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Abstract: Studies show that the dispersion of silica in the mixing process is an important factor
affecting the wear of the mixing chamber. As the most important mixing equipment, the long
operational life of the internal mixer will cause wear in the rotor and chamber of the internal mixer.
This wear increases the gap between the rotor and chamber of the internal mixer, reduces the mixing
performance, weakens the dispersion of packing, and adversely affects the quality of the rubber
produced. Therefore, it is important to investigate the metal wear in the mixing process. This article
examines the effect of the addition of different amounts of silane coupling agents on metal friction
and wear during the mixing process. The silane coupling agent has two functions. The first is to make
the surface of the silica hydrophobic, enabling it to combine the inorganic matrix of the silica with the
organic matrix of the rubber; the second is to inhibit the aggregation of the silica in the rubber. In the
present study, we examine (1) the influence of different formulations on the friction and wear of the
metal in the mixing chamber from the perspective of formulation technology, and (2) the correlation
between corrosion wear and abrasive wear. It is found that a rubber compound with 6 phr of TESPT
has the lowest metal wear and that adding more TESPT does not affect the degree of metal wear. As
the amount of TESPT increases, the proportion of abrasive wear decreases, while the proportion of
corrosive wear increases, reaching a maximum of 20.7%. In our study we found that abrasive wear is
the predominant wear mechanism of a rubber compound on metal. In contrast, the corrosive wear
caused by high-temperature water vapor still occupies a large proportion of the total wear. Therefore,
improving silica dispersion and reducing abrasive wear are extremely important methods to protect
the mixing chamber. However, the corrosion of metals by high-temperature water vapor should also
be considered when preparing for the mixing process.

Keywords: TESPT; silica; abrasive wear; corrosive wear

1. Introduction

As an important reinforcing filler, silica has been widely used in the rubber industry.
Studies show that when used in tires, silica increases wet skid resistance, reduces rolling
resistance, and improves traction. However, silica has silanol hydroxyl groups on its
surface, resulting in poor compatibility with the main components of tires, including
natural rubber, styrene–butadiene rubber, and other nonpolar components. Moreover,
the formation of hydrogen bonds between silanol hydroxyl groups can easily affect the
composition uniformity of the tire. To resolve this problem, improve the silica dispersion
in rubber, and increase the polymer–filler interaction, it is necessary to modify the surface
formulation of silica. In this regard, a bifunctional silane coupling agent is usually added to
the tire. Reviewing the literature indicates that this issue has attracted scholars worldwide.

Wang Maoying [1] studied the effect of the amount of silane coupling agent on the
performance and vulcanization characteristics of silica-filled rubber. As the silane coupling
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agent increases, the Mooney viscosity of the rubber compound, the Payne effect, and the
positive vulcanization time decrease, and the filler dispersion improves. Moreover, the
extruding swell ratio of the capillary tube increases, and the extrusion surface deterio-
rates. Meanwhile, it was found that the tensile stress of the vulcanizate first increases and
then decreases.

Yambao Guo [2] studied the effects of different silane coupling agents and hollow
glass bead (HGB) filler content on the mechanical and tribological properties of tires under
dry friction conditions. Accordingly, it was found that the NBR sample with HGB filler
modified by 5 wt.% of silane coupling agent γ-aminopropyl triethoxysilane (KH550) has
good interfacial bonding strength and excellent wear resistance. Furthermore, the results
revealed that as the amount of KH550 in the tire composition exceeds 5 wt.%, the wear rate
of the HGB/NBR composite in the modified HGB sample decreases.

S.S. Sarkawi [3] studied the interaction between silica and natural rubber in the
presence and absence of silane coupling agents. In the absence of a silane coupling agent,
voids form around the silica particles. On the other hand, the presence of silane results in a
strong bond between the filler and the rubber, thereby preventing the formation of cavities.
This phenomenon may be attributed to the weak interaction between filler and rubber [4,5].

