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Abstract

The small GTPases, Rab5 and Rab7, are key regulators at multiple stages of the endocytic/

endolysosomal pathway, including fusion and maturation of endosomes. In yeast, Vps21p

(Rab5 homolog) recruits a GEF for Rab7 and activates the downstream Ypt7p (Rab7 homo-

log) on endosomal membrane. Although the model of this sequential activation from Vps21p

to Ypt7p in the endocytic pathway has been established, activation mechanism of Ypt7p in

the Vps21p-independent pathway has not been completely clarified. Here we show that

Ypt7p is activated and mediates vacuolar fusion in cells lacking all yeast Rab5 genes,

VPS21, YPT52, and YPT53. We also demonstrate that deletion of both VPS21 and YPT7

genes cause severe defect in the AP-3 pathway as well as the CPY pathway although the

AP-3 pathway is mostly intact in each vps21Δ or ypt7Δmutant. Interestingly, in vps21Δ
ypt7Δmutant cargos trafficked via the VPS or endocytic pathway accumulate beside

nucleus whereas cargo trafficked via the AP-3 pathway disperse in the cytosol. These find-

ings suggest that Ypt7p is activated and plays a Rab5-independent role in the AP-3-medi-

ated pathway.

Introduction

The Rab GTPases are important regulators of various intracellular vesicle transport systems. In

the endocytic pathway, Rab5 has been shown to regulate the early steps involved in targeting

endocytic vesicles to early endosomes and fusion between early endosomes [1–3]. Rab7 local-

izes to late endocytic compartments and plays important roles in transport from the early to

late endosome and fusion of the endosome and lysosome/vacuole [4–7]. Recent studies have

revealed that sequential activation or inactivation of Rab5 and Rab7, termed Rab conversion,

along the endocytic pathway is important for achieving these roles [8–10]. In the Rab conver-

sion process, Rab5 recruits Rab7-GEF to the endosome, thereby activating downstream Rab7,

and this mechanism is well conserved in many organisms including budding yeast [11, 12].

In addition to these Rab proteins, two evolutionary conserved tethering complexes, the

CORVET and HOPS complexes, are known to regulate early-to-late endosome transport,
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respectively [13]. These complexes share four class C subunits (Vps11p, Vps16p, Vps18p and

Vps33p), and in addition to these subunits, CORVET contains Vps3p and Vps8p, and their

homologous subunits Vps39 and Vps41 are contained in the HOPS complex [13]. Specific sub-

units of these tethering complexes interact with specific Rab protein: the Vps3p and Vps8p

subunits bind to Vps21p at the endosomal membrane, whereas the Vps39p and Vps41p sub-

units bind to Ypt7p at the vacuolar membrane [14, 15]. The HOPS complex also interacts with

the vacuolar SNARE complex (consisting of Vam3p, Vam7p, Vti1p and Nyv1p) via its class C

subunits, and controls endosome-vacuole fusion [16]. Similarly, the CORVET complex is

known to interact specifically with Pep12p, which functions as an endosomal t-SNARE

required for transport from the TGN to the endosome [17], indicating that distinct sets of the

tethering complex, SNARE, and Rab GTPase cooperatively mediate the early or late step of the

endocytic pathway.

These proteins are also required for trafficking of newly synthesized proteins from the

trans-Golgi network (TGN) to the vacuole via, for example, the vacuolar protein sorting (VPS)

and adaptor protein (AP)-3 pathways [18–20]. Both of these pathways intersect with the endo-

cytic pathway before transport to the vacuole [21], but the CPY pathway takes proteins via late

endosomes/MVBs to the vacuole, whereas the AP-3 pathway mediates transport to the vacuole

independently of late endosomes/MVBs. Several studies have identified around 80 mutants

that have defects in the CPY pathway, and these vpsmutants have been divided into six classes

(A-F) based on their vacuolar morphology [22, 23]. Class D vpsmutants, such as vps21Δ and

vps3Δ, have a slightly enlarged vacuole, whereas class B vpsmutants, such as vps39Δ, vps41Δ,

have fragmented vacuole [22, 24]. Class C vpsmutants, such as vps33Δ, contain only small

vesicular remnants of a vacuole [22, 24], reflecting the roles of the class C Vps proteins in mul-

tiple stages of the vacuolar transport pathway [17]. Indeed, Vps33p is an essential core compo-

nent of the CORVET and HOPS complexes, and a double mutant lacking endosomal SNARE

Pep12p and vacuolar SNARE Vam3 exhibits a class C vpsmutant phenotype [25].

