher 
FGF23 levels reported in KD patients associate positively 
with impaired endothelial vasodilation, coronary artery 
aneurysms, and adverse cardiovascular and renal events and 
death [55, 117, 126, 127]. The FGF23 rs3832879 (c.212-
37insC) polymorphism, is significantly associated with both 
elevated serum FGF23 levels and coronary artery dilatations 
and aneurysms in KD [55, 127, 128]. AGT​ rs5050 G-, ACE 
D- and AGTR1 C-alleles, all are synergistically associated 
with adverse cardiovascular pathology and coronary artery 
lesions in KD (Fig. 1) [55, 103, 114, 126]. KD aneurysmal 
endothelium demonstrated histological signs of vascular 
senescence with lack of eNOS immunostaining compared 
to controls, confirming that decreases in vasodilative factors, 
such as eNOS/NO, play operative roles in KD aneurysm 
development [129]. To our knowledge, FGF23 levels and 
genetic polymorphisms in MIS-C have not been investigated 
to date.

Finally, pertaining to MIS-C gastrointestinal (GI) predi-
lection, recent studies pinpoint the GI tract as a potential 
theater for MIS-C initiating events [130, 131]. Increased 
zonulin, lipopolysaccharide (LPS), and LPS binding protein 
(LBP) levels, indicating gut mucosal barrier breakdown, are 
specific for MIS-C [130, 131]. LBP alone [132], or LBP-
transported LPS from exposed dysbiotic gut microbial flora 
[130, 131], can initiate a non-canonical NLRP3 inflamma-
some activation, as reported in inflammatory bower disease 
(IBD) and observed uniquely in MIS-C [8, 133]. Increased 
levels of circulating SARS-CoV-2 S protein, reported in 
MIS-C, bind LPS, and through Toll-like receptor 4 (TLR4) 
recognition, lead to an overactive immune response and 

hyperinflammation [134]. Apart from abrogating NLRP3 
inflammasome activation [70], EPO reduces TLR4 expres-
sion levels, thereby improving necrotizing enterocolitis 
[135]. Moreover, all components of the RAAS are present 
in the GI tract and Ang II is produced locally [136]. Ang II 
exerts potent pro-inflammatory effects in the colonic micro-
circulation [137] that, along with reduced NO bioavailability 
and P-glycoprotein (Pgp) inhibition, may be the reasons for 
the enteropathy in MIS-C [138, 139]. Pgp downregulation 
is under the control of Ang II and AT1R, both of which are 
involved in the pathogenesis and treatment of IBD [139]. By 
contrast, Pgp induction/activation exerts potent anti-NLRP3 
inflammasome effects that may provide potential therapeutic 
anti-inflammatory effects for IBD patients [140]. An over-
active NLRP3/IL-1β axis further aggravates genetically 
reduced eNOS activity through eNOS downregulation and 
proteolysis, gravely impairing the ability of the endothelium 
to produce NO, leading to unopposed Ang II-AT1R-depend-
ent leukocyte-endothelial cell interactions, potentially result-
ing in the vascular lesions that occur in hypertension, athero-
sclerosis, and myocardial ischemia–reperfusion injury [66, 
141, 142]. Consequently, increasing age and detrimental 
combinatory haplotypes of SNPs in NOS3 and members 
of the RAAS, that significantly compromise eNOS and NO 
generation and bioavailability, along with FGF23 genetic 
variants that elevate FGF23 and potentiate Ang II effects on 
the endothelium of various organs (heart, GI tract, kidney) 
through NLRP3 inflammasome dysregulation, suggest a 
pathway to MIS-C with different organ phenotypes (Fig. 2).

Gene clusters predisposing for MIS‑C

Allele co-expression analysis of key target genes in hyper-
tension and across several ethnicities provide important 
insights in the search for MIS-C-prone haplotypes [143, 
144]. A gene cluster encompassing the ACE, AGT, AGTR1, 
and NOS3 genes has been described linked to hypertension 
and the components of the metabolic syndrome [143]. The 
implicated risk haplotypes were overwhelmingly composed 
of variant alleles coding for RAAS hyperactivity and eNOS 
inhibition, confirmed by higher ACE activity and lower NO 
levels in plasma [144]. The C–4b–Glu haplotype associated 
with lower NO formation, together with relevant alleles of 
FGF23 and members of the RAAS, could be a causative 
haplotype in children with MIS-C (Table 3) [98, 99]. Similar 
genetic cluster findings have been reported in SARS-CoV-2, 
thus haplotypes with the above effects, together with an age-
dependent loss of EPO protection, might induce higher lev-
els of NLRP3 and result in MIS-C in genetically susceptible 
children [107].