Kaushik Pal [6] studied the effect of fillers on the rubber’s alloy morphology and
wear characteristics. Accordingly, it was found that ISAF N234 significantly improves the
tire’s curing, mechanical, and thermal characteristics. The results showed the optimal wear
resistance for 80% NR and 20% XNBR with ISAF N234.

It is worth noting that the effects of wet mixing and conventional mixing methods on
metal friction and wear have been studied before [7]. More specifically, the corrosion and
abrasive wear ratio were quantitatively calculated by spraying high-temperature steam
proportionally. Then the wear effect of the two mixing methods on the mixing chamber
was simulated.

In the present study, the composition of white carbon black serves as the research
object to study the influence of the amount of silane coupling agent on metal friction and
wear during the mixing process.

2. Experiment
2.1. Instrument

In the present study we used a hacker mixer (XSM-500, Qingdao University of Science
and Technology, SD, Qingdao, China), a double-roll mill (BL-6157, Dongguan Baolun Preci-
sion Testing Instrument Co., SD, Dongguan, China), a CSM-friction-and-wear tester (TRB3,
Tribometer Co., Peseux, Switzerland), a steam generator (ZT-2588S, Zhiteng Co., Taiwan,
China), a 3D laser measuring microscope (LEXT OLS5000, Olympus, Tokyo, Japan), a rub-
ber processing performance analyzer, (RPA2000, American Alpha Company, Hawthorne,
CA, USA), and a dispersion meter (DisperGRADER, American Alpha company, CA, USA).

2.2. Chemical Composition

Formulation: The mixing formulation used for the experiments is shown in Table 1.

Table 1. Formulation.

Component (phr) C1 C2 C3 C4 C5 C6 C7

NR 100 100 100 100 100 100 100
Silica115MP 60 60 60 60 60 60 60

ZnO 2 2 2 2 2 2 2
4020 2 2 2 2 2 2 2
SAD 2 2 2 2 2 2 2

TESPT 0 2 4 6 8 10 12
DPG 1.3 1.3 1.3 1.3 1.3 1.3 1.3
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Table 1. Cont.

Component (phr) C1 C2 C3 C4 C5 C6 C7

S 1.3 1.3 1.3 1.3 1.3 1.3 1.3
CZ 1.8 1.8 1.8 1.8 1.8 1.8 1.8

Natural Rubber (NR); Silica (Silica115MP); Silane Coupling Agent (TESPT); Zinc Oxide (ZnO), rubber Additives; Stearic
acid (SAD); Rubber antioxidant (4020), N-1,3-dimethylbutyl-N’-phenyl-p-phenylenediamine; Accelerator diphenyl
guanidine (DPG); Rubber vulcanization accelerator (CZ), N -Cyclohexyl-2-benzothiazole sulfenamide; sulfur (S).

2.3. Mixing Process

Mixing Process: As shown in Table 2.

Table 2. Traditional mixing process.

1.6L Hake Mixer, 80rpm, 75% FF

Time T (◦C) Ingredients

Masterbatch
0:00 70 Polymers
0:40 Chemical, Silica
1:10 Silica
2:30 120 Sweep
4:00 135 Sweep, Sampleing
5:00 145 Discharge

The preparation process for the mixed rubber is shown in Table 2. Put in the cut NR first, and add the ingredients
(except sulfur S and accelerator CZ) and half of the Silica115MP at 40 s. Add the other half of the Silica115MP at
1 min and 10 s. Sweep at 2 min 30 s and 4 min, and add the spilled compound to the mixer. Remove the rubber at
5 min. Then the rubber compound is pressed by a double-roll mill to obtain a rubber sample with a smooth and
flat surface. Finally, it is cut with abrasive tools to provide the required pieces for the experiment [8–10].