Several Vps proteins, including Vps41p and Vam3, have been shown to function in the AP-

3 pathway [26, 27]. Both Vps41p and Vam3p are required for homotypic vacuolar fusion [28,

29], but Vps41p seems to play more vital roles in the AP-3 pathway because it physically asso-

ciates with an AP-3 subunit and mediates the formation of AP-3 transport vesicles [26]. In

contrast to these proteins, Vps21p and Ypt7p seem to function mainly in the CPY pathway,

because in vps21Δ and ypt7Δ mutants the AP-3 pathway is not severely impaired [21, 30, 31].

Although sequential activation of Vps21p and Ypt7p is reported to occur along the CPY path-

way, vps21Δ and ypt7Δ mutants exhibit different vacuolar phenotypes, suggesting function of

these proteins in the different vacuolar transport pathways and the existence of an unidentified

mechanism that activates Ypt7p in the Vps21p-independent pathway.

In this study, we demonstrate that activated Ypt7p localizes to the vacuolar membrane in

cells lacking all yeast Rab5 genes. We also show that the vps21Δ ypt7Δ double mutant exhibits

a much severer vacuolar phenotype in comparison with the vps21Δ or ypt7Δ single mutant.

Additionally, we show that the vps21Δ ypt7Δ mutant exhibits a severe defect in the AP-3 path-

way. These results suggest that Ypt7p is activated and plays an important role in the Rab5-in-

dependent AP-3-mediated pathway.

Materials and methods

Yeast strains and growth conditions

The yeast strains used in this study are listed in S1 Table. All strains were grown in standard

rich medium (YPD) or synthetic medium (SM) supplemented with 2% glucose and appropri-

ate amino acids.
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Plasmids and strain construction

The N-terminal GFP tag was integrated at the endogenous locus of the YPT7 gene as follows:

The GFP (S65T) fragment whose stop codon was replaced with BglII site was subcloned into

BamHI- and NotI-digested pBlueScript II SK (pBS-GFP), and the NotI-SacII fragment, which

contains the S. cerevisiae ADH1 terminator and theHis3MX6module, was amplified by PCR

using pFA6a-GFP (S65T)-HIS3MX6 as a template, and inserted into NotI- and SacII-digested

pBS-GFP (pBS-GFP-HIS3). To create an integration plasmid, 395-bp 5’ UTR of YPT7 gene

and the N-terminal fragment of the YPT7ORF (nt 1–288) were generated by PCR and cloned

into the BamHI or BglII site of pBS-GFP-HIS3. To construct the plasmid expressing Ypt7p

under the control of its own promoter (pRS316-YPT7), YPT7 gene (containing 394 bp

upstream and 172 bp downstream of the ORF) was amplified by PCR and cloned into the

EcoRI-digested pRS316. To integrate GFP at the N terminus of the YPT7 gene, the integration

plasmid was linearized by HincII and transformed into yeast. The C-terminal GFP or mCherry

tagging of proteins was performed as described previously [21].

Fluorescence microscopy and electron microscopy

Fluorescence microscopy was performed using an Olympus IX83 microscope equipped with a

x100/NA 1.40 (Olympus) objective and Orca-R2 cooled CCD camera (Hamamatsu), using

Metamorph software (Universal Imaging). FM4-64 staining was performed as described previ-

ously [32]. The fluorescence intensities were analyzed by using the program ImageJ V1.44.

Electron microscopy

Cells sandwiched between copper disks were frozen in liquid propane at -175˚C and then

freeze substituted with acetone containing 2% OsO4 and 2% distilled water at -80˚C for 48 hr.

The samples were kept at -20˚C for 4 hr and then at 4˚C for 1 hr, and dehydrated in anhydrous

acetone two times and 100% ethanol three times. After being infiltrated with propylene oxide

(PO) two times the samples were put into a 70:30 mixture of PO and resin (Quetol-651) and

then transferred to a fresh 100% resin, and polymerized at 60˚C for 48 hr. The blocks were cut

into 70-nm-thick sections, and the sections were mounted on copper grids. The specimens

were stained with 2% uranyl acetate and Lead stain solution, and observed using a transmis-

sion electron microscope (JEM-1400Plus; JEOL).

