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Abstract

Synthetic pesticides are the cornerstone of vector-borne disease control, but alternatives

are urgently needed to tackle the growing problem of insecticide resistance and concerns

over environmental safety. Leptospermum scoparium J.R. Forst and G. Forst (manuka)

essential oil and its four fractions were analyzed for chemical composition and toxicity

against Aedes aegypti larvae. The use of bio-based amylose-N-1-hexadecylammonium

chloride inclusion complexes (Hex-Am) as an emulsifier for L. scoparium essential oil was

also investigated. Fraction 1 was inactive, fractions 2 (LC50 = 12.24 ppm) and 3 (LC50 =

20.58 ppm) were more toxic than the whole essential oil (LC50 = 47.97 ppm), and fraction 4

(LC50 = 35.87 ppm) had similar toxicity as the whole essential oil. Twenty-one chemical con-

stituents were detected in L. scoparium essential oil compared to 16, 5, 19 and 25 chemical

constituents in fractions, 1, 2, 3 and 4 respectively. The two most dominant chemical constit-

uents were calamenene (17.78%) and leptospermone (11.86%) for L. scoparium essential

oil, calamenene (37.73%) and ledene (10.37%) for fraction 1, leptospermone (56.6%) and

isoleptospermone (19.73) for fraction 2, cubenol (24.30%) and caryophyllene oxide

(12.38%) for fraction 3, and γ-gurjunene (21.62%) and isoleptospermone (7.88%) for frac-

tion 4. Alpha-pinene, ledene, and aromandendrene were 2–7 times less toxic than the

whole essential suggesting that the toxicity of L. scoparium essential oil was either due to

other chemical constituents that were not tested or due synergist interactions among chemi-

cal constituents. Leptospermum scoparium essential oil-Hex-Am emulsion (LC50 = 29.62)

was more toxic than the whole essential oil. These findings suggest that L. scoparium

essential oil is a promising source of mosquito larvicide and that Hex-Am is an excellent

emulsifier for L. scoparium essential oil for use as a larvicide.
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Introduction

Mosquito-borne diseases remain one of the most pressing public health challenges facing man-

kind today. Vector control is one of the primary strategies that have effectively been used to

break the transmission cycle and has historically relied on the use of synthetic insecticides.

Unfortunately, the widespread use of synthetic insecticides has resulted in alarming levels

of insecticide resistance among the target mosquito species, raising concerns that current

gains in the fight against mosquito-borne diseases could be lost. Moreover, the use of some

synthetic insecticides in vector control has been discontinued or restricted due to their poten-

tial to disrupt ecological processes and cause harm to non-target organisms. These challenges

have reinforced the urgent need for effective and environmentally-friendly vector control

strategies.

Some plants produce essential oils that contain a spectrum of chemical compounds which

provide protective role against herbivores and pathogens. Some of these essential oils have

insecticidal and repellent activity against mosquitoes [1–6] and possess other traits that make

them suitable alternatives to synthetic insecticides. These include low mammalian toxicity,

rapid degradation in the environment, limited non-target effects, multiple modes of action

that may inhibit development of insecticide resistance, and commercial availability at an

affordable cost [7, 8]. As a result, significant research effort has been devoted towards the dis-

covery and development of essential oil-based insecticides for pest and vector management.

Manuka (Myrtaceae: Leptospermum scoparium J.R. Forst and G. Forst) also known as “tea

tree”, is one of the most abundant and widespread indigenous shrub species in New Zealand.

Early records report the traditional use of the bark, leaves, sap, and seed capsules from manuka

for treatment of various diseases and ailments including fever, cough, mouth and throat sores,

running nose, dysentery, diarrhea, colic pain, breast inflammation, back stiffness, eye prob-

lems, and scald and burn injuries [9, 10]. Essential oil derived from L. scoparium is also used as

a strong antimicrobial and antifungal agent in creams, soaps, toothpastes and other prepara-

tions [11, 12]. During World War II, L. scoparium essential oil was provided in the first aid kits

of serving Australian soldiers for use as a general antimicrobial agent and insect repellent [10].