2.4. Testing Method

Test Method:

(1) Payne effect: rubber processing performance analyzer was used to scan deforma-
tions on seven rubber compounds. The scanning test was carried out at a scanning
frequency of 1 Hz, scanning range of 0.28–40%, and sample temperature of 60 ◦C.
Accordingly, the curve of dynamic modulus Gversus strain was obtained. It is worth
noting that the Payne effect originates from the destruction of the network structure
between filler and filler. Accordingly, the Payne effect refers to the phenomenon
that the dynamic modulus of filled rubber decreases sharply as the strain increases.
Generally, the higher the filler aggregation, the worse the dispersibility of the filler,
and the more obvious the Payne effect. Therefore, the Payne effect is widely used to
reflect the dispersibility of the filler [11–15].

(2) Silylation reaction index: The rubber processing analyzer was utilized to test the
silanization reaction index and measure the degree of the silanization reaction. In this
regard, the settings are presented in Table 3.

Table 3. Settings of the RPA.

Stage Frequency/hz Temperature/◦C Time/Min Strain Test Items

1 0.1 60 5 0.28% -
2 1 60 - 0.28–40% G′(02)
3 1 60 - 0.28–40% G′(03)
4 0.1 60/160/160 0/2.5/5 0.28% -
5 1 60 - 0.28–40% G′(05)
6 1 60 - 0.28–40% G′(06)

In Stage 1, the sample was preheated. In stages 2 and 3, the filler agglomerations
originating from uneven mixing and dispersion were broken. In stage 4, the sample was
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treated at a constant temperature of 160 ◦C, which intensifies the polar Brownian motion
and reunites the unsilanized filler, thereby increasing the storage modulus [16–19]. In stage
5, the agglomeration of unsilanized fillers was broken so that ∆G′(05) dropped. Finally, in
Stage 6, the entire filler network was broken. If this experiment is to be repeated, a reference
value of the sample of the same composition without a coupling agent ∆G′REF(05) should
be set beforehand. Since the silanization reaction did not occur during the experiment,
the filler agglomerated most intensely and the dynamic modulus decreased the most [20].
Figure 1 reveals that the difference between the ∆G′REF(05) and the ∆G′(05) distributions is
mainly due to the partial silanization of the sample [21–26]. If distributions of ∆G′(05) and
∆G′(06) coincide, it means that the sample has reached the maximum degree of silanization.
The following expression can be applied in this regard:

X =
Area of silylation zoon

Area of the largest silylation region
=

Area1
Area + Aera2

=

∫
G′REF(05)−

∫
G′S(05)∫

G′REF(05)−
∫

G′S(06)
(1)
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Figure 1. The test principle of silanization reaction degree.

It should be emphasized that this expression is only applicable for the horizontal
comparison.

The silanization reaction index is an important indicator of silica silane modification.
The larger the silanization reaction index, the higher the degree of silanization reaction and
the better the overall performance of the rubber compound [27–35].

(3) Friction-and-wear test: A CSM was used in the experiment to carry out the friction-
and-wear test. After calibrating the CSM, the pressure, rotating speed, and experiment
time were set to 5 N, 80 r/min, and 120 min, respectively. To study the wear of the
mixing chamber after long-term use, the selected metal grinding head was not coated.
To ensure the authenticity of the experiment, the grinding head and the mixing section
were made of the same material. Studies showed that the rubber compound had
the most serious wear on the metal in the final stage of the investigation [36–38].
Accordingly, the CSM temperature was set to 150 ◦C. The principal diagram of the
CSM wear experiment is shown in Figure 2.
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Figure 2. Schematic diagram of the CSM friction experiment.

(4) Three-dimensional shape observation: In the present study, a 3D laser measuring
microscope was used to observe the surface morphology of the metal and measure
the metal wear based on the volume reduction in the metal grinding head [39–45].

(5) Dispersion test: A dispersion meter was used to test the degree of dispersion and
obtain the dispersion value according to the ASTM D7723 standard.

3. Silanization Reaction Mechanism

The full name of TESPT is (bis-(γ-triethoxysilylpropyl)-tetrasulfide). The structure of
TESPT is shown in Figure 3 below.
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Figure 3. Molecular structure of TESPT.