Results

vps21Δ ypt7Δ double mutant is a phenocopy of the class C vps mutant

Vps21p has been reported to recruit the Mon1-Ccz1 complex, a GEF for Rab7, onto endo-

somes to activate Ypt7p during the early-to-late endosome transition (Fig 1A) [11]. According

to this model, Vps21p is required for activation of Ypt7p and subsequent Ypt7p-mediated vac-

uolar fusion. Therefore it was speculated that cells lacking all of the yeast Rab5 genes, VPS21,
YPT52, and YPT53, would show somewhat defect in the vacuole formation. However, a previ-

ous study reported that the vps21Δ ypt52Δ ypt53Δ mutant contained an enlarged vacuole,

which is the typical morphology observed in the class D vpsmutant, although the CPY path-

way is severely impaired [31]. To confirm and further investigate these observations, we exam-

ined the vacuole morphologies of mutants harboring deletions of genes whose function is

related to vacuole/endosome fusion by labeling the cells with a lipophilic styryl dye, FM4-64.

When added to wild-type cells, FM4-64 is immediately incorporated into the plasma mem-

brane, internalized via bulk-phase endocytosis, and then transported to the vacuole within 20

min (Fig 1B). As reported previously, we observed a slightly enlarged vacuole in the mother

Role of Ypt7p in the Rab5-independent AP-3 pathway
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Fig 1. Vacuolar morphology of wild-type and mutant cells. (A) Model of Rab5 to Rab7 conversion during endosome maturation in

budding yeast. Yeast Rab5 Vps21p is activated by Vps9p, a GEF for Rab5, on early endosome (E.E.). Activated Vps21p recruits Ccz1p/

Mon1p, a GEF for Rab7, by biding GFP-bound Vps21p, and enhances dissociation of Vps21p form the early endosome. Ccz1p/

Mon1p also binds to the HOPS complex and activates yeast Rab7 Ypt7p directly, thereby promoting endosome maturation and

fusion of mutivesicular body/late endosome (MVB/L.E.) to the vacuole. Modified from Nordmann et al., 2010. (B, E, G, I) Vacuolar
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cell of the vps21Δ ypt52Δ ypt53Δ (rab5Δ) mutant (Fig 1B) [31]. To examine whether Ypt7p is

recruited to the vacuolar membrane in the absence of yeast Rab5s, we determined the localiza-

tion of Ypt7p using an N-terminal GFP-tagged protein expressed from the endogenous locus.

Since GFP tagging partially perturbs the function of endogenous Ypt7p, we additionally

expressed exogenous Ypt7p in cells expressing GFP-Ypt7p (see Fig 2B). GFP-Ypt7p was clearly

detected on the vacuolar membrane in wild-type and the rab5Δ cells, although it showed par-

tial relocation to the cytosol in the rab5Δ mutant (Fig 1C). We also found that Vps41p, a sub-

unit of the HOPS complex, is able to stay on the vacuolar membrane (Fig 1C), whereas

Mon1p, a GEF for Ypt7p, is mostly relocalized to the cytosol in the absence of yeast Rab5s, and

prevacuolar localization observed in wild-type cell was significantly decreased (Fig 1D). These

observations indicate that Ypt7p is able to partially localize on the vacuole, independently of

yeast Rab5s. Quantitative analysis revealed that the number of vacuoles contained in wild-type

cells averages ~1.7 and that the diameter of the largest vacuole is ~2.7 μm (Fig 1E and 1F). The

vps21Δ mutant contains an enlarged vacuole (~3.3 μm) (Fig 1E and 1F), similar to the rab5Δ
cells, whereas ypt7Δ cells exhibited severe vacuole fragmentation, the average size of the largest

vacuole being ~1.2 μm (Fig 1E and 1F). Deletion of theMON1 gene caused moderate fragmen-

tation of the vacuole (~1.8 μm), and themon1Δ and vps21Δ combination led to a slight

decrease in size (~1.1 μm) (Fig 1E and 1F). Interestingly, we found that the vps21Δ ypt7Δ dou-

ble mutant exhibits an apparently distinct vacuolar phenotype, in comparison with each single

mutant; the cells lack a distinguishable vacuole and exhibit FM4-64 accumulation beside the

nucleus (Fig 1E).

