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Abstract
Fractional derivatives are considered significant mathematical tools to design the fractional-
order models of real phenomena. In this investigation, we are going to design and compare
the non-integer models of the crime system by using three fractional-order operators called
Atangana-Baleanu-Caputo, Caputo, and Caputo-Fabrizio derivatives for the first time. We
use the real initial conditions for the subgroups of USA. To get the approximate solutions of
the suggested models some numerical methods are derived. To see the performance of the
numerical methods different values of the fractional orders are considered. The differences
between the solutions under the used operators for each state variable are provided through
some figures.

Keywords Numerical method · Fractional calculus · Fractional derivatives · Crime model ·
Lagrange interpolation

Introduction

Crime is considered a social problem, a problem as defined by society, such as homelessness,
drug abuse, etc, and can be found across the globe. The cost to control crime worldwide was
estimated as $ 360 billion in 1997, of the total, 62 percent was spent on public policing, 3
percent on prosecutions, 18 percent on courts, and 17 percent on prisons [1]. The U.S. alone
spends more on criminal justice than any other nation, investing approximately $ 8 billion
per year on state and federal prisons that currently hold 2.24 million Americans [2]. Study
shows that state spending on prisons grew at six times the rate of state spending on higher
education in the last two-decade [3]. Moreover, in the past decade, the rise in incarceration in
the United States has been experienced disproportionately by minorities, particularly young
African American men with low levels of education [4]. The minority population in the US
has not only been facing disproportionately incarceration but recent studies show that the
COVID-19 pandemic has a similar effect on minorities; COVID-19 cases and deaths are
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more in minority populations despite their population being low [5]. There are connections
between poverty, crime, and diseases.

There are several studies with integer-order mathematical models of crime, based on
ordinary differential equations (ODEs) [2, 6]. In [6] A nonlinear mathematical model was
proposed to study the dynamics of extremism governed by different factors, and it was
suggested that if an appropriate level of government efforts is applied to extremists, the
spread of their ideology can be controlled in the general population. In the other study, [7]
the effect of the police force in controlling crime in a society with variable population size
was analyzed through the proposed model. Similarly, the models based on partial differential
equations (PDEs) [8], have been proposed and analyzed in recent years. Where perturbative
approach was applied to find amplitude equations that govern the development of crime hot
spot patterns in the system in both the one-dimensional (1D) and two-dimensional (2D) cases.
However, these models do not inherit non local property, which depicts behavior changes due
to contact with criminals for a long period. To overcome this problem, very few the fractional
order mathematical models of crime have also proposed [9, 10]. However, no any fractional
order mathematical model has been yet studied considering certain important relationships
and behavioral changes of the individuals. We have fractional order mathematical model of
crime, extension of model studied by [2].

Themainmodel assumption is that crime can spread bymeans of social epidemic transmis-
sion. In particular, it is assumed that crime spreads by social contact and this contact depends
on the social environment that includes the criminal justice system. Social environment fac-
tors to consider are the penitentiary system, judges, police officers, media, and economical
variables which have different degrees of influence over the probability of transmission of
crime among individuals. Spatial effects are not considered explicitly in that model, however
different classes for individuals with regard to the crime and justice system were taken into
account. Using a population based approach of epidemiological type, the population was
divided into six groups: susceptibles, free criminals, criminals arrested and in jail, convicted
criminals in prison, judges and police officers. The resulting mathematical model of crime
is a system of six nonlinear ordinary differential equations, which is analyzed to find the
equilibrium and their stability, including the threshold parameter R0 for the extinction of
criminality. Numerical simulations are also performed that support the established theoret-
ical results. In addition, a sensitivity analysis is presented to determine the importance of
specific model parameters in decreasing criminality.