When TESPT is adsorbed on the silica surface, the surface hydroxyl groups react
with the alkoxy groups of the silane in a process called the silanization reaction. The
silanization reaction can be divided into two main stages, including the one-stage and
two-stage reactions. The one-stage reaction consists of two parts. The first is the direct
reaction between the alkoxy group in TESPT and the silanol group on the silica surface
(dealcoholization condensation). The second is the dehydration condensation of the alkoxy
group of TESPT with the silanol group on the silica surface after decomposition with water.
Accordingly, this two-stage reaction can be considered condensation between adjacent
TESPTs chemically bonded to the silica surface. The silanization reaction can be expressed
as follows (Figure 4):
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Figure 4. The Silanization Reaction. (a) The one-stage reaction of silica with TESPT; (b) The two-stage
reaction of silica with TESPT.

The silanization reaction process is shown in Figure 4. Studies show that the final pro-
cess of mixing is more severely worn. The temperature in the final mixing stage is relatively
high, and the internal mixer is off. The inner mixing chamber is in a high-temperature
environment, and the water vapor cannot overflow the internal mixer. Therefore, the
corrosion and wear caused by high-temperature water vapor should be considered in the
calculations to study the friction and wear of the inner mixing chamber. However, it is an
enormous challenge in the actual process to dismantle the mixing room and measure the
quality of the water vapor produced. To resolve this problem, during the friction test on
the CSM friction-and-wear tester, high-temperature water was sprayed on the surface of
the rubber compound in proportion to the degree of silanization reaction to simulate the
mixing situation in the mixing chamber.

4. Experiment Results
4.1. Filler Dispersion Analysis
4.1.1. Payne Effect

The Payne effect is shown in Figure 5.
Figure 5 indicates that the rubber compound without TESPT has the highest Payne

effect. As the amount of TESPT increases, the Payne effect of the rubber compound
gradually decreases. When the amount of TESPT reaches 6 phr, the Payne effect becomes
stable and is no longer affected by TESPT.

It is worth noting that the Payne effect reflects the silica dispersion. Figure 5 reveals
that the silica dispersion is worst in the rubber compound without TESPT. Meanwhile, as
the amount of TESPT increases, the dispersibility of silica gradually improves. It is found
that the best silica dispersibility can be achieved with six TESPT phr, and more TESPT has
a negligible effect on the silica dispersion.
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4.1.2. Dispersion Comparison

Figure 6 is the dispersion image. Table 4 reveals that the silica dispersibility is worst
in the rubber compound without TESPT and other large silica aggregates. As the amount
of TESPT increases, the dispersion of rubber compounds increases, and the number of
silica aggregates decreases. The distribution of rubber compound with 6 TESPT phr is
the highest, and the number and volume of silica aggregates in the rubber compound are
small. When more TESPTs are added, the rubber compound dispersion changes less, and
the number and volume of silica aggregates almost remain constant.
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Figure 6. Dispersion image.

Table 4. Dispersion images and value of rubber compounds with different TESPT phr.

Rubber Compounds C1 C2 C3 C4 C5 C6 C7

Dispersion 5.42 5.98 6.51 7.47 7.56 7.49 7.53

4.2. Silanization Reaction Index

The degree of silanization reaction has an important influence on the performance of
the silica rubber compound. The higher the silylation reaction index, the higher the degree
of silanization reaction and the more silica and rubber molecules are combined. Moreover,
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the higher the silanization reaction index, the better the silica dispersion and the better the
overall performance of the rubber compound. A rubber processing analyzer was used to
obtain the silanization reaction index in the present study. Figure 7 is an image of the extent
of the silanization reaction. In this regard, silanization reaction indices of seven rubber
compounds are presented in Table 5.
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Table 5. Silanization reaction indices of different compounds.