We also examined the morphology of the vacuole in mutants with deletion of the genes

encoding the CORVET/HOPS or SNARE complex subunits. Deletion of the CORVET-specific

Vps3p or Vps8p subunit resulted in a class D vps phenotype with an enlarged vacuole

(~3.1 μm) similar to the vps21Δ mutant (Fig 1G and 1H) [24], whereas deletion of the HOPS-

specific Vps39p or Vps41p subunit caused vacuolar fragmentation (~0.8 μm), characterized as

the class B vps phenotype (Fig 1G and 1H) [24]. Cells with deletion of the VPS33 gene, encod-

ing a core subunit of two tethering complexes, exhibited severe defects in vacuolar morphol-

ogy, categorized as the class C vpsmutant (Fig 1G and 1H), consistent with previous reports

[22]. Interestingly, we found that the vps33Δ mutant shows accumulation of FM4-64 beside

the nucleus in addition to diffusion into the cytosol, similar to the vps21Δ ypt7Δ double mutant

(Fig 1G).

Cells with deletion of VAM3 or VAM7, encoding vacuolar t-SNARE, are categorized as the

class B vpsmutant and exhibit FM4-64 staining similar to the vps39Δ or vps41Δ mutant,

whereas deletion of PEP12 gene, encoding an endosomal t-SNARE, exhibited the class D vps
phenotype (Fig 1I and 1J) [24]. Deletion of SYN8 gene had little effect on the vacuolar mor-

phology (Fig 1I and 1J). The pep12Δ vam3Δ double SNARE mutant exhibited a severe vacuolar

phenotype comparable to that of the vps33Δ mutant [13]. Consistent with this, the pep12Δ
vam3Δ mutant showed an FM4-64 staining pattern similar to the vps33Δ mutant (Fig 1I).

These results demonstrated that the vps21Δ ypt7Δ mutant has a similar phenotype to the class

C vpsmutant.

morphology in wild-type and indicated mutant cells. Vacuolar morphology was assessed by FM4-64 staining and different

interference contrast (DIC) in the following strains: yeast Rab5-disrupted mutant (rab5Δ) (B), yeast Rab5 (vps21Δ), Rab7 (ypt7Δ) and

Rab7-GEF mutants (mon1Δ)(E), CORVET and HOPS mutants (G), and SNARE mutants (I). (C) Locaization of GFP-Ypt7p, and

-Vps41p in wild-type and rab5Δ cells. (D) Locaization of GFP-Mon1p in wild-type and rab5Δ cells. Cells were labeled with FM4-64.

(F, H, J) Quantification of number (black bar) and size (gray bar) of vacuole in wild-type and mutant cells. Numbers were analyzed by

counting ring-like compartments stained by FM4-64. Vacuolar size was measured inside diameter of the largest compartment stained

by FM4-64 in cell. Data show the mean ± SD, with> 50 cells counted for each strain. Different letters indicate significant difference

at p< 0.05 (S2 Table) (One-way ANOVA with Tukey’s post-hoc test). Scale bars, 2.5 μm.

https://doi.org/10.1371/journal.pone.0210223.g001
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Membrane targeting of Ypt7p in vps21Δ or CORVET/HOPS complex

mutants

We next focused on the active/inactive state of Ypt7p in mutant cells. It has been reported that

substitution of a highly conserved asparagine by leucine (Q68L) or of a threonine by glutamine

(T22N) fixes Rab proteins to the GTP- or GDP-bound form [33]. The GTP-bound active form

of Ypt7p showed vacuolar membrane localization (Fig 2A, upper center panels). In contrast,

the GDP-bound form of Ypt7p, Ypt7(T22N)p, exhibited localization at the cytosol and some

membrane structures (Fig 2A, upper right panels). To identify the membrane to which the

GDP-bound form of Ypt7p is targeted, we followed several membrane markers and observed

co-localization with Sec63p, a marker of the endoplasmic reticulum (ER) (Fig 2A, lower pan-

els). This finding is consistent with the observation that Ypt7p is targeted to the ER membrane

in themon1Δ or ccz1Δ mutant [34]. Accordingly, we concluded that Ypt7p is localized at the

vacuolar membrane in the active state whereas it is localized in the cytosol or on the ER mem-

brane in the inactive state.