Other studies have demonstrated the toxicity of L. scoparium essential oil and some of its frac-

tions against arthropods of economic and medical significance including the spotted wing dro-

sophila Drosophila suzukii Matsumura, itch mite, Sarcoptes scabiei Linnaeus, poultry red mite,

Dermanyssus gallinae De Geer, stored food mite, Tyrophagus putrescentiae Schrank, and house

dust mites, Dermatophagoides farinae Hughes and D. pteronyssinus Troussart [13–16]. Leptos-
permum scoparium essential oil has also been shown to be an attractive bait for the redbay

ambrosia beetle, Xyleborus glabratus Eichhoff [17]. A recent study by our research group also

demonstrated that L. scoparium essential oil is toxic to Aedes aegypti Linnaeus larvae (LC50 =

53.0 ppm) and interacted synergistically with oregano essential oil and antagonistically with

clove bud essential oil [4]. In general, however, knowledge regarding the insecticidal activity of

L. scoparium essential oil against arthropods of medical and economic significance is limited.

Additionally, most studies on insecticidal properties of essential oils focus on the whole essen-

tial oil, yet some studies have shown that bioassay-guided fractionation of some essential oils

may yield fractions that are more toxic than the oil itself [3, 18–20]. The use of essential oils as

mosquito larvicides also remains a challenge due to their chemical instability, high volatility,

and poor solubility in water. Thus, technologies that improve the solubility and environmental

stability of essential oils when used as biopesticides are urgently needed.

Oil-in-water emulsions are considered to be efficient delivery systems for hydrophobic

compounds by dispersing the lipid phase as a colloidal dispersion [21]. Here, two immiscible

liquids are stabilized through the addition of a surfactant (emulsifier) which prevents droplet
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coalescence by lowering the interfacial tension [22]. Amylose from starch has attracted signifi-

cant interest as a low-cost material for the synthesis of emulsifying agents. When amylose is

combined with suitable ligands such as fatty amine salts, the hydrophobic portion of the ligand

associates with the hydrophobic internal cavity of the amylose helix to form water-soluble

amylose-inclusion complexes [23, 24]. These complexes have been shown to be surface active

polymers with superior emulsion activity compared to commercial modified starch emulsifiers

[25] and have been used to reduce volatility, increase stability, enhance bioactivity and extend

the shelf life of the target bioactive compounds [25, 26]. Additionally, amylose inclusion com-

plexes are biodegradable and non-toxic, making them appealing emulsifiers for the develop-

ment of ecofriendly biopesticides [27].

In this study we analyzed the chemical composition of L. scoparium essential oil and its

fractions and evaluated their toxicity against larvae of the yellow fever mosquito, Aedes aegypti.
We also evaluated the use of amylose-N-1-hexadecylammonium chloride inclusion complexes

(Hex-Am) as emulsifiers for L. scoparium essential oil for use as mosquito larvicides. Our over-

all goal was to develop a better understanding of the insecticidal activity of L. scoparium essen-

tial oil against disease vectors and to generate new knowledge that may guide the development

of effective biopesticides based on essential oils.

Materials and methods

Preparative chromatography

Separation of L. scoparium essential oil fractions was performed using preparative flash chro-

matography (Cheetah MP200, Bonna-Agela Technologies Inc., Newcastle, DE). The column

(Supel Dlash Catridge, 80g, 40–60 μm silica) was equilibrated with hexane for 10 min at a flow

rate of 60 mL per min. The oil sample (5 mL) was injected into the column using a 10-mL

syringe and the column was developed with hexane-ethyl ether gradient method over 27 min-

utes as follows: 100% hexane for 2 min, 0–100% ethyl ether for 20 min, and 100% ethyl ether

for 5 min. The effluent was monitored at 254 nm and fractions were collected by volume (60

mL). Fractions containing each absorbance peak were pooled and placed in the fume hood for

evaporation of organic solvent. The procedure was repeated until adequate amounts of differ-

ent fractions were obtained. All fractions were labeled and stored in amber-colored glass bot-

tles until use.

Gas Chromatography-Mass Spectrophotometry (GC-MS) analysis

Identification of the chemical constituents of L. scoparium essential oil and its fractions was

accomplished as previously described [4]. Briefly, two different Agilent 7890 (Santa Clara, CA)

gas chromatographs, each using Agilent’s Mass Hunter software were used to acquire and pro-

cess the data. A 5975 mass spectrometry detector using NIST05 library (National Institute of

Standards and Technology, Gaithersburg, MD) was employed for product identification,

whereas flame ionization detection (FID) was used for quantitation. Samples of ~10 μL were

diluted in 1 mL of heptane and 1 μL was injected by autosampler using a 50:1 split ratio and

analyzed on Agilent/J&W DB35-MS column (30m × 320 mm, 0.25 mm film thickness).

