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Tn5 transposase is a bacterial enzyme that integrates a DNA fragment into
genomic DNA, and is used as a tool for detecting nucleosome-free regions of
genomic DNA in eukaryotes. However, in chromatin, the DNA targeting by
Tn5 transposase has remained unclear. In the present study, we reconstituted
well-positioned 601 dinucleosomes, in which two nucleosomes are connected
with a linkerDNA, and studied theDNA integration sites in the dinucleosomes
by Tn5 transposase in vitro. We found that Tn5 transposase preferentially
targets near the entry–exit DNA regions within the nucleosome. Tn5 transpo-
sase minimally cleaved the dinucleosome without a linker DNA, indicating
that the linker DNA between two nucleosomes is important for the Tn5
transposase activity. In the presence of a 30 base-pair linker DNA, Tn5 transpo-
sase targets the middle of the linker DNA, in addition to the entry–exit sites
of the nucleosome. Intriguingly, this Tn5-targeting characteristic is conserved
in a dinucleosome substrate with a different DNA sequence from the 601
sequence. Therefore, the Tn5-targeting preference in the nucleosomal templates
reported here provides important information for the interpretation of Tn5
transposase-based genomics methods, such as ATAC-seq.
1. Introduction
Chromatin is the eukaryotic nuclear architecture by which genomic DNA is
highly compacted and accommodated within a nucleus [1]. In chromatin, the
core histonesH2A,H2B,H3 andH4 form the histone octamer, and approximately
150 base-pairs of DNA are bound to the histone octamer surface. Consequently,
theDNA stretch is left-handedlywrapped around the histone octamer, thus form-
ing the nucleosome [1–3]. The nucleosomes are connected with the linker DNA
segments in chromatin. In the nucleus, the linker DNA lengths are not uniform,
depending on the genomic loci and cell types, and are determined by the transla-
tional positions of the nucleosomes [4–10]. TheDNAdirectly bound to the histone
surface within the nucleosome is usually inaccessible to DNA-binding proteins,
which function as regulators of transcription, replication, repair and recombina-
tion [10–13]. The histone-free linker DNA regions then become the target sites
for these DNA-binding proteins [14,15]. Therefore, the nucleosome positioning
is an important regulatory element for genomic DNA compaction and regulation.

To probe the nucleosome positioning in cells, nuclease hypersensitivity, in
which the DNA regions without nucleosomes (nucleosome-free regions, NFRs)
and the linker DNA regions between nucleosomes are preferentially digested, is
commonly used. Deoxyribonuclease I (DNase I) is a double-stranded endo-
nuclease that is employed for detecting the nucleosome-free DNA regions in the
genome [16,17]. Micrococcal nuclease is an endo-exonuclease that preferentially
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digests the DNA stretches without nucleosomes, such as linker
DNAs, and is used to analyse nucleosome occupancy and posi-
tioning in cells [10,16,17]. These nucleosome-mappingmethods
are combined with high-throughput DNA sequencing, and are
commonly used for chromatin analysis, but usually require
multiple steps and/or a large number of cells [16,17].

The assay for transposase-accessible chromatin using
sequencing (ATAC-seq) method has been developed for
detecting NFRs and linker DNA regions by a simple pro-
cedure from small amounts of input materials, based on the
activity of Tn5 transposase, followed by high-throughput
DNA sequencing [18]. The Tn5 transposase technology also
enables the mapping of the distributions of histone modifi-
cations and DNA-binding proteins in 100–1000 cells by the
chromatin integration labelling method [19] and in greater
than 60 cells by the CUT&Tag method [20]. In these methods,
the genomic DNA sequences associated with the target mol-
ecules are tagged with adaptor DNA sequences by the Tn5
transposase-mediated integration.