Fractional order differential and integral operators are more useful, and many recent
studies has shown their importance due to their effective use in the modelling of real-world
phenoms with complicated dynamics [11–16]. It is found that non-integer order models
show can define the dynamical behaviours more perfectly than integer order systems [17–
19]. The is because the memory property of fractional-order operator can identify complex
structure of numerous real-world problems [20–23]. Due to this reason, recently, fractional
calculus has been recognized as a hot area for modelling and analyzing dynamical systems
by disordered characteristics [24–30]. In this work, for the first attempt we compare the
behaviour of the numerical solutions under three different fractional operators under the real
initioal conditions.We consider the crime systemwith three fractional derivatives, Atangana-
Baleanu-Caputo, Caputo and Caputo-Fabrizio considering the integer order of crime system
is as follows [31]:
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Table 1 The parameters description [27]

Parameter Description

μ The birth/death rate

β1 The social crime transition rate from criminals to suscep-
tible persons

β2 The rate at which criminals are arrested by police and
sent to jail

β3 The rate at which the individuals in jail get convicted by
an uncorrupted judge

β4 The crime contagious rate from criminals to police offi-
cers

β5 The rate at which criminals corrupt police officers

β6 The rate at which criminals corrupt judges

a1 The growth rates for judges

a2 The growth rates for police officers

r1 The rate at which individuals in jail leave to the suscep-
tible class

r2 The rate that accounts for the flow of individuals from the
convicted class

to the susceptible one

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= μN − β1SC − (a1 + a2)S + r1 Ja + r2Cv − μS,

dC(t)

dt
= β1SC − β2CP + β6 JC + β5 J Ja + β4PC − μC,

dCv(t)

dt
= β3J Ja − r2Cv − μCv,

d Ja(t)

dt
= β2CP − β3 J Ja − r1 Ja − μJa,

d J (t)

dt
= a1S − β5 J Ja − β6 JC − μJ ,

dP(t)

dt
= a2S − β4PC − μP,

S(0) = S0,C(0) = C0,Cv(0) = Cv0, Ja(0) = Ja0, J (0) = J0, P(0) = P0,

(1)

In the above model, the population is divided into six main groups based on the criminal
activity of the sub-populations: susceptible individuals (S), free criminals (C), criminals
arrested in jail (Ja), convicted criminals (Cv), judges (J ) and police officers (P) (Table 1).

We present the rest of the study as follows. In “Basic Definitions” section, essential
definitions are provided. New fractional order models can be seen in “Fractional Order
Models of the Crime System” section.Moreover, numerical algorithms to solve the suggested
systems are provided in “Numerical Methods” section. Numerical results of the proposed
models under practicing different values of fractional orders are supplied in “Numerical
Results” section. Results and discussion can be found in “Results and Discussion” section.
Finally, the conclusion of the current investigation can be observed in the last section.
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Basic Definitions

Now, we present some needful definitions of the fractional derivatives. [32].

Definition 2.1 Letα ∈ R
+. TheMittag-Leffler function is a significant function that has a far-

reaching application in the non-integer calculus. The Mittag-Leffler function arises naturally
in the solution of fractional integral equations, and especially in the study of the fractional
generalization of the kinetic equation, random walks, Lévy flights, and so-called superdiffu-
sive transport. The ordinary and generalized Mittag-Leffler functions interpolate between a
purely exponential law and power-like behavior of phenomena governed by ordinary kinetic
equations and their fractional counterparts. The standard definition of Mittag-Leffler in order
α is given as follows:

Eα(z) =
∞∑

j=0

z j

�( jα + 1)
,

Definition 2.2 Some definitions regarding fractional-order derivatives have been introduced.
One of the most famous and significant of them is the Caputo derivative suitable for the
modeling of real-world phenomena. The following relation is showing its formulation [32]:

CDα
t (ϒ(t)) = 1

�(1 − α)

∫ t

0
ϒ ′(τ )(t − τ)−αdτ, 0 < α ≤ 1. (2)

Definition 2.3 The Caputo-Fabrizio derivative is stated by [32]

CFDα
t (ϒ(t)) = (2 − α)M(α)

2(1 − α)

∫ t

0
ϒ ′(τ ) exp

[−α(t − τ)

1 − α

]

dτ, 0 < α ≤ 1, (3)

where M(α) = 2

(2 − α)
.

This non-integer derivative has been classified as a nonlocal fractional operator carrying
the exponential kernel. The Caputo-Fabrizio derivative enjoys the non-singularity property
which has been regarded as a substantial advantage, especially from the approximation point
of view.