Helium flow in the column was maintained at 1.37 mL per minute. Oven temperature was

programmed at 40˚C for 3 min, 10˚C min-1 to 190˚C for 5 min, and 25˚C min-1 to 340˚C.

Commercial compounds were purchased when available, diluted in heptane, and used for

comparison of retention time. To determine the relative retention time, a GC sample of

alkanes, ranging in size from decane to tetracosane (10 to 24 carbon atoms) was made and

ran on the GC and GC-MS under identical conditions to the sample analysis. The retention

times of each of the alkanes was determined, and then all of the relative retention times were
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calculated according to the formula 7 in ASTM D6730-19 as follows:

RRI ¼ 100 x ðnþ ððlog Tsample� log TnÞ=ðlog Tnþ1 � log TnÞÞ where n is the number of carbons in the preceding paraffin:

Preparation of amylose-complexes and oil emulsions

Amylose-complexes were produced following the procedure outlined previously [28–30]. A

dispersion of high-amylose starch (100.0 g of starch) and deionized water (1800 mL) was

passed through a Penick & Ford laboratory model continuous steam jet cooker (Penford

Corp., Cedar Rapids, IA) operating under the following conditions: hydroheater temperature

140˚C, steam back pressure 380 kPa, steam line pressure 550kPa and pumping rate of 1 L

min−1. Cooked dispersions were collected in a Dewar flask to prevent rapid temperature loss.

A solution of N-1-hexadecylammonium chloride was prepared as previously described [29]

and added to the hot starch dispersion immediately after jet-cooking. The mixture was rapidly

stirred for 1 min, and then cooled to 25˚C in an ice bath. Spray drying of amylose-N-1-hexade-

cylammonium chloride inclusion complexes (Hex-Am) was performed using a Niro atomizer

spray dryer (Niro, Columbia, MD, USA) as previously described [29]. Materials were collected

and stored at room temperature until use. Spray dried amylose-complexes were used as emul-

sifiers to prepare oil-in-water (O/W) emulsions. Emulsions were prepared by mixing water, L.

scoparium essential oil, and spray-dried Hex-Am at 92.5: 5: 2.5 ratio, respectively. A mixture

totaling 10 g, was placed in a 30 mL glass beaker and homogenized for 180 seconds at 20,000

rpm using a Power Gen 35 handheld micro homogenizer (Fisher Scientific, Pittsburgh, PA).

Dynamic light scattering

Dynamic light scattering (DLS) analysis to determine the particle size and distribution was

conducted using a Horiba LB-550 Dynamic Light Scattering Particle-Size Analyzer (HORIBA

Instruments Incorporated, Irvine, CA). The analysis was conducted at 25˚C using a 1 cm path-

length cell having a volume of 1.25 mL. Aqueous emulsions (minimum three samples tested)

of L. scoparium essential oil and Hex-Am were diluted ~1000x to obtain spectra. Horiba soft-

ware was used to analyze and process the hydrodynamic diameter distribution data to deter-

mine the median hydrodynamic diameter. Intensity % for each diameter was calculated by

dividing its value by the total area for the spectral curve multiplied by 100.

Larvicidal bioassays

Aedes aegypti (Rockefeller strain) larvae were reared on yeast: lactose albumin (1:1) diet in

batches of ~200 larvae at 26˚C, 70% relative humidity (RH) and 10:14 h (light: dark cycle). Lar-

vae from all rearing containers were pooled before the bioassays. With exception of the water

volume and the starting number of larvae per container, the toxicity bioassays followed the

standard World Health Organization guidelines [31]. Twenty late third instar larvae of Ae.
aegypti were added into 120 mL of DI water held in 400 mL tripour beakers. Treatments

included L. scoparium essential oil purchased from Sigma-Aldrich and its four fractions

obtained via flash chromatography. The oil and its fractions were diluted in absolute ethanol

to create stock solutions of similar concentrations to oil emulsions (50,000 ppm). The treat-

ments were tested at varying concentrations depending on their degree of toxicity. Leptosper-
mum scoparium essential oil, fraction 1 and fraction 4 were tested at 7 concentrations ranging