Rubber Compound C1 C2 C3 C4 C5 C6 C7

Silanization reaction
index 0 0.16249 0.30586 0.55879 0.54589 0.55969 0.56328

The silanization reaction index reflects the degree of the silanization reaction. The
silanization reaction and high-temperature water vapor product have a corrosive effect
on metals and can accelerate wear on the metal. However, it is an enormous challenge
to dismantle the mixing chamber and measure the quality of the water vapor in the
actual process. To resolve this problem, when the friction test was conducted on the CSM
friction-and-wear tester, high-temperature water was sprayed on the surface of the rubber
compound in proportion to the degree of silanization reaction to simulate the mixing
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situation in the mixing chamber. Considering the ratio of the silanization reaction index,
150 ◦C water vapor was sprayed at the ratio of 1:1.88:2.54:3.44:3.36:3.47.

4.3. The Effect of Rubber Compounds with Different Amountsof TESPT on Metal Friction and Wear
4.3.1. Friction Coefficient

Figure 8 reveals that the rubber compound’s friction coefficient correlates with the
rubber compound’s dispersion and the proportion of sprayed high-temperature water
vapor. The high-temperature water vapor has a lubricating effect on the friction process,
reducing the friction coefficient. The better the dispersion of the rubber compound, the
lower the friction coefficient. It should be indicated that the rubber compound without
TESPT cannot undergo the silanization reaction. The silica molecules easily adsorb each
other and form silica aggregates so that the surface of the rubber compound becomes rough
and uneven, and the friction coefficient relatively increases. The silanization reaction can
occur in the rubber compound with two phr of TESPT. However, since the amount of
TESPT is relatively low, silica molecules cannot react completely. This phenomenon leads
to more silica that has not undergone silanization reaction in the rubber compound added
with 2 phr of TESPT. Since silica has strong mutual adsorption characteristics, many silica
aggregates in the rubber compound are added with 2 phr of TESPT. Therefore, compared
with the rubber compound without TESPT, the silica aggregate of the rubber compound
with 2 phr of TESPT reduces, and the corresponding friction coefficient is also low.
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Figure 8. Friction coefficient of the rubber compounds obtained.

When 4 phr of TESPT are added, more silica molecules participate in the silanization
reaction, and the number of silica aggregates greatly reduces. Consequently, the surface
of the rubber compound becomes flat so that the friction coefficient further decreases.
When 6 phr of TESPT are added, the silanization reaction reaches the maximum. Under
this circumstance, the silica reaction is sufficient, and the friction coefficient of the rubber
compound reaches the lowest value. When more TESPT is added, the friction coefficient
remains constant. From the perspective of the silanization reaction, it is concluded that the
maximum silanization reaction under this experimental process can be achieved when 6
phr of TESPT are added. Meanwhile, adding more TESPT does not increase the chemical
bond of the silane coupling agent with the silica surface.

4.3.2. Metal Surface Observation

Figure 9 is an image of metal surface topography; Figure 10 is a histogram of metal
height histogram; Figure 11 is a contour map of metal height profile; and Figure 12 shows
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metal volume. This can be seen in Figures 9C1, 10C1 and 11C1. After friction, many
scratches and pits appeared on the metal surface, and the surface was severely worn. The
height histogram changes greatly before and after friction, smoothing the height peaks.
The height profile of the metal surface before friction is relatively flat, and it fluctuates
greatly after friction. It can be seen from Figures 9C2, 10C2 and 11C2 that there are many
scratches and pits on the metal surface after friction. The height histogram changes greatly
before and after the comparison friction, and the height peak is smoothed out. The height
profile of the metal surface before friction is relatively flat, and the height profile of the
metal surface shows an increasing trend after friction. It can be seen from Figures 9C3, 10C3
and 11C3 that there are relatively few scratches on the metal surface after rubbing. The
histogram of the height before and after friction is small, and a small height peak appears.
The height profile of the metal surface before friction is relatively flat, and the change in the
height profile before and after friction is small. It can be seen from Figures 9C4, 10C4 and
11C4 that there are relatively few scratches on the metal surface after friction, and the pits
tend to expand. The change in height before and after friction as shown in the histogram is
small, but there is a small peak.
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The height profile of the metal surface before friction is relatively flat, and the height
profile fluctuates greatly after friction. It can be seen from Figures 9C5, 10C5 and 11C5
that there are relatively few scratches on the metal surface after friction, and the pits are
smoothed. The height histogram changes obviously before and after friction, and a small
peak appears after friction. The height profile of the metal surface fluctuates greatly after
friction. It can be seen from Figures 9C6, 10C6 and 11C6 that there are few scratches on
the metal surface after friction, and the pits tend to expand. The height profile fluctuates
greatly before friction and tends to be flat after friction. It can be seen from Figures 9C7,
10C7 and 11C7 that there are almost no scratches on the metal surface after friction, and the
pits tend to expand. The height peak decreases after friction, and the profile changes less
before and after friction.