Bacterial Tn5 transposase promotes the transposition of the
Tn5 transposon [21]. The Tn5 transposon contains two inverted
repeats, IS50Land IS50R, andeach IS50 repeat is locatedadjacent
to two different 19-base-pair Tn5 transposase recognition
sequences: the outside end and inside end sequences are located
at the Tn5 transposon–host genomic DNA boundary and in the
Tn5 transposon, respectively. Tn5 transposase is encoded in
IS50R, and catalyses the Tn5 transposition in bacterial cells.
The first step of the transposition reaction is the formation of a
synaptic complex containing a Tn5 transposase dimer with
two outside end sequences of the Tn5 transposon. Tn5 transpo-
sase excises the transposon from the flanking genomic DNA, via
hairpin formation with the DNA ends of the transposon, and
releases the synaptic complex, resulting in a pair of 30-OH
groups at the blunt ends of the excised transposon DNA frag-
ment [22]. The 30-OH groups of the DNA attack the
phosphodiester bonds of the target DNA, integrating the trans-
poson in the target site within the synaptic complex [23,24]. In
the integration step, Tn5 transposase cleaves the target DNA
with nine nucleotide 50 overhangs, and the resulting nine base-
pair gaps flanking the transposon are filled by the cellular
DNA polymerase [25]. In vitro, Tn5 transposase effectively cata-
lyses the transpositionusing synthetic oligonucleotide sequences
(adaptor DNAs), under conditions with Mg2+ ions [26,27].

TheATAC-seqmethod has been applied tomap the nucleo-
some positioning and relaxed ‘active’ chromatin regions,which
correlate to the DNase I hypersensitive sites, in diverse cell
types and developmental stages [17,18,28–32]. However, it
has remained unclear how Tn5 transposase targets the
locations of the adaptor DNA integration sites in the chromatin
substrates. In the present study, we reconstituted dinucleo-
somes with various linker DNA lengths, and mapped the
Tn5 transposase-mediated adaptor DNA integration sites in
model chromatin substrates.
2. Results
2.1. Tn5 transposase integrates DNA fragments at a

specific site in the nucleosomal DNA
To test the targeting sites of Tn5 transposase in chromatin, we
performed Tn5 transposase assays with nucleosomal DNA
substrates in vitro. Purified Tn5 transposase was incubated
with short oligonucleotide duplexes (adaptor DNAs), and the
Tn5 complexed with adaptor DNAs (Tn5–DNA complex)
was purified by gel filtration chromatography (electronic
supplementary material, figure S1A–C). The adaptor DNA
integration reaction by Tn5 transposase was conducted with
the reconstituted dinucleosome as the targeting substrate
(figure 1a). The dinucleosome was reconstituted on the 601
sequence, which uniquely forms a nucleosome at a single
position (figure 1b). In the dinucleosome, two nucleosomes
were connected with a 15-base-pair linker DNA (figure 1b,
upper panel). In this experimental system, the reaction pro-
ducts can be detected as DNA fragments, because Tn5
cleaves the target DNA and integrates the adaptor DNAs at
the cleaved site (figure 1a). The DNA fragments were detected
bynon-denaturingpolyacrylamide gel electrophoresis (PAGE).

In the presence of the naked DNA substrate, the Tn5–DNA
complex generated multiple DNA fragments, which rep-
resented the integration of the adaptor DNAs into different
sites of the target DNA (figure 1c, lanes 2–6). On the other
hand, in the presence of the dinucleosome substrate, the
Tn5–DNA complex appeared to cleave a single site, resulting
in two DNA fragments (figure 1c). These data suggested that
the adaptor DNAs were integrated at a specific site (figure 1c,
lanes 8–12). Short minor products were observed, when the
reactions were conducted for longer times (figure 1c, lanes
9–12). These minor products may correspond to the products
resulting from the Tn5 integration periodicity in chromatin,
as previously reported [31]. A massively parallel sequencing
analysis confirmed the detailed cleavage sites. The major clea-
vage sites are between positions 140 and 141 from one end of
the dinucleosomal DNA, together with the site between pos-
itions 149 and 150 (Tn5 cleaves the target DNA with nine
nucleotide 50 overhangs) (figure 1d,e, middle panel). Therefore,
the major cleavage site was mapped at the 50–141 base and 50–
149 base positions, near the entry–exit sites of the proximal
nucleosomal DNA (figure 1e, middle panel). Additionally,
the minor cleavage sites are also mapped at the 50–140 base
and 50–148 base positions and at the 50–142 base and 50–150
base positions (figure 1d,e, top and bottom panels).
2.2. Effects of linker length on the integration reaction
by Tn5 transposase