from 20–80 ppm. Fraction 2, fraction 3 and L. scoparium essential oil-Hex-Am emulsion were

more toxic and were tested at lower concentrations. Fractions 2 and 3 were tested at 7 concen-

trations ranging from 5–35 ppm for fraction 2 and 16–34 ppm for fraction 3. Leptospermum
scoparium essential oil-Hex-Am emulsion was tested at 6 concentrations ranging from 20–
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45 ppm. A control group was treated with absolute ethanol without oil/fraction/emulsion

treatment. Each treatment was replicated 3 times, and 3 separate trials with different batches of

mosquitoes were conducted. The containers were held at room temperature and the total

number of larvae surviving 24 hours post-treatment were counted and recorded. Probit analy-

sis conducted using “ecotox” package in R version 3.3.2 was used to calculate the LC50 and

LC90 values for each oil/fraction/emulsion. To determine the contribution of some individual

constituents to the toxicity of L. scoparium essential oil, three L. scoparium essential oil chemi-

cal constituents that were commercially available at affordable prices were purchased from

Millipore Sigma (Saint Louis, MO) and tested at a concentration of L. scoparium essential oil

(70 ppm) expected to kill 90% of the test larvae. The chemical constituents were alpha-pinene,

ledene, and aromandendrene and were tested using the experimental procedures described

above.

Results

A total of 29.5 g of L. scoparium essential oil was processed yielding 13.06 (44.27%), 7.05

(23.90%), 1.43 (4.85%) and 0.96 g (3.25%) of fractions 1, 2, 3, and 4 respectively. GC-MS analy-

sis revealed qualitative and quantitative differences in the chemical composition of L. scopar-
ium essential oil and its fractions (Table 1). Twenty-one chemical constituents were detected

in L. scoparium essential oil compared to 16, 5, 19 and 25 chemical constituents in fractions, 1,

2, 3 and 4 respectively (Table 1). Calamenene (17.78%), leptospermone (11.86%), α-selinene

(7.17%) and α-cadinene (6.40%) were the four most abundant chemical constituents in L. sco-
parium essential oil. The four most abundant chemical constituents in fraction 1 were calame-

nene (37.73%), ledene (10.37%), α-selinene (9.20%), and α-copaene (7.96%). Fraction 2 was

predominantly leptospermone (56.6%), isoleptospermone (19.73%), flavesone (16.82%), and

γ-muurolene (5.42%). For fraction 3, the dominant constituents were cubenol (24.30%), caryo-

phyllene oxide (12.38%), leptospermone (10.89%), and flavesone (6.78%). The dominant con-

stituents in fraction 4 were γ-gurjunene (21.62%), isoletospermone (7.88%), eudesma-4(14),11

diene (6.61%), and unidentified compound (6.00%). Venn diagrams were used to summarize

the chemical constituents that were present/absent in L. scoparium essential oil and its frac-

tions (Fig 1). All 16 constituents detected in fraction 1 were present in the whole essential oil,

but 5 constituents present in the whole essential oil were not detected in fraction 1. These were

α-pinene, isoleptospermone, leptospermone, cubenol, and γ-muurolene. Similarly, all 5 chem-

ical constituents detected in fraction 2 were present in the whole essential oil. With exception

of α-cubebene, these compounds were more abundant in fraction 2 than in the whole essential

oil. Seven compounds were shared between L. scoparium essential oil and fraction 3, 14 were

only detected in L. scoparium essential oil and 12 were only detected in fraction 3. Five constit-

uents were shared between L. scoparium essential oil and fraction 4, with 16 constituents only

detected in L. scoparium essential oil and 20 constituents only detected in fraction 4. Overall,

11, 0, 4, and 12 compounds were unique to L. scoparium essential oil, fraction 2, fraction 3 and

fraction 4, respectively and only 2 constituents were shared among the four treatments. When

only the four fractions were considered, 10, 0, 4, and 12 constituents were unique to fractions

1, 2, 3 and 4 respectively and no compounds were shared among all four fractions.