Figure 12 shows the metal wear volume. After the friction-and-wear experiment of
the metal grinding head, the average value is obtained after several measurement points.
Figure 12 illustrates that the rubber compound without TESPT imposes the highest wear
on the metal. However, the wear amount gradually decreases as the silane coupling agent
is slowly added. The lowest wear rate is obtained when 6 phr of TESPT is added.
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Meanwhile, when more TESPT is added, the value of the metal wear remains constant.
It is worth noting that the wear of the silica rubber compound to the metal is not only
abrasive but also corrosive. The progress of the silanization reaction is accompanied by
water production, and high-temperature water vapor corrodes the metal and accelerates
the wear of the metal. The data measured in this group of experiments show the wear
volume of the metal under the condition of spraying high-temperature water vapor. In
other words, the data consists of the volume of abrasive wear and corrosion wear.

For the rubber compound without TESPT, the silica molecule cannot combine with the
rubber molecule because the silanization reaction cannot occur. It is worth noting that the
silica molecules adsorb each other to form silica aggregates, causing serious abrasive wear
to the metal. With the addition of TESPT, the silanization reaction initiates. When adding 2
phr of TESPT during the mixing process, the silica cannot react completely because the value
of TESPT is low. Therefore, there are still many silica aggregates in the rubber compound.
As the silanization reaction progresses, high-temperature water vapor is generated, and
corrosion wear occurs. In terms of the amount of metal wear, the difference between the
rubber compound with 2 phr of TESPT and the rubber compound without TESPT is small.
When 4 phr of TESPT are added during the mixing process, more high-temperature water
vapor is generated as the silanization reaction proceeds. The high-temperature water vapor
corrodes the metal and accelerates the wear of the metal. However, as the silanization
reaction progresses, the free silica molecules and the silica aggregates decrease. Therefore,
abrasive wear is weakened at this time. By adding 6 phr of TESPT during the mixing
process, the silanization reaction proceeds to the maximum.

Meanwhile, the free silica molecules are few, and the number of silica aggregates is
low. However, the silanization reaction produces a lot of high-temperature water vapor,
which corrodes and accelerates wear on the metal. Therefore, although the abrasive wear
is weak at this time, considering the corrosion wear, the wear amount is relatively large.
When a larger amount of TESPT is added, the degree of the silanization reaction does
not change. Therefore, the amount of high-temperature water vapor generated by the
silanization reaction is the same as adding 6 phr of TESPT. During the mixing process,
8, 10, and 12 phr of TESPT are added, and the degree of the silanization reaction is the
same as that of 6 phr of TESPT. This also means that the number of silica aggregates in the
rubber compound added with 8, 10, and 12 phr of TESPT is less. Therefore, abrasive wear
is weakened. Compared with the rubber compound with 6 phr of TESPT, the difference in
wear is small.
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4.3.3. The Proportion of Corrosion Wear and Abrasive Wear

In this section, another rubber compound without high-temperature steam spraying
is considered a control sample, and the CSM friction-and-wear experiment is carried out.
Figure 13 shows the volume loss of the metal grinding head after the friction-and-wear test
of the rubber compound.
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During the experiment, high-temperature water vapor is not sprayed, and metal
corrosion will not occur. Meanwhile, the form of the wear is abrasive wear. It should be
emphasized that abrasive and corrosive wear occurs when high-temperature water vapor is
sprayed. Compare the wear that occurs when high-temperature water vapor is not sprayed
at this time. Then, 6 repeated experiments are performed, and the average of the data is
considered to calculate the ratio of the abrasive and corrosive wear.