Definition 2.4 [32] Atangana-Baleanu-Caputo derivative is stated as

ABCDα
t (ϒ(t)) = AB(α)

1 − α

∫ t

0
ϒ ′(τ )Eα

[

−α
(t − τ)α

1 − α

]

dτ, 0 < α ≤ 1, (4)

where AB(α) = 1 − α + α

γ (α)
.

The Mittag-Leffler function plays an important role in the fractional. Atangana and Baleanu
were motivated by this concern to change the exponential kernel in the Caputo-Fabrizio
fractional kernel to the Mittag-Leffler kernel.

In the next section, we design the non-integer models of the system (1) using (2), (3), and
(4) operators.
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Fractional Order Models of the Crime System

By replacing the fractional derivatives defined in the previous section for the system (1) we
have the following relations. In fact, using the Caputo derivative we can obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0Dα

t S(t) = μN − β1SC − (a1 + a2)S + r1 Ja + r2Cv − μS,

C
0Dα

t C(t) = β1SC − β2CP + β6 JC + β5 J Ja + β4PC − μC,

C
0Dα

t Cv(t) = β3J Ja − r2Cv − μCv,

C
0Dα

t Ja(t) = β2CP − β3 J Ja − r1 Ja − μJa,

C
0Dα

t J (t) = a1S − β5 J Ja − β6 JC − μJ ,

C
0Dα

t P(t) = a2S − β4PC − μP,

(5)

Regarding the Caputo-Fabrizio sense the next system can be obtained

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CF
0Dα

t S(t) = μN − β1SC − (a1 + a2)S + r1 Ja + r2Cv − μS,

CF
0Dα

t C(t) = β1SC − β2CP + β6 JC + β5 J Ja + β4PC − μC,

CF
0Dα

t Cv(t) = β3J Ja − r2Cv − μCv,

CF
0Dα

t Ja(t) = β2CP − β3 J Ja − r1 Ja − μJa,

CF
0Dα

t J (t) = a1S − β5 J Ja − β6 JC − μJ ,

CF
0Dα

t P(t) = a2S − β4PC − μP,

(6)

Also, by using the Atangana-Baleanu-Caputo derivative we get:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABC
0Dα

t S(t) = μN − β1SC − (a1 + a2)S + r1 Ja + r2Cv − μS,

ABC
0Dα

t C(t) = β1SC − β2CP + β6 JC + β5 J Ja + β4PC − μC,

ABC
0Dα

t Cv(t) = β3J Ja − r2Cv − μCv,

ABC
0Dα

t Ja(t) = β2CP − β3 J Ja − r1 Ja − μJa,

ABC
0Dα

t J (t) = a1S − β5 J Ja − β6 JC − μJ ,

ABC
0Dα

t P(t) = a2S − β4PC − μP,

(7)

Numerical Methods

This part of the study is dedicated to deriving some numerical approaches to solve the
fractional orders (5), (6) and (7).

Numerical Technique in Caputo Frame

Suppose we have the following equation involving the Caputo derivative

C
0 D

α
t y(t) = f (t, y(t)), (8)
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The relation (8) can be reformulated as a fractional integral problem:

y(t) − y(0) = 1

�(α)

n∑

m=0

∫ t

0
f (θ, y(θ))(t − θ)α−1dθ, (9)

Eq. (9) can be written as

y(tn+1) − y(0) = 1

�(α)

n∑

m=0

∫ tm+1

tm
f (θ, y(θ))(t − θ)α(tn+1)−1dθ (10)

Using the two-stepLagrange polynomial interpolation, f (θ, y(θ)) in [tk , tk+1] can be approx-
imated as

Pk(θ) � f (tm, ym)

h
(θ − tm−1) − f (tm−1, ym−1)

h
(θ − tm), (11)

Using (10) and (11) we have

yn+1(t) = y0 + 1

�(α)

n∑

m=0

(
f (tm, ym)

h

∫ tm+1

tm
(t − tm−1) × (tm+1)

α−1dt − f (tm−1, ym−1)

h

×
∫ tm+1

tm
(t − tm)(tm+1 − t)α−1dt

)

.