We next tested the effects of the linker length on the Tn5 inte-
gration reaction. The dinucleosomes with various linker DNA
lengths (0, 5, 10, 15, 20, 25 and 30 base-pairs) were prepared
based on the 601 sequence (figure 2a; electronic supplementary
material, figure S2A and B), and then the integration reactions
were performed with the Tn5–DNA complex. As shown in
figure 2b, in the presence of the dinucleosome with the 0 base-
pair linker DNA, the resulting DNA fragments were hardly
detected, suggesting that the Tn5–DNA complex did not effi-
ciently promote the integration reaction in chromatin without
a linker DNA (lanes 2,3). On the other hand, in the presence of
the dinucleosome containing the 5-base-pair linker DNA, the
Tn5–DNA complex cleaved the dinucleosome substrate
(figure 2b, lanes 4,5). These data indicated that Tn5 transposase
requires a linkerDNAregion for the integration reaction into the
nucleosomalDNA. Surprisingly, the integration reaction byTn5
transposase was drastically enhanced when the linker DNA
length was expanded to 15 base-pairs (figure 2b, lanes 8,9).
The enhancement was not obvious with the dinucleosome
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containing the 10-base-pair linker DNA (figure 2b, lanes 6,7).
The Tn5–DNA complex exhibited efficient cleavage activity
with the dinucleosomes containing the 20-, 25- and 30 base-
pair linker DNAs (figure 2b, lanes 10–15). Therefore, a certain
linker DNA length (10–15 base-pairs) is an important factor
for the efficient Tn5 integration reaction in chromatin.
2.3. Tn5 targets a specific nucleosomal DNA site
independent of the linker DNA length

As shown in figure 2b, the lengths of the resulting longer DNA
fragments were increased in a linker length-dependent manner
(black arrowhead). By contrast, the lengths of the resulting
shorter DNA fragments were the same among the integration
reactions with the dinucleosomes containing 5-, 10-, 15-, 20-,
25- and 30-base-pair linker DNAs (figure 2b, grey arrowhead).
These results indicated that the Tn5–DNA complex cleaves a
specific nucleosomal DNA site around the entry–exit sites of
the nucleosome, in the dinucleosome substrates containing
different linker DNA lengths (figure 2b). When the Tn5–DNA
complex reacted with the dinucleosome containing the 30-
base-pair linker DNA, an additional band was observed
(figure 2b, white arrowhead). A massively parallel sequencing
analysis revealed that this additional cleavage site was
mapped at the 50–160 base and 50–168 base positions, which
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are located in the middle of the linker DNA region (figure 2c;
electronic supplementary material, table S1). This additional
cleavage site was not observed as a major site for the naked
DNA template (electronic supplementary material, table S1),
suggesting that the dinucleosome formation with the 30-base-
pair linker DNA may dictate the cleavage site in the linker
DNA. These findings indicate that the middle of the linker
DNA region, which may not directly contact the histone sur-
face, may be additionally cleaved by Tn5 transposase, when
the linker DNA length is expanded to around 30 base-pairs.
2.4. Effect of the dinucleosomal DNA sequence on the
integration reaction by Tn5 transposase

To test whether the DNA sequence affects the integration site in
the dinucleosome, the integration reaction by the Tn5–DNA
complex was conducted using dinucleosome substrates con-
taining the 603 sequence, which is different from the 601
sequence (electronic supplementary material, figure S3A).
Two 603 dinucleosome substrates with 15-base-pair and 30-
base-pair linker DNAswere prepared (figure 3a; electronic sup-
plementary material, figure S3B and C). In the Tn5 transposase
integration assay with naked DNAs, several discrete bands
were detected in the naked 603 DNA substrates, and the band
patterns were different from those of the naked 601 DNA sub-
strates (figure 3b, lanes 3,7,11,15; electronic supplementary
material, table S1). This indicated that the Tn5–DNA complex
may exhibit a DNA sequence preference in the integration reac-
tion, consistent with previous reports [18,33,34]. However, in
both the 601 and 603 DNA experiments, the specific bands
observed in the integration reactions with the dinucleosome
substrates were different from those of the naked DNA sub-
strates (figure 3b). Therefore, the sequence preference of the
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Tn5–DNA complex may not be a determinant for the specific
integration site in the dinucleosome. Intriguingly, the band pat-
terns of the 601 dinucleosomes (15-base-pair and 30-base-pair
linker DNAs) were quite similar to those of the 603 dinucleo-
somes (figure 3b, lanes 5,13 and 9,17). These results suggested
that, in the dinucleosome substrates, the DNA targeting sites
of the Tn5–DNA complex may be dictated by the local DNA
situation induced by the nucleosome formation, but not the
DNA sequence preference.