The larvicidal activity of L. scoparium essential oil fractions and emulsions against Ae.
aegypti was evaluated relative to the whole essential oil. Fraction 1 was inactive, fractions 2

(LC50 = 12.24 ppm) and 3 (LC50 = 20.58 ppm) were 4 and 2 times more toxic than the whole

essential oil (LC50 = 47.97 ppm), and fraction 4 (LC50 = 35.87 ppm) had similar activity as the

whole essential oil (Table 2). The three chemical constituents of L. scoparium essential oil

tested (α-pinene, ledene, and aromandendrene) were 2–7 times less toxic than the whole
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Table 1. Chemical composition of L. scoparium essential oil and its fractions. LP, L. scoparium essential oil, F1-F4, fractions 1–4. Also included are retention time from

the GC-FID with relative retention index (RRI), and the major fragmentations ions observed by GC-MS listed in order of relative abundance. Dash (-) indicates that the

compound was not detected.

Compound RT (min) RRI M/z LP F1 F2 F3 F4

α-Pinene 7.66 <1000 108, 64, 117, 116, 109 1.98 - - - -

α-Copaene 14.37 1268 161, 105, 119, 91, 93 4.17 5.65 - - -

β-Copaene 14.86 1279 119, 161, 105, 93, 91 5.88 7.96 - - -

β-Elemene 15.16 1286 93, 81, 67, 107, 68 1.01 1.53 - - -

α-Gurjunene 15.34 1290 204, 105, 161, 189, 119 1.19 1.43 - - -

(E)-Caryophyllene 15.66 1297 93, 133, 91, 79, 69 3.10 3.38 - - -

Aromandendrene 15.89 1506 91, 161. 105, 93, 107 2.72 4.02 - - -

α-Cubebene 16.11 1525 161, 105, 119, 204, 91 6.06 0.77 1.36 - -

Zonarene 16.35 1545 161, 105, 204, 119, 91 4.48 2.40 - - -

α-Amorphene 16.44 1553 161, 105, 119, 91, 93 1.30 1.89 - 1.48 -

Ledene 16.70 1574 93, 105, 107, 121, 67 5.42 10.37 - - -

α-Selinene 16.76 1579 189, 105, 161, 133, 204 7.17 9.20 - - 1.69

δ-Cadinene 17.03 1601 161, 119, 204, 134, 105 6.40 7.85 - -

β-Selinene 17.12 1609 161, 204, 81, 119, 105 1.74 1.18 - - 1.30

Cadina-1,4-diene 17.27 1622 119, 105, 161, 91, 204 5.87 3.64 - - -

Calamenene 17.35 1630 159, 129, 128, 202, 131 17.78 37.73 - 2.78 -

β-Bisabolene 17.54 1646 157, 143, 200, 142, 141 - - 2.45 -

Flavesone 17.61 1652 252, 139, 182, 237, 96 4.54 0.99 16.82 6.78 -

Alloaromandendrene 17.80 1669 109, 161, 82, 105, 93 - - - 2.76 -

Viridiflorol 18.07 1692 121, 81, 108, 222, 93 - - - 5.19 2.26

γ-Gurjunene 18.25 1707 91, 159, 205, 105, 119 - - - - 21.62

Spathulenol 18.31 1711 205, 91, 119, 159, 105 - - - 2.52 1.83

Caryophyllene oxide 18.35 1714 79, 93, 91, 69, 95 - - - 12.38 5.09

Isoleptospermone 18.47 1724 266, 251, 196, 96, 178 4.40 - 19.73 1.60 7.88

Leptospermone 18.64 1736 196, 266, 251, 96, 69 11.86 - 56.60 10.89 -

Unknown 18.70 1741 149, 59, 107, 164, 135 - - - 4.77 2.78

Cubenol 18.77 1746 119, 161, 105, 204, 91 1.23 - - 24.30 1.34

Unknown 18.87 1753 189, 161, 204, 91, 105 - - - - 1.76

γ-Muurolene 18.91 1756 161, 119, 179, 105, 204 1.69 - 5.49 5.42 3.29

Unknown 19.01 1764 161, 204, 105, 119, 162 - - - 1.56 2.33

Unknown 19.08 1769 121, 105, 161, 91, 93 - - - - 6.00

Unknown 19.16 1775 161, 189, 119, 105, 95 - - - - 4.64

γ-Eudesmol 19.31 1786 161, 149, 204, 189, 95 - - - 4.11 5.71

β-Eudesmol 19.37 1790 59, 149, 164, 109, 108 - - - - 3.62

Isoaromadendrene epoxide 19.43 1794 91, 93, 79, 105, 107 - - - - 2.92

Eudesma-4(14),11 diene 19.50 1799 81, 135, 189, 204, 93 - - - - 6.61

Unknown 19.59 1802 159, 132, 135, 91, 107 - - - 2.01 -

Unknown 19.69 1805 175, 157, 143, 142, 126 - - - 3.52 3.82

Unknown 19.75 1807 159, 91, 117, 118, 105 - - - - 1.01

Unknown 19.89 1811 159,91, 132, 105, 93 - - - - 1.18

Unknown 19.94 1813 164, 206, 122, 121, 91 - - - - 4.78

Unknown 20.77 1836 Unclear - - - - 2.10

Unknown 21.52 1856 Unclear - - - - 4.45

Calamenol 1 22.68 1887 175, 176, 160, 145, 218 - - - 1.90 3.82