(12)

For simplicity, we write the next expressions

Aα,m,1 = hα+1 (n + 1 − m)α(n − m + 2 + α) − (n − m)α(n − m + 2 + 2α)

α(α + 1)
,

Aα,m,2 = hα+1 (n + 1 − m)α+1(n − m + 1 + α) − (n − m)α(n − m + 1 + α)

α(α + 1)
,

(13)

We obtain the approximate solution of (12) by using Eq. (13)

yn+1(t) = y(0) + 1

�(α)

n∑

m=0

(
hα f (tm, ym)

α(α + 1)

(
(n + 1 − m)α × (n − m + 2 + α)

−(n − m)α(n − m + 2 + 2α)
)

−hα f (tm−1, ym−1)

α(α + 1)
× (

(n + 1 − m)α+1 − (n − m)α(n − m + 1 + α)
)
)

,

(14)

In the next part of the manuscript, we will extract a numerical algorithm to solve the
suggested models under the Caputo-Fabrizio derivative.

Numerical Technique in Caputo-Fabrizio Frame

Consider the following equation containing the Caputo-Fabrizio derivative of order α

C
0 D

α
t y(t) = f (t, y(t)), (15)
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We can rewrite the above problem in the following form by employing the fundamental
theorem of fractional calculus

y(t) − y(0) = 1 − α

M(α)
f (t, y(t)) + α

M(α)

∫ t

0
f (θ, y(θ))dθ, (16)

where M(α) = 2
2−α

is a normalization function such that M(0) = M(1) = 1 . In this way

y(tn+1) − y(0) = (2 − α)(1 − α)

2
f (tn, y(tn)) + α(2 − α)

2

∫ tn+1

0
f (t, y(t))dt, (17)

and

y(tn) − y(0) = (2 − α)(1 − α)

2
f (tn−1, y(tn−1)) + α(2 − α)

2

∫ tn

0
f (t, y(t))dt, (18)

Regarding (18) in (17) the following relation can be obtained

y(tn+1) = y(tn) + (2 − α)(1 − α)

2
× [

f (tn, y(tn)) − f (tn−1, y(tn−1))
]

+ α(2 − α)

2

∫ tn+1

tn
f (t, y(t))dt,

(19)

where

∫ tn+1

tn
f (t, y(t))dt = 3h

2
f (tn, yn) − h

2
f (tn−1, yn−1), (20)

Now, the following relation is displaying the approximate solution

yn+1 = yn +
[

(2 − α)(1 − α)

2
+ 3h

4
α(t)(2 − α)

]

f (tn, yn)

−
[

(2 − α)(1 − α

2
+ h

2
α(2 − α)

]

f (tn−1, yn−1),

(21)

The next section is supposed to provide a numerical method to get the approximate solu-
tions of the suggested system involving the Atangana-Baleanu-Caputo derivative.

Numerical Method in Atangana-Baleanu-Caputo Frame

Consider following problem

ABC
0D

α
t y(t) = f (t, y(t)), (22)

Using the fundamental theorem of fractional calculus on (22), we have

y(t) − y(0) = 1 − α

B(α)
f (t, y(t)) + α

�(α)B(α)

∫ t

0
f (θ, y(θ))(t − θ)α−1dθ, (23)
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where B(α) = 1 − α + α
�(α)

is a normalization function. Attn+1 , we own

y(tn+1) − y(0) = �(α)(1 − α)

�(α)(1 − α) + α
f (tn, y(tn)) + α

�(α) + α(1 − �(α))

n∑

m=0

×
∫ tm+1

tm
f (θ, y(θ))(tn+1 − θ)α−1dθ,

(24)

By considering the two-step Lagrange polynomial interpolation for f (τ, y(τ )) we get

Pk(θ) � f (tm, ym)

h
(θ − tm−1) − tm−1, ym−1

h
(θ − tm), (25)

Eq. (25) is substituted in (24) to obtain

yn+1(t) = y0 + �(α)(1 − α)