It should be noted that, in the 601 dinucleosome substrate,
the Tn5 transposase targeting site is restricted to the proximal
nucleosome (figures 1d and 2c). However, in the 603 dinucleo-
some, the proximal and distal nucleosomes were equally
targeted by Tn5 transposase (figure 4a,b). The region of the
601 sequence containing the preferential Tn5 transposase tar-
geting site reportedly has lower affinity than the other part
[35,36]. Therefore, these results suggested that Tn5 transposase
may preferentially target the DNA region flexibly detached
from the histone surface in the nucleosome.
3. Discussion
In the ATAC-seq method, Tn5 transposase has been employed
to insert an adaptor DNA fragment in the nucleosome-free
DNA regions and linker DNA regions between nucleosomes.
The ATAC-seq signals are obtained as the integration sites of
the adaptor DNA, and provide the nucleosome locations in
chromatin with small amounts of input materials [18,31,37].
Therefore, the ATAC-seq method has been widely used for
chromatin analysis. However, the specific location of the Tn5
transposase targeting site in nucleosomal DNA has not been
clarified yet.

In the present study, we performed an in vitro Tn5 transpo-
sase assay with reconstituted dinucleosomes, and found that
Tn5 transposase preferentially integrates adaptor DNAs near
the entry–exit sites of the nucleosomal DNA. One DNA site
cleaved by Tn5 transposase is located within the histone–
DNA contact region of the nucleosome (figures 1d, 2c and 4).
This Tn5 transposase target site did not depend on the linker
DNA length (figure 2b). It should be noted that the 50–140
site, which is also found as the major cleavage site in the dinu-
cleosome substrates with the 601 sequence, has been observed
as a preferential cleavage site for Tn5 transposase in the 601
naked DNA substrates (electronic supplementary material,
table S1). This sequence preference of Tn5 transposase was
not observed when the 603 sequencewas used as the dinucleo-
some and naked DNA substrates (figures 3 and 4; electronic
supplementarymaterial, table S1). Therefore, the sequence pre-
ference may not be a major cause of the specific nucleosome
targeting by Tn5 transposase. Why does Tn5 transposase
prefer to target the entry–exit sites of the nucleosomal DNA?
One plausible explanation is ‘nucleosomal DNA breathing’
[38]. In the nucleosome, the entry–exit DNA regions spon-
taneously detach and re-attach on the histone surface [38].
Tn5 transposase may cleave the DNA stretch in the nucleoso-
mal DNA region, when the target site is stochastically
detached from the histone surface by the nucleosomal DNA
breathing, rendering this entry–exit DNA region accessible to
the enzyme.

In the 601 dinucleosome, the integration reaction by Tn5
transposase occurred in the proximal nucleosome, but rarely
occurred in the distal nucleosome (figures 1d and 2c). This
result is consistent with the report that the 601 sequence
causes asymmetric nucleosomal DNA breathing, because of
the different DNA flexibilities on either side in the DNA
sequence [35,36,38]. Interestingly, Tn5 transposase attacks
both the proximal and distal nucleosomes, when the 603
sequence is employed (figure 4). The nucleosome containing
the 603 sequence may provide attack sites for Tn5 transposase
on both sides of the nucleosomal DNA ends, because they
may equally bind to the histones.

As discussed above, Tn5 transposase preferentially targeted
the entry–exit sites of the nucleosomal DNA, when the linker
DNA lengths ranged from 5 to 25 base-pairs (figure 2b). How-
ever, we also found that, in the presence of the dinucleosome
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containing the 30-base-pair linker DNA, Tn5 transposase
additionally targeted the middle of the linker DNA (figures 2b
and 3b). Therefore,ATAC-seqmayspecificallydetect the nucleo-
some entry–exit sites, if the linker length is shorter than 30 base-
pairs. In cells, the linker DNA length varies among species and
genomic regions. Short 5-base-pair linker DNAs exist in mouse
embryonic stem cells [9] and yeasts Saccharomyces cerevisiae [7]
and Schizosaccharomyces pombe [8]. In S. cerevisiae, the median
linker DNA length is reportedly 23 base-pairs [7], and the aver-
age linker DNA length around the transcriptional start sites of
genes is 18 base-pairs [5]. Schep et al. [31] reported the nucleo-
some positioning of the S. cerevisiae genome, using an ATAC-
seq-based analysis, and found that the most abundant size of
the DNA fragments for nucleosome mapping by Tn5 transpo-
sase was 143 base-pairs, which is shorter than the DNA length
associated within the nucleosome (145–147 base-pairs). This is
consistent with our results, in which Tn5 transposase cleaves
at the entry–exit regions within the nucleosomal DNA.