We next examined the active/inactive state of Ypt7p in the vps21Δ mutant. Unexpectedly,

expression of GFP-Ypt7p in the vps21Δ mutant caused moderate vacuolar fragmentation and

mis-localization of Ypt7p in the cytosol with a punctate structure, but additional expression of

exogenous Ypt7p led to recovery of GFP-Ypt7p localization and the vacuolar morphology (Fig

2B). This suggests that N-terminal GFP tagging partially perturbs the function of Ypt7p.

Importantly, vacuolar localization of GFP-Ypt7p in the vps21Δ mutant suggests that Ypt7p is

activated in the absence of Vps21p. To further examine the localization of Ypt7p in mutant

cells, we expressed GFP-Ypt7p with an exogenous single-copy YPT7 gene in cells lacking a

subunit of the CORVET, HOPS or SNARE complex. Interestingly, we found that GFP-Ypt7p

showed partial relocation to the cytosol in the vps3Δ and pep12Δ mutants, but did not show

cytosolic localization in the vps41Δ and vam3Δ mutants (Fig 2C and 2D). In the vps33Δ and

pep12Δ vam3Δ mutants, GFP-Ypt7p also did not show cytosolic localization, but exhibited a

punctate localization in the region of FM4-64 accumulation (Fig 2C). These observations indi-

cate that Ypt7p is fully or partially activated in these mutant cells. Inmon1Δ mutant, Ypt7p

was localized at the vacuole but partially relocalized to the cytosol (Fig 2C and 2D). Taken

together with the observation that Mon1p is slightly localized at the prevacuolar compartment

in rab5Δ cells (Fig 1D), this result suggests that the Mon1-Ccz1 GEF complex partially contrib-

utes to the nucleotide exchange of Ypt7p in the absence of yeast Rab5s. Since one of the key

effectors of Rab5 on early endosomes is the type III PI(3)-kinase, Vps34 [35], which produces

phosphatidylinositol-3-phosphate (PtdIns(3)P) that is required for recruitment of the

Mon1-Ccz1 complex and Rab7 [36], we examined intracellular PtdIns(3)P levels in vps21Δ
andmon1Δ mutants. We detected the localization of PtdIns(3)P by FYVE-GFP [37], and

found that PtdIns(3)P is substantially produced in these mutants (Fig 2E). Similar to

GFP-Ypt7p localization, Vps21p also showed partial relocation to the cytosol in the vps3Δ
mutant, but did not show cytosolic localization in other mutants (Fig 2F). We note that

GFP-Vps21p is partially localized on the vacuolar membrane in the ypt7Δ mutant, as shown

previously (Fig 2G) [38].

vps21Δ ypt7Δ double mutant shows defective convergence of the CPY

pathway with the AP-3 pathway

The finding that the vps21Δ ypt7Δ double mutant exhibits a much more abnormal vacuolar

morphology than the vps21Δ or ypt7Δ single mutant suggested that function of these Rabs

might be required for vesicle trafficking pathway(s) other than the CPY pathway. To investi-

gate this, we examined the effect of deleting the VPS21 and YPT7 genes on the VPS and AP-3

Role of Ypt7p in the Rab5-independent AP-3 pathway
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Fig 2. Localization of yeast Rab7 in wild-type and mutant cells. (A) Localization of putative GTP- or GDP-locked

mutant of Ypy7p in living cells. Cells were grown to early to mid-logarithmic phase in YPD medium at 25˚C and

observed by fluorescence microscopy and DIC (upper panels). Colocalization of GFP-Ypt7(T22N) with mCherry-fused

Sec63p (lower paneles). Each image pair was acquired at successive 2 sec (s) intervals. (B) Localization of GFP-Ypt7p in

wild-type or vps21Δ cells. Cells were labeled with 200 μM FM4-64. Cells expressing Ypt7p from a single copy plasmid

Role of Ypt7p in the Rab5-independent AP-3 pathway
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pathways, using mCherry-tagged Pep4p, a vacuolar protease, as a marker of the CPY pathway,

and GFP-tagged Pho8p, a vacuolar alkaline phosphatase, as a marker of the AP-3 pathway [39,

40]. In wild-type cells, these markers localized at the vacuole or vacuolar membrane (Fig 3A).