�(α)(1 − α + α)
f (tn, y(tn)) + α

�(α) + α(1 − �(α))

n∑

m=0

×
(

f (tm, ym)

h

∫ tm+1

tm
(θ − tm−1)(tn+1 − θ)α−1dθ

− f (tm−1, ym−1)

h

∫ tm+1

tm
(θ − tm)(tn+1 − θ)α−1dθ

)

,

(26)

that indicates

Aα,m,1 = hα+1 (n + 1 − m)α(n − m + 2 + α) − (n − m)α(n − m + 2 + 2α)

α(α + 1)
,

Aα,m,2 = hα+1 (n + 1 − m)α+1(n − m + 1 + α) − (n − m)α(n − m + 1 + α)

α(α + 1)
,

(27)

Integrating (27) and replaced in (26) , the following relations can be gained

yn+1(t) = y0 + �(α)(1 − α)

�(α)(1 − α) + α
f (tn, y(tn)) + 1

(α + ((1 − α)) + α)

n∑

m=0

× (
hα f (tm, ym)

(
(n + 1 − m)α(n − m + 2 + α) − (n − m)α(n − m + 2 + 2α)

)

−hα f (tm−1, ym−1)
(
(n + 1 − m)α+1 − (n − m)α × (n − m + 1 + α)

))
,

(28)

Numerical Results

Now, we provide the simulations of the crime models regarding the considered operators
stated in the previous section.
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Solutions in the Caputo Frame

Using (14), we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1 = S0 + 1
�(α)

∑n
b=0

[
hα	1(tb, S(tb))

α(α + 1)
((n + 1 − b)α(n − b + 2 + α)) − (n − b)α

×(n − b + 2 + 2α)) − hα	1(tb−1, S(tb−1))

α(α + 1)
× ((n + 1 − b)α+1 − (n − b)α(n − b + 1 + α))

]

,

Cn+1 = C0 + 1
�(α)

∑n
b=0

[
hα	2(tb,C(tb))

α(α + 1)
((n + 1 − b)α(n − b + 2 + α)) − (n − b)α

×(n − b + 2 + 2α)) − hα	2(tb−1,C(tb−1))

α(α + 1)
× ((n + 1 − b)α+1 − (n − b)α(n − b + 1 + α))

]

,

Cvn+1
= Cv0

+ 1
�(α)

∑n
b=0

[
hα	3(tb,Cv(tb))

α(α + 1)
((n + 1 − b)α(n − b + 2 + α)) − (n − b)α

×(n − b + 2 + 2α)) − hα	3(tb−1,Cv(tb−1))

α(α + 1)
× ((n + 1 − b)α+1 − (n − b)α(n − b + 1 + α))

]

,

Jan+1
= Ja0 + 1

�(α)

∑n
b=0

[
hα	4(tb, Ja(tb))

α(α + 1)
((n + 1 − b)α(n − b + 2 + α)) − (n − b)α

×(n − b + 2 + 2α)) − hα	4(tb−1, Ja(tb−1))

α(α + 1)
× ((n + 1 − b)α+1 − (n − b)α(n − b + 1 + α))

]

,

Jn+1 = J0 + 1
�(α)

∑n
b=0

[
hα	5(tb, J (tb))

α(α + 1)
((n + 1 − b)α(n − b + 2 + α)) − (n − b)α

×(n − b + 2 + 2α)) − hα	5(tb−1, J (tb−1))

α(α + 1)
× ((n + 1 − b)α+1 − (n − b)α(n − b + 1 + α))

]

,

Pn+1 = P0 + 1
�(α)

∑n
b=0

[
hα	6(tb, P(tb))

α(α + 1)
((n + 1 − b)α(n − b + 2 + α)) − (n − b)α

×(n − b + 2 + 2α)) − hα	6(tb−1, P(tb−1))

α(α + 1)
× ((n + 1 − b)α+1 − (n − b)α(n − b + 1 + α))

]

,

(29)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	1 = μN − β1SC − (a1 + a2)S + r1 Ja + r2Cv − μS,