In human primary CD4+ T cells, the average linker DNA
lengths have been estimated as approximately 30 base-pairs
in the regions retaining the epigenetic marks of active promo-
ters and enhancers, and 58 base-pairs in the regions retaining
the heterochromatin marks [6]. In mouse embryonic stem
cells, the peaks of the linkerDNA length frequencies are report-
edly 35 base-pairs and 45 base-pairs [6]. In these cases, Tn5
transposase may attack both the nucleosomal entry–exit and
linker DNA regions. These new findings provide important
information to decode the ATAC-seq results in cells and/or
genomic loci with different linker lengths.

Aprototype foamyvirus integrase reportedly integrates effi-
ciently into the viral DNA in nucleosomal DNAs [39]. A cryo-
electron microscopy structure of the integrase complexed with
a nucleosome revealed that the integrase specifically targets
the nucleosomal DNA at a position located 3.5 helical turns
away from the nucleosomal dyad [39]. In contrast to the
foamy virus integrase, Tn5 transposase requires a linker DNA
between two nucleosomes for the adaptor DNA integration,
and preferentially targets the nucleosomal DNA near the
entry–exit site. To clarify themechanismsbywhichTn5 transpo-
sase targets the nucleosomal DNA, structural studies of the
nucleosome complexed with Tn5 transposase are awaited.
4. Methods
4.1. Preparation of dinucleosomes
Human histones were prepared as described previously [40].
Briefly, H2A, H2B, H3 and H4, each cloned into the pET15b
vector, were expressed as His6-tagged proteins in Escherichia
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coli, and purified using Ni-NTA agarose column chromato-
graphy (Qiagen) followed by thrombin (Wako) treatment and
Mono S column chromatography (GEHealthcare). The histone
octamer was reconstituted with purified H2A, H2B, H3 and
H4, and was purified by size-exclusion chromatography
(Superdex 200 16/60, GE Healthcare), as described previously
[40]. The DNA fragments containing the 601 or 603 sequences
[41] were cloned into the pGEM-T easy vector (Promega), and
the plasmids were prepared from E. coli cells. The fragments
were excised with an EcoRV treatment, and were prepared
by polyethylene glycol precipitation and anion-exchange
column chromatography. The DNA fragments were mixed
with the histone octamer in 10 mM Tris–HCl (pH 7.5) buffer
containing 2 M KCl, 1 mM EDTA and 1 mM dithiothreitol,
and the dinucleosomes were reconstituted by continuously
decreasing the KCl concentration to 250 mM by the salt-dialy-
sis method [42]. The sequences of these DNA fragments are
described in electronic supplementary material, figure S4.
The resulting dinucleosomes were fractionated by PAGE
using a Prep Cell apparatus (Bio-Rad), as described previously
[42]. The dinucleosome concentrationswere estimated from the
absorbance at 260 nm.