In agreement with previous observations that the Rab5-disrupted cell exhibits a severe defect

in the CPY pathway but shows little abnormality in the AP-3 pathway [21], Pep4-mCherry was

ectopically localized to multiple punctate compartments in the cytosol, whereas Pho8-GFP

was transported normally to the vacuolar membrane in the rab5Δ mutant (Fig 3A). In the

ypt7Δ mutant, Pep4-mCherry and Pho8-GFP were likely to be transported to fragmented vac-

uoles and they partially colocalized (Fig 3A). To further examine effect of YPT7 gene deletion

on the AP-3 pathway, we compared localization of Pho8-GFP with FM4-64 staining. As

expected, we observed that Pho8-GFP mostly colocalizes with FM4-64-labeled fragmented

vacuoles in the ypt7Δ mutant (Fig 3B and S1 Movie), indicating that transport of Pho8-GFP to

the vacuole via the AP-3 pathway is not impaired in the ypt7Δ mutant.

Interestingly, we found that in the vps21Δ ypt7Δ double mutant, Pep4-mCherry and

Pho8-GFP exhibited clearly distinct localization: Pep4-mCherry showed punctate localization,

which is clearly distinct from the class E compartment that is an aberrant prevacuolar endocy-

tic compartment [22], beside the nucleus whereas Pho8-GFP showed small particulate localiza-

tion in the cytosol (Fig 3A) and rarely colocalizes with FM4-64-labeled puncta (Fig 3B and S1

Movie). These results suggest that both of the CPY and AP-3 pathway might be impaired in

the vps21Δ ypt7Δ mutant. In contrast, FM4-64 and Pep4-GFP accumulated in the same region

beside the nucleus (Fig 3C). We also found that tdTomato-tagged Hse1p, a marker of the

early-to-late endosome [21], and GFP-FYVE, a marker of the PtdIns(3)P residing late endo-

some and vacuole [37], accumulated in a similar region (Fig 3D).

Next, using electron microscopy, we explored the ultrastructure of the region where FM4-64

and Pep4-GFP accumulated in the vps21Δ ypt7Δmutant. Numerous small vesicle structures were

observed beside the nucleus in the vps21Δ ypt7Δmutant (Fig 3F–3H), whereas in wild-type cells

such structures were rarely detected (Fig 3E–3G). The vesicles accumulating beside the nucleus in

the mutant were smaller than the fragmented vacuoles observed in mutants lacking the HOPS or

SNARE subunit (Fig 1H–1J). On the basis of observations using FM4-64 and other markers, these

structures appear to be vesicles derived from the endocytic and CPY pathways.

Defective transport of AP-3-coated vesicles in vps21Δ ypt7Δ double mutant

We next utilized the chimeric protein GFP–Nyv1–Snc1-TMD (GNS), which accumulates at

the plasma membrane if the AP-3 pathway is defective (Fig 4A) [41]. Consistent with the result

obtained using Pho8-GFP as a marker (Fig 3A), we found that the vps21Δ ypt7Δ double

mutant showed accumulation of GNS at the plasma membrane (Fig 4B). Interestingly, the

vps21Δ ypt7Δ mutant showed a severe defect in trafficking of the AP-3 pathway, even though

the pathway is almost intact in each single mutant (Fig 4B). Localization of GNS in the vps21Δ
ypt7Δ mutant was different from that in mutants lacking a subunit of the HOPS (vps41Δ or

vps39Δ) or SNARE complex (vam3Δ or vam7Δ), in which GNS showed punctate localization

were grown to mid-logarithmic phase in selective synthetic rich medium at 25˚C. (C) Localization of GFP-Ypt7p in

wild-type and mutant cells. All cells express Ypt7p from a single copy plasmid. Cells were labeled with FM4-64 and

observed as described above. (D) The graph shows quantification of the fluorescence intensity of GFP-Ypt7p in the

cytosol. Error bars represent the SEM from at least three experiments (n> 50 cells for each strain per experiment).

Different letters indicate significant difference at p< 0.05 (S2 Table) (One-way ANOVA with Tukey’s post-hoc test).

(E) Localization of GFP-fused FYVE domain (EEA1) in wild-type and mutant cells. (F) Localization of GFP-Vps21p in

wild-type and mutant cells. Cells were labeled with FM4-64. (G) Higher magnification views of the boxed areas in (F).