	2 = β1SC − β2CP + β6 JC + β5 J Ja + β4PC − μC,

	3 = β3J Ja − r2Cv − μCv,

	4 = β2CP − β3 J Ja − r1 Ja − μJa,

	5 = a1S − β5 J Ja − β6 JC − μJ ,

	6 = a2S − β4PC − μP,

(30)
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Numerical Results in Atangana-Baleanu-Caputo Sense

Now, by utilizing the procedure produced by (28) we possess
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1 = S0 + �(α)(1−α)
�(α)(1−α)+α

	1(tn, Sn)

+ 1

(α + 1)((1 − α)�(α)) + α

∑n
b=0(h

α	1(tb, Sb)((n + 1 − b)α

×(n − b + 2 + α) − (n − b)α(n − b + 2 + 2α))−
hα	1(tb−1, Sb−1)((n + 1 − b)α+1 − (n − b)α(n − b + 1 + α))),

Cn+1 = C0 + �(α)(1−α)
�(α)(1−α)+α

	2(tn,Cn)

+ 1

(α + 1)((1 − α)�(α)) + α

∑n
b=0(h

α	2(tb,Cb)((n + 1 − b)α

×(n − b + 2 + α) − (n − b)α(n − b + 2 + 2α))−
hα	2(tb−1,Cb−1)((n + 1 − b)α+1 − (n − b)α(n − b + 1 + α))),

Cvn+1
= Cv0

+ �(α)(1−α)
�(α)(1−α)+α

	3(tn,Cvn
)

+ 1

(α + 1)((1 − α)�(α)) + α

∑n
b=0(h

α	3(tb,Cvb
)((n + 1 − b)α

×(n − b + 2 + α) − (n − b)α(n − b + 2 + 2α))−
hα	3(tb−1,Cvb+1

)((n + 1 − b)α+1 − (n − b)α(n − b + 1 + α))),

Jan+1
= Ja0 + �(α)(1−α)

�(α)(1−α)+α
	4(tn, Jan )

+ 1

(α + 1)((1 − α)�(α)) + α

∑n
b=0(h

α	4(tb, Jab )((n + 1 − b)α

×(n − b + 2 + α) − (n − b)α(n − b + 2 + 2α))−
hα	4(tb−1, Jab−1

)((n + 1 − b)α+1 − (n − b)α(n − b + 1 + α))),

Jn+1 = J0 + �(α)(1−α)
�(α)(1−α)+α

	5(tn, Jn)

+ 1

(α + 1)((1 − α)�(α)) + α

∑n
b=0(h

α	5(tb, Jb)((n + 1 − b)α

×(n − b + 2 + α) − (n − b)α(n − b + 2 + 2α))−
hα	5(tb−1, Jb−1)((n + 1 − b)α+1 − (n − b)α(n − b + 1 + α))),

Pn+1 = P0 + �(α)(1−α)
�(α)(1−α)+α

	6(tn, Pn)

+ 1

(α + 1)((1 − α)�(α)) + α

∑n
b=0(h

α	6(tb, Pb)((n + 1 − b)α

×(n − b + 2 + α) − (n − b)α(n − b + 2 + 2α))−
hα	6(tb−1, Pb−1)((n + 1 − b)α+1 − (n − b)α(n − b + 1 + α))),

(31)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

	1 = μN − β1SC − (a1 + a2)S + r1 Ja + r2Cv − μS,

	2 = β1SC − β2CP + β6 JC + β5 J Ja + β4PC − μC,

	3 = β3J Ja − r2Cv − μCv,

	4 = β2CP − β3 J Ja − r1 Ja − μJa,

	5 = a1S − β5 J Ja − β6 JC − μJ ,

	6 = a2S − β4PC − μP,

(32)
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Numerical Results in Caputo-Fabrizio Sense

Employing the numerical scheme offered by (21) for the crime model, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1 = Sn +
[

(2−α)(1−α)
2 + 3h

4 α(2 − α)
]
	1(tn, Sn)−

[
(2−α)(1−α

2 + h
2α(2 − α)

]
	1(tn−1, Sn−1),

Cn+1 = Cn +
[

(2−α)(1−α)
2 + 3h

4 α(2 − α)
]
	2(tn,Cn)−

[
(2−α)(1−α

2 + h
2α(2 − α)