Figure 14 illustrates that as the number of TESPT increases, the proportion of corrosive
wear gradually increases. When the number of TESPT phr is 6, the balance of corrosion
and wear reaches the maximum value. When more silane coupling agent is added, the
proportion of corrosive wear no longer increases. This corresponds to the degree of
silanization reaction of the rubber compound. The higher the degree of silanization reaction,
the more high-temperature water vapor is produced, and the more serious the corrosion
wear of the metals.

4.3.4. Change in Roughness before and after Friction

Figure 15 shows the change in the roughness of the metal grinding head surface before
and after friction. As the number of TESPT increases, the difference in the roughness of the
metal surface decreases. With the addition of TESPT and the progress of the silanization
reaction, the number of silica aggregates significantly reduces, and abrasive wear reduces
too. Therefore, the roughness of the metal surface is reduced. As TESPT increases, the
generated high-temperature water vapor increases. Moreover, the high-temperature water
vapor plays a lubrication role, which also reduces the variation in the roughness of the
metal surface.
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Figure 15. The roughness of the metal surfaces. (a) is the metal surface roughness before and after 
friction, and (b) is the roughness change. 

5. Conclusions 
In the present study, we investigated the influence of different formulations on the 

friction and wear of metal in a mixing chamber. Considering the dispersion and the 
Payne effect, it is found that as TESPT increases, the degree of the silanization reaction 
increases, the distribution of silica improves, the number of silica aggregates decreases 
significantly, and the abrasive wear of the metal is reduced. When 6 phr of TESPT are 
added, the silanization reaction reaches its maximum, and the silanization reaction index 
is 0.55879. When the dosage of TESPT increases, the degree of the silanization reaction 
does not increase; this means that 26.47 silica molecules do not participate in the silani-
zation reaction, and abrasive wear is still the most important wear mode. 

The rubber compound with 6 phr of TESPT has the least wear on the metal. When 
more TESPT is added, the wear of the metal remains unchanged. As the TESPT dosage 
increases, abrasive and corrosive wear proportion gradually changes. It is observed that 
the balance of the abrasive wear decreases, and the proportion of the caustic wear in-
creases, reaching the maximum value of 20.7%. In the mixing process, abrasive wear is 
the main wear of the rubber compound to the metal. However, the corrosive wear caused 
by high-temperature steam still occupies a large proportionof the total wear. Therefore, it 
is very important to improve silica dispersion and reduce abrasive wear to protect the 
mixing chamber. Meanwhile, attention should be paid to the corrosion of the 
high-temperature water vapor on the metal. 
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5. Conclusions

In the present study, we investigated the influence of different formulations on the
friction and wear of metal in a mixing chamber. Considering the dispersion and the
Payne effect, it is found that as TESPT increases, the degree of the silanization reaction
increases, the distribution of silica improves, the number of silica aggregates decreases
significantly, and the abrasive wear of the metal is reduced. When 6 phr of TESPT are
added, the silanization reaction reaches its maximum, and the silanization reaction index is
0.55879. When the dosage of TESPT increases, the degree of the silanization reaction does
not increase; this means that 26.47 silica molecules do not participate in the silanization
reaction, and abrasive wear is still the most important wear mode.

The rubber compound with 6 phr of TESPT has the least wear on the metal. When
more TESPT is added, the wear of the metal remains unchanged. As the TESPT dosage
increases, abrasive and corrosive wear proportion gradually changes. It is observed that
the balance of the abrasive wear decreases, and the proportion of the caustic wear increases,
reaching the maximum value of 20.7%. In the mixing process, abrasive wear is the main
wear of the rubber compound to the metal. However, the corrosive wear caused by high-
temperature steam still occupies a large proportion of the total wear. Therefore, it is very
important to improve silica dispersion and reduce abrasive wear to protect the mixing
chamber. Meanwhile, attention should be paid to the corrosion of the high-temperature
water vapor on the metal.
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