As the three NOS3 SNPs in the C-4b-Glu haplotype are in 
linkage disequilibrium (LD), we used the population allele 
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frequencies of the involved genes to calculate haplotype 
prevalence estimates (Table 3) [99, 145–147]. Epidemiologi-
cal reports of C-4b-Glu haplotype point to its scarcity in the 
population at 2.4%, consistent with the rarity of MIS-C [1, 2, 
148]. The estimated haplotype prevalence of all detrimental 
alleles per 100,000 in the general population was 9.8851, 
1.01376, 4.5421 for Europeans, African Americans, and 
Asians, respectively. Based on the percentage of the United 
States and 27-state European Union population under 18 at 
20.3%, our MIS-C prevalence estimates were 2.0, 0.2057, 
and 0.922 per 100,000 for European, African American and 
Asian populations under 18 years, respectively [149, 150]. 
Our European ancestry risk estimates are in concordance 
with the reported MIS-C incidence [1, 2]. Our Asian MIS-C 
risk estimate was less than half of that for Europeans, while 
African Americans appear to enjoy a 10 times lower risk 
compared to Europeans. The observed overrepresentation of 
Blacks and Hispanics in epidemiological studies may also 
be due to socioeconomic factors [1, 71]. However, recent 
reports are not in support of any differences between racial 
or ethnic groups [151]. Limitations of our estimates include 
the presumption that included alleles retain their purported 
singular effect when occurring in a haplotype with the 
other alleles, unknown LD between the implicated genes, 
unknown gene co-expressions, and gene–gene or gene-envi-
ronment interactions.

EPOR and β‑common receptor (βcR) genetic 
polymorphisms

EPO-induced eNOS activation requires the βcR in the for-
mation of a βcR-EPOR-eNOS complex (Fig. 2) [45, 152]. 
While the EPOR mediates hematopoietic EPO effects, the 
βcR mediates EPO’s anti-inflammatory, antiapoptotic, and 
antioxidative tissue protective functions by forming an 
EPOR/βcR heterodimer (Fig. 2) [45, 152]. Both EPOR and 
βcR have thus the potential to limit the EPO-eNOS activa-
tion cascade [45, 152]. A truncating mutation (p.Gln82Ter; 

rs370865377) resulting in a hypo-responsive EPOR has been 
detected in 1 in 550 Icelanders associated with a three-fold 
EPO increase, normal hemoglobin, and no adverse car-
diovascular associations [153]. It is intriguing to speculate 
whether carriers of this EPOR mutation might also enjoy 
SARS-CoV-2 protection, but this remains unknown. Apart 
from being an integral part of the βcR-EPOR-eNOS com-
plex [152], βcR is also a shared receptor subunit of IL-3, 
IL-5, and granulocyte–macrophage colony stimulation factor 
(GM-CSF) receptors. Polymorphisms in the CSF2RB (βcR-
coding gene) would attenuate EPO-eNOS effects [45]. The 
effect of co-inherited CSF2RB and NOS3 polymorphisms 
is unknown. CSF2RB polymorphisms will also affect vari-
ous functions of IL-3, IL-5, and GM-CSF, as reported in 
schizophrenia, where NO is implicated in its pathogenesis 
and symptomatology, and could account for the excess 
COVID-19 mortality reported [154–156]. GM-CSF is a key 
regulator of the NLRP3 inflammasome and IL-1β produc-
tion, thus impaired βc-cytokine function, already described 
in KD, may have widespread immunological implications in 
SARS-CoV-2 [156–163].