]
	2(tn−1,Cn−1),

Cvn+1
= Cvn

+
[

(2−α)(1−α)
2 + 3h

4 α(2 − α)
]
	3(tn,Cvn

)−
[

(2−α)(1−α
2 + h

2α(2 − α)
]
	3(tn−1,Cvn−1

),

Jan+1
= Jan +

[
(2−α)(1−α)

2 + 3h
4 α(2 − α)

]
	4(tn, Jan )−[

(2−α)(1−α
2 + h

2α(2 − α)
]
	4(tn−1, Jan−1

),

Jn+1 = Jn +
[

(2−α)(1−α)
2 + 3h

4 α(2 − α)
]
	5(tn, Jn)−

[
(2−α)(1−α

2 + h
2α(2 − α)

]
	5(tn−1, Jn−1),

Pn+1 = Pn +
[

(2−α)(1−α)
2 + 3h

4 α(2 − α)
]
	6(tn, Pn)−

[
(2−α)(1−α

2 + h
2α(2 − α)

]
	6(tn−1, Pn−1),

(33)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

	1 = μN − β1SC − (a1 + a2)S + r1 Ja + r2Cv − μS,

	2 = β1SC − β2CP + β6 JC + β5 J Ja + β4PC − μC,

	3 = β3J Ja − r2Cv − μCv,

	4 = β2CP − β3 J Ja − r1 Ja − μJa,

	5 = a1S − β5 J Ja − β6 JC − μJ ,

	6 = a2S − β4PC − μP.

(34)

Results and Discussion

We used three different fractional-order derivatives in the frames of Atangana-Baleanu-
Caputo, Caputo and Caputo derivatives to design the non-integer models of the crime system.
To see the behavior of the numerical solutions of the suggested models, numerical schemes
using the initial conditions are provided. In this work, we use the real initial conditions
reported in [31] to see the performance of the suggested techniques for solving the considered
systems different amounts of fractional orders are chosen. Fig. 1 is responsible to show the
behaviour of solutions under three fractional operators with the initial condition S(0) =
9.527 × 10(1),C(0) = 3.823 × 10(0), Ja(0) = 1.344 × 10( − 1),Cv(0) = 5.097 × 10( −
1), P(0) = 1.362× 10( − 2) and J (0) = 2.485× 10( − 1) and fractional order α = 0.95. It
is clear that in spite of a decreasing trend for C(t) and Cv(t), number of susceptible group is
experiencing an upward trend for the time period of 50 years. For the same period of time in
fig. 2 the same trend(a decreasing trend) can be seen for J (t), Ja(t) and the number of police
officers. The differences in the behaviour of the solutions under the considered operators are
obvious.
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Fig. 1 Comparing the solutions for α = 0.95

To see the efficacy and the applicability of the suggested numerical method we choose
another fractional order as α = 0.99. Similar to the first case, the time frame is considered for
50 years which the behaviour of the solutions for S(t),C(t) andCv(t) can be observed in the
fig 3. Also, fig 4 show the approximate solutions of J (t), Ja(t) and P(t). It is obvious that in
the number of C(t) and Cv(t) start to fall in spite of the number of susceptible group which
starts an increasing approach for the time period of 50 years. Also decreasing approach can
be observed for the approximate behaviour of J (t), Ja(t) and the number of police officers.
The differences in the behaviour of the solutions under the considered operators are obvious.
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Fig. 2 Comparing the solutions for α = 0.95
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Fig. 3 Comparing the solutions for α = 0.99
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Fig. 4 Comparing the solutions for α = 0.99

Conclusion

In this study, we applied three fractional-order derivatives in the frames of Caputo derivative,
Caputo-Fabrizio derivative, and Atangana-Baleanu-Caputo derivative to make the fractional-
order type model the crime system. Comparing the behavior of the solutions under the
considered fractional operators was our main aim. After designing the fractional models
of the crime system, effective numerical techniques were obtained to gain the approximate
solutions to the problems. To see how the suggested models behave we selected different
values of the fractional orders in a considerable time period.We plotted the solutions for each
state variable in one figure to see the differences of the behaviors under the chosen initial
conditions.
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