Unknown 26.83 2099 91, 244, 243, 314, 296 - - - 3.57 -

https://doi.org/10.1371/journal.pone.0229076.t001
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essential oil (Fig 2). Leptospermum scoparium essential oil-Hex-Am emulsion (LC50 =

29.62 ppm) was more toxic to Ae. aegypti larvae than the whole essential oil. Dynamic light

scattering analysis of L. scoparium essential oil-Hex-Am emulsion revealed that the complexes

had a median (± SD) hydrodynamic diameter of 1.96 ± 0.74 microns.

Discussion

Leptospermum scoparium essential oil is known for its many medicinal applications, but its

insecticidal properties remain poorly understood. Here, we show that L. scoparium essential

oil can serve as an important source of larvicides for mosquito control. Fractions 2 and 3,

respectively were 4 and 2 times more toxic than the whole essential oil, while fraction 4 had

similar toxicity as the whole essential oil. The World Health Organization (WHO) has not

established a standard criterion for determining the larvicidal activity of natural products but

several scientists have developed their own criteria. Komalamisra et al. [32] considered prod-

ucts showing LC50 <50 mg/L active, 50 mg/L<LC50<100 mg/L moderately active, 100 mg/

L<LC50<750 mg/L effective, and LC50>750 mg/L inactive. Kiran et al. [33] considered

Fig 1. Venn diagram summarizing the overlap of chemical constituents between manuka (L. scoparium) essential oil and its fractions.

https://doi.org/10.1371/journal.pone.0229076.g001

Table 2. LC50 and LC90 values for Leptospermum scoparium essential oil and its fractions and emulsions produced

with hexadecyl ammonium chloride amylose inclusion complexes. ND, not determined because it was outside the

range of concentrations tested. LP, Leptospermum scoparium.

Treatment LC50 (95% CI) LC90 (95% CI) Slope

LP 47.97 (45.72–50.22) 66.62 (62.48–72.69) y = 8.99x - 15.10

Fraction 1 ND ND ND

Fraction 2 12.24 (10.94–13.43) 18.78 (16.94–21.70) y = 6.90x - 7.50

Fraction 3 20.58 (19.85–21.27) 26.07 (25.01–27.49) y = 12.49x - 16.41

Fraction 4 35.87 (33.09–38.49) 79.31 (71.50–90.78) y = 3.72x - 5.78

Hex-Am 29.62 (28.97–30.25) 35.92 (34.94–37.13) y = 15.29x -22.51

https://doi.org/10.1371/journal.pone.0229076.t002
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compounds with LC50<100 mg/L to exhibit a significant larvicidal effect. Cheng et al. [34]

considered compounds with LC50<50 mg/L highly active, 50 mg/L<LC50<100 mg/L active,

and LC50>100 mg/L inactive. Based on these criteria, L. scoparium essential oil and three of its

four fractions can be considered active/highly active. Moreover, the use of Hex-Am emulsifier

enhanced the toxicity of L. scoparium essential oil against the mosquito larvae. These findings

Fig 2. Toxicity of three chemical constituents of manuka (L. scoparium) essential oil against Aedes aegypti larvae

relative to whole essential oil. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pone.0229076.g002
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highlight the need to explore the potential for development and commercialization of L. sco-
parium essential oil as a mosquito larvicide.

Most of the chemical constituents identified in this study have been reported in L. scopar-
ium essential oil albeit at different quantities [9, 13, 16, 35, 36]. These differences are expected

because the chemical composition of essential oils is known to vary by plant geographic origin,

stage of development, growing conditions, developmental stage of the plant, method of extrac-

tion, solvent used for extraction, and photosensitivity of some compounds in the extract [36–

38].