Conclusion

We posit that an evolutionary landscape involving an age-
dependent EPO elevation, supported by genetic polymor-
phisms of members of the RAAS, promotes innate defenses 
that actively suppress viral replication or transmission 
and tolerance mechanisms, including appropriate NLRP3 
inflammasome regulation, that, at an early age, can lower 
the burden of infection [38, 39]. SARS-CoV-2-ACE2 bind-
ing appears as a well-rehearsed host act since low ACE2 
expression in children [40] will swiftly and early mediate a 
RAAS hyperactive state [33, 62] resulting in Ang II/aldos-
terone-mediated, heightened EPO secretion [35–37], that 
through EPO-eNOS-mediated increases in NO generation 
aims to contain NLRP3 activation, and inhibit the imminent 
endotheliitis, SARS-CoV-2 replication and cell entry [7, 32, 

Table 3   Population allele frequencies of loss-of -function minor (variant) alleles with diminished capacity to generate eNOS-derived NO and 
gain-of-function alleles with increased capacity to generate RAAS hyperactivity

ACE angiotensin-converting enzyme, AGT​ angiotensinogen, AGTR1 angiotensin II, type 1 receptor, CAD coronary artery disease, FGF23 fibro-
blast growth factor 23, MIS-C multisystem inflammatory syndrome in children, NOS3 nitric oxide (NO) synthase 3, RAAS renin-angiotensin 
aldosterone system, SNP single nucleotide polymorphism

Gene Name
SNP

NOS3*
g.786 T > C 
rs2070744

NOS3* 
VNTR 4a/4b
rs61722009

NOS3* 
g.894G > T
rs1799983

ACE
rs4343

ACE2 rs2285666 AGT​
rs5050

AGTR1 rs5186 FGF23 rs3832879

Allele C 4b Glu D G G C C
European [145] 0.42 0.735 0.655 0.460961 0.203753 0.13374 0.295053 0.13191
African American [145] 0.175 0.84 0.845 0.74518 0.2342 0.14927 0.07104 0.0441
Asian [145] 0.138 0.871 0.914 0.6585 0.554 0.2317 0.0917 0.05334
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44, 48]. All steps in the above cascade are under significant 
genetic control aiming to enhance EPO levels and amplify 
eNOS activity at an early age [39, 51–53]. Regulation of 
EPO secretion is under substantial control by the ACE I/D 
polymorphism [164] while EPO-eNOS signaling is modifi-
able by βcR [152] and NOS3 SNPs [165]. Polymorphisms 
in several RAAS molecules, e.g., ACE, ACE2, AGT, AGTR1 
may additionally amplify a RAAS hyperactive state, ele-
vate EPO and protect against SARS-CoV-2 in the face of 
eNOS-augmenting SNPs [52, 53], but appear detrimental 
with increasing age and co-morbidities, when EPO secre-
tion, eNOS activity and NO generation and bioavailabil-
ity wane, allowing NLRP3 dysregulation [112, 142, 166]. 
Finally, genetically amplified FGF23 and Ang II levels may 
synergistically elicit detrimental cardiac and GI phenotypes 
through excessive NLRP3 activation [117, 121, 136, 137, 
139]. The variability and duration of EPO’s protective age 
span will depend on host haplotypes. The probability of a 
child presenting with a “perfect storm haplotype”, where 
all detrimental NOS3-RAAS molecule-FGF23 candidate 
polymorphisms are present is currently unknown, but pre-
sumably very low, given the rarity of MIS-C [2]. Our haplo-
type estimates, predicted from allele frequencies in popula-
tion databases, are in concordance with MIS-C incidence 
reports in Europeans but indicate lower risks for Asians 
and African Americans [1, 2]. Early age (0–5 years) and 
EPO-augmenting RAAS genetic determinants might remedy 
eNOS activity-reducing genetic polymorphisms and sustain 
adequate NO generation and bioavailability, allowing appro-
priate NLRP3 regulation, apposite innate immune response, 
and successful resolution of the infection. Increasing age 
(6–18 years) with declining EPO levels, in the presence of 
relevant genetic variants and co-morbidities, could substan-
tially attenuate EPO secretion and override its protection. 
The resulting unopposed RAAS proinflammatory state with 
lower EPO and vasculoprotective NO levels, plausibly leads 
to protracted and dysregulated NLRP3 inflammasome acti-
vation, allowing transition to MIS-C in genetically suscepti-
ble children. Targeted Mendelian approaches dissecting the 
influence of relevant genetic variants are needed.
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