Scale bars, 2.5 μm.

https://doi.org/10.1371/journal.pone.0210223.g002
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Fig 3. Convergence of the CPY pathway with the AP-3 pathway in vps21Δ ypt7Δ cells. (A) Localization of Pho8-GFP and Pep4-mCherry in vps21Δ
and ypt7Δ cells. Cells expressing Pho8-GFP and Pep4-mCherry were grown to early to mid-logarithmic phase in YPD medium at 25˚C and observed by

fluorescence microscopy. Merged images of GFP and mCherry channels are shown in the lower panel. (B) Localization of Pho8-GFP in wild-type and

vps21Δ ypt7Δ cells. Cells were labeled with FM4-64 and observed as described above. (C) Convergence of the endocytic pathway with the CPY pathway

in wild-type and vps21Δ ypt7Δ cells. The images were acquired at 4h after labeling with 200 μM FM4-64. (D) Localization of Hse1-tdTomato and GFP-

fused FYVE domain (EEA1) in wild-type and vps21Δ ypt7Δ cells. (E, F) Ultrastructure of vacuole(s) observed in wild-type and vps21Δ ypt7Δ cells. Cells

were grown at 25˚C, fixed using propane jet freezing method and processed for electron microscopic analysis. (G, H) Higher magnification views of the

boxed areas in wild-type (E) and vps21Δ ypt7Δ (F) cells. Scale bars: 2.5 μm (A-D), 1 μm (E, F), 0.5 μm (G, H).

https://doi.org/10.1371/journal.pone.0210223.g003

Role of Ypt7p in the Rab5-independent AP-3 pathway

PLOS ONE | https://doi.org/10.1371/journal.pone.0210223 January 25, 2019 9 / 15

https://doi.org/10.1371/journal.pone.0210223.g003
https://doi.org/10.1371/journal.pone.0210223


in addition to localization at the plasma membrane (Fig 4C and 4D). In contrast, GNS localiza-

tion in the vps33Δ or vam3Δ pep12Δ mutant was mostly observed at the plasma membrane,

similar to that in the vps21Δ ypt7Δ mutant (Fig 4D).

We also utilized GFP-fused Apl5p, an AP-3 complex subunit localizing at the TGN and

transport vesicles. Apl5-GFP was observed in the cytoplasm as multiple small puncta in wild-

type cells (Fig 4E). The number of Apl5-GFP-labeled puncta was unchanged in vps21Δ or

ypt7Δ mutant, but significantly increased in the vps21Δ ypt7Δ double mutant (Fig 4E–4G).

Similar results were obtained in mutants lacking a subunit of the HOPS or SNARE complex

(Fig 4F and 4G), suggesting that transport of the AP-3-coated vesicle to the vacuole is impaired

in these mutant cells.

Fig 4. Defect of the AP-3 pathway in vps21Δ ypt7Δ mutant. (A-D) Analysis of the AP-3 pathway in wild-type and mutant cells. Cells expressing GFP–Nyv1–

Snc1-TMD (GNS) fusion protein were grown to early to mid-logarithmic phase at 25˚C and observed by fluorescence microscopy and DIC. (E, F) Localization of

Apl5-GFP in wild-type and mutant cells. (G) Quantification of the number of Apl5-GFP positive vesicles in indicated cells displayed in (E) and (F). Data show the

mean ± SEM of three experiments, with 50 cells per experiment. Different letters indicate significant difference at p< 0.05 (S2 Table) (One-way ANOVA with Tukey’s

post-hoc test). Scale bars, 2.5 μm.

https://doi.org/10.1371/journal.pone.0210223.g004
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Discussion

On the basis of the data presented above and in previous studies, we propose that activity of

yeast Rab7, Ypt7p, is regulated in both the Rab5-dependent and -independent pathway. We

previously reported that convergence of the endocytic and CPY pathways occurs before yeast

Rab5s function, and that the endocytic pathway intersects separately with the CPY and AP-3

pathways (Fig 5) [21]. In Rab5-disrupted cells, therefore, transport intermediates derived from

the endocytic and CPY pathways accumulated in the cytosol, whereas vesicles derived from

the intact AP-3 pathway were able to fuse with the vacuole (Fig 5). In this step, Ypt7p is

recruited to the vacuolar membrane to mediate the fusion. In the ypt7Δ mutant, convergence

of the CPY and AP-3 pathways could partially occur, leading to formation of relatively large

vesicles (Fig 5). The vps21Δ ypt7Δ double mutant exhibited accumulation of smaller vesicles

beside the nucleus. Considering the phenotypic similarity of the vps21Δ ypt7Δ mutant to the

class C vpsmutant, the vps21Δ ypt7Δ mutant might have defects at multiple stages of vesicular

trafficking, including convergence of the CPY and AP-3 pathways (Fig 5).