4.2. Purification of Tn5 transposase
Tn5 transposase was purified according to the published
method, with slight modifications [43]. The plasmid pET21a-
Tn5-CBD, which produces the full-length hyperactive Tn5
transposase (E54 K, L372P) as an intein–CBD fusion protein
[33,43], was introduced into E. coli Rosetta 2 (DE3) cells, and
the proteinwas produced in the presence of 0.25 mM isopropyl
β-D-1-thiogalactopyranoside overnight at 10°C, and for an
additional 4 h at 23°C. Cells (approx. 10 g) were suspended
in 50 ml of 20 mM HEPES-KOH buffer (pH 7.2) containing
0.8 M NaCl, 1 mM EDTA, 10% glycerol, 0.2% Triton X-100
and protease inhibitor cocktail (Nacalai Tesque), and were dis-
rupted by sonication. The cell lysate was centrifuged at 15 000
r.p.m. for 20 min at 4°C. The supernatant was mixed with 5 ml
of 10% polyethylenimine (Nacalai Tesque), and the precipitate
was removed by centrifugation at 12 000 r.p.m. for 10 min.
The supernatant was diluted with 83 ml of the 20 mM
HEPES-KOH buffer (pH 7.2) described above, and the precipi-
tate was removed by centrifugation. The resulting supernatant
was loaded onto a 17 ml chitin resin (NEB) column, and was
washed with the same buffer (20 column volumes), followed
by an incubation in 20 mM HEPES-KOH buffer (pH 7.2) con-
taining 100 mM dithiothreitol, 0.8 M NaCl, 1 mM EDTA, 10%
glycerol, 0.2% Triton X-100 and protease inhibitor cocktail
(Nacalai Tesque) for 36 h. Tn5 transposase was then eluted
with the same buffer. The fraction containing Tn5 transposase
was dialysed against 100 mM HEPES-KOH buffer (pH 7.2)
containing 0.2 M NaCl, 0.2 mM EDTA, 0.2% Triton X-100,
20% glycerol and 2 mM 2-mercaptoethanol, and was loaded
on a Mono S 5/50 GL (GE Healthcare) column. After washing
the resinwith 100 mMHEPES-KOH (pH 7.2) buffer containing
0.2 MNaCl, 0.2 mM EDTA, 20% glycerol and 2 mM 2-mercap-
toethanol (five column volumes), Tn5 transposase was eluted
by a linear gradient from 0.2 to 1 M NaCl. The purified Tn5
transposase was dialysed against the same buffer (0.2 M
NaCl), and was concentrated with a centrifugal concentrator
(Millipore). The concentration of Tn5 transposase was deter-
mined by ultraviolet measurement with an extinction
coefficient at 280 nm (86 525 M−1 cm−1), and stored at −20°C
in 55 mM HEPES-KOH buffer (pH 7.2) containing 109 mM
NaCl, 0.11 mMEDTA, 55% glycerol, 0.85 mM 2-mercaptoetha-
nol and 1.1 mM dithiothreitol (electronic supplementary
material, figure S1A).

4.3. Preparation of Tn5–adaptor DNA complex
Tn5 transposase complexes with adaptor DNAs containing a
hyperactive synthetic sequence (ME sequence, [38]) were puri-
fied. Oligonucleotides (Tn5MErev: 50-[phosphate]-CTGTCT
CTTATACACATCT-30, Tn5ME-A: 50-TCGTCGGCAGCGTCA
GATGTGTATAAGAGACAG-30, and Tn5ME-B: 50-GTCTCGT
GGGCTCGGAGATGTGTATAAGAGACAG-30 [43]) were
purchased from FASMAC. Tn5MErev and Tn5ME-A, and
Tn5MErev and Tn5ME-B were pre-annealed. Tn5 transposase
(14 nmol, 1 ml) and oligonucleotide duplexes (Tn5MErev/
Tn5ME-A and Tn5MErev/Tn5ME-B, 42 nmol each, 0.2 ml)
were incubated for 1 h at room temperature. The mixture was
concentrated to 0.5 ml using a centrifugal concentrator, and
was filtered through a 0.22 µm filter. The Tn5 transposase com-
plexed with oligonucleotide duplexes (Tn5–adaptor DNA
complex) was separated from the free oligonucleotides by
chromatographyon a Superdex 200 10/300GL (GEHealthcare)
column, equilibrated with 100 mM HEPES-KOH buffer (pH
7.2) containing 0.2 M NaCl, 0.2 mM EDTA, 20% glycerol and
2 mM dithiothreitol (electronic supplementary material, figure
S1B). The concentration of the Tn5–adaptor DNA complex
was determined by the Bradford method with Protein Assay
CBB Solution (Nacalai Tesque). The Tn5–adaptor DNA com-
plex was stored at a 5 µM concentration in 55 mM HEPES-
KOH buffer (pH 7.2) containing 109 mM NaCl, 0.11 mM
EDTA, 55% glycerol and 1.1 mM dithiothreitol, at −20°C (elec-
tronic supplementary material, figure S1C). For the sequencing
analysis, Tn5 transposase complexed with one oligonucleotide
duplex (Tn5MErev/Tn5ME-A) was prepared.