Fig 5. Model of vacuole delivery pathways in wild-type, vps21Δ and ypt7Δ cells. Convergence of the endocytic and CPY pathways occur at an early stage of

endocytosis, independently of Rab5. vps21Δ ypt7Δ double mutant has defect in the trafficking of the AP-3 and CPY pathways although the AP3 pathway is mostly intact

in each vps21Δ or ypt7Δ single mutant. See details in the text.

https://doi.org/10.1371/journal.pone.0210223.g005
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The vps21Δ ypt7Δ double mutant seems to possess a defect similar to that of the vps33Δ or

vam3Δ pep12Δ double mutant. Vps33p is an essential core component of the CORVET and

HOPS complexes, and is required for multiple stages of the endocytic and CPY pathways,

including early-to-late endosome transition and fusion of the late endosome and vacuole [17,

25]. Additionally, mutants lacking the HOPS subunits exhibit a defect in the AP-3 pathway.

Therefore, the vps33Δ mutant has defects in the endocytic, CPY and AP-3 pathways. The dou-

ble SNARE mutant, vam3Δ pep12Δ, exhibits a vacuolar phenotype similar to that of the vps33Δ
mutant [25]. Both the vam3Δ and pep12Δ single mutants have been shown to have a severe

defect in the CPY pathway [24]. It has also been reported that Vam3p is required for the AP-3

complex-mediated transport of Pho8p [27]. These observations suggest that defects in all three

of these pathways have a severe impact on vacuolar biogenesis.

We demonstrated that the vps21Δ ypt7Δ mutant has a severe defect in the AP-3 pathway,

although the defect in the pathway exhibited by each single mutant alone is very slight. This

suggests that Vps21p directly or indirectly functions in a redundant manner with Ypt7p in the

AP-3 pathway. Ypt7p is reported to interact with Vps41p and mediate fusion of the AP-3 vesi-

cles to the vacuole [42]. One possibility is that in the absence of Ypt7p, Vps21p might be able

to mediate this fusion step instead of Ypt7p via, for example, the i-CORVET complex that con-

tains Vps41p instead of Vps8p. Localization of Vps21p is regulated by a Rab-GAP, Gyp3p, and

deletion of the GYP3 gene changes the localization of Vps21p from the endosomal compart-

ment to the vacuolar membrane [43, 44]. According to the Rab countercurrent model of GAP

recruitment [45], Ypt7p could recruit Gyp3p to the vacuole and regulate Vps21p dissociation

from the vacuole. In support of this idea, previous studies have demonstrated interaction

between Ypt7p and Gyp3p [43]. Additionally, we and other group observed that Vps21p is par-

tially localized on the vacuolar membrane in the ypt7Δ mutant, suggesting that Ypt7p is

required for Vps21p inactivation [38]. Thus, Vps21p could function in a redundant manner

with Ypt7p in the fusion step of the AP-3 vesicles to the vacuole.

We demonstrated that Ypt7p is able to localize on the vacuolar membrane in vps21Δ and

mon1Δ mutants. Consistent with these observations, previous studies demonstrated that

Ypt7p is targeted to the vacuolar membrane in the absence of the Mon1-Ccz1 complex [34].

These results suggest that the upstream Vps21p and GEF complex are not only determinants

of Ypt7p and additional factors regulate Ypt7p targeting on the vacuolar membrane. One pos-

sible candidate might be Vps39p, which directly binds to the GDP-bound forms of Ypt7p [46].

Another possible candidate is PtdIns(3)P, which is produced by the type III PI(3)-kinase

Vps34p on endosomal membrane and plays important role in the recruitment of Mon1-Ccz1

complex and subsequent Ypt7p targeting on the vacuolar membrane [47]. We demonstrated

that PtdIns(3)P is substantially produced in vps21Δ andmon1Δ mutants. Many Rab5 and

Rab7 effectors are known to interact with PtdIns(3)P, suggesting a possibility that Ypt7p might

be targeted on the vacuole directly or indirectly via PtdIns(3)P.
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