4.4. Tn5 transposase assay
A naked DNA or a dinucleosome (containing 0.01 µg µl−1 for
DNA, from 0.05 µg µl−1 stock solution) was incubated with
the Tn5–adaptor DNA complex (0.5 µM, from 5 µM stock
solution described above) in 10 mM N-Tris(hydroxymethyl)-
methyl-3-aminopropanesulfonic acid-KOH buffer (pH 8.5)
containing 1 mM MgCl2 at 37°C. The reactions were stopped
by adding stop solution containing 1 mg ml−1 Proteinase K
(Roche), 0.2% SDS and 20 mM EDTA (final concentration).
After an incubation for 30 min at room temperature, the
samples were treated with phenol/chloroform/isoamyl
alcohol, followed by ethanol precipitation. The DNA fragments
were recovered as precipitates, andwere resolved in TE (10 mM
Tris–HCl, pH8.0, 0.1 mMEDTA) buffer. The sampleswere then
analysed by non-denaturing 5% PAGE in 0.5× TBE (44.5 mM
Tris, 1 mM EDTA, 44.5 mM boric acid) buffer, followed by
SYBR Gold staining. The gel images were obtained using an
Amersham Typhoon scanner (GE Healthcare; figures 1c and
2b) or LAS4000 (GE Healthcare; figure 3b).

4.5. Sequence analysis
The integration reaction was performed with the Tn5–adaptor
DNA complex containing Tn5MErev/Tn5ME-A. The DNA or
dinucleosome substrate (containing 0.01 µg µl−1 DNA, from a
0.05 µg µl−1 stock solution) was incubated with the Tn5–
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adaptor DNA complex (601 dinucleosome, 601 naked DNA
and 603 dinucleosome: 0.5 µM, from the 5 µM stock solution
described above; 603 naked DNA: 0.25 µM, from a 2.5 µM
stock solution) in 10 mM N-Tris(hydroxymethyl)methyl-3-
aminopropanesulfonic acid-KOH buffer (pH 8.5) containing
1 mM MgCl2, at 37°C for 15 min (601 dinucleosome, 601
naked DNA and 603 dinucleosome) or 30 min (603 naked
DNA). The resulting DNA fragments were extracted as
described above, and they were confirmed by non-denaturing
PAGE. The samples were electrophoresed on a TAE-agarose
gel, and approximately 100–300 base-pair DNA fragments
were purified with a Wizard SV Gel and PCR Clean-Up
System (Promega). The purified DNA fragments, in which
the adaptor DNAwas ligated as a sequence tag by the transpo-
sase assay, were analysed by massively parallel sequencing.
The DNA fragments (10 ng) were ligated with the annealed
Tn5MEDS-B oligonucleotides (Tn5MErev/Tn5ME-B, 2 µM)
[43] on the blunt end side at 16°C for 30 min, using a TaKaRa
DNA ligation kit. The resulting DNA fragments were purified
to exclude fragments shorter than 150 base-pairs, using
AMPure XP beads (Beckman Coulter). The polymerase chain
reaction (PCR) amplification was performed using the Ad1
(50-AATGATACGGCGACCACCGAGATCTACACTCGTCGG-
CAGCGTCAGATGTG-30) and Ad2 (50-CAAGCAGAAGACG
GCATACGAGAT[8mer_index]GTCTCGTGGGCTCGGAGAT
GT-30) primers. The PCR reactionwas performedunder the fol-
lowing conditions: 72°C for 3 min and 95°C for 30 s, followed
by seven or eight cycles of 98°C for 10 s, 63°C for 30 s and 72°C
for 1 min, with a final extension at 72°C for 5 min, using a Life-
ECO thermal cycler (Hangzhou Bioer Technology Co. Ltd.,
China). The amplified library was purified with a Qiagen
MinElute Cleanup kit. The purified library was selected into
260–320 base-pair fragments by E-Gel 2% SizeSelect
electrophoresis (Invitrogen). Sequencing was performed in
paired reads of 101 × 2 base-pairs, using an Illumina MiSeq
system.
4.6. Sequencing data analysis
Adaptor DNAs were trimmed using TRIM GALORE (v. 0.5.0)
with the following options: –paired –nextera. The paired-
end reads were concatenated into single-end reads using
FLASH (v. 1.2.11) with the options: -m 15 -M 101 (the reads
that have lengths within 101–180 base-pairs were analysed).
The reads were mapped to the coordinates of the 601 and
603 DNA sequences using BOWTIE (v. 1.2.2) with the following
options: -v0 -m1 (retains exact hits and discards the
ambiguous alignments of multi-reads).

Data accessibility. Supplementary figures are available as electronic sup-
plementary material. The deep sequencing data in this study are
publicly available at accession no. GEO: GSE130322.
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