Leptospermum scoparium essential oil has been shown to be toxic against the spotted wing

drosophila Drosophila suzukii Matsumura [16] and several species of mites [13–16], and also

can synergize the activity of some essential oils against mosquito larvae [4]. Leptospermum sco-
parium essential oil has also been shown to be an attractive bait for the redbay ambrosia beetle,

Xyleborus glabratus [17]. The finding that some L. scoparium essential oil fractions are more

toxic than the whole essential oil is similar to our recent findings with the Italian honeysuckle

(Lonicera caprifolium Linnaeus) essential oil where the whole essential oil (LC50 of 34.4 mg/L)

was 2 times less toxic to Ae. aegypti larvae than 4 of its 5 fractions (LC50s = 20.6, 19.7, 18.6, and

17.7 mg/L for fraction B, C,D and E, respectively) [3]. Similar findings were also reported on

parsley (Petroselinum crispum Mill.(Fuss)) essential oil where the LC50s for fractions 1, 3, and 4

against Ae. aegypti larvae were 0.49, 0.88 and 0.01 mg/L respectively, compared to 4.19 mg/L

for the whole essential oil [20]. Sweet orange, Citrus sinensis (L.) Osbeck essential oil was also a

less potent fumigant against the red imported fire ant Solenopsis invicta Buren compared to its

fractions [19]. We were unable to identify the chemical constituents responsible for the larvi-

cidal properties of L. scoparium essential oil since the three chemical constituents tested (α-

pinene, ledene, and aromandendrene) were less toxic than the whole essential oil, and our

efforts to test additional chemical constituents did not materialize because the other chemical

constituents of L. scoparium essential oil were either too expensive or not commercially avail-

able. Thus, it is possible that the toxicity of L. scoparium essential oil is due to one or more

chemical constituents that were not tested, or due to synergistic interactions between multiple

chemical constituents. Further studies are needed to clarify this.

The two fractions that were more toxic than the whole essential oil (fractions 2 and 3) con-

stituted 28.75% of the total essential oil processed, with fraction 2 accounting for 23.9% of the

total oil. Because L. scoparium essential oil is generally recognized as safe to humans and envi-

ronment and is commercially available in large quantities and affordable cost, our findings

suggest that commercial development and application of L. scoparium essential oil as a mos-

quito larvicide is feasible. However, it is also important to note that fraction 1 which was inac-

tive, accounted for 44.27% of the total yield suggesting that large scale production of fractions

2 and 3 would also yield large amounts of fraction 1. This fraction would be useless with regard

to mosquito control and might pose substantial disposal challenges. Further studies should be

conducted to identify the value-added uses of fraction 1 in order to improve the efficiency and

economic viability of this process. These studies may include bioassays with other insects of

medical, veterinary and wildlife significance, and tests for antimicrobial activity and potential

application in cosmetics and pharmaceutical industries.

We did not investigate the mechanism(s) underlying the enhanced toxicity of L. scoparium
essential oil fractions relative to whole essential. However, previous studies have shown that

different chemical constituents present in essential oils or their fractions may act in synergy

through enhanced penetration, targeting multiple sites, and exhibiting multiple modes of

action [39–41]. There also are reports that when exposed to a mixture of terpenes, the insect

may preferentially oxidize the major terpene in the mixture while the minor terpene acts as a

toxicant with higher toxicity than when used alone [42]. We observed qualitative and
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quantitative differences in the chemical compositions of L. scoparium essential oil and its frac-

tions and it is likely that at least one of the mechanisms described above may have contributed

to the enhanced toxicity of some oil fractions relative to the whole essential oil. For example,

the major compounds detected in fraction 1 which was inactive, were either absent or found in

much lower quantities in other fractions (e.g. calamenene, ledene, α-selinene, α-copaena, δ-

cadinene, β-copaena, aromandendrene). The five compounds detected in fraction 2 were also

detected in substantial amounts in some of the other active fractions as well as in the whole

essential oil suggesting their potential contribution to the observed bioactivity. In addition, a

good number of chemical constituents that were present in L. scoparium essential oil fractions

especially fractions 3 and 4 were not detected in the whole essential oil and vice versa. A simple

explanation for the presence of some constituents in the fractions but not in the whole essential

oil would be that these chemicals were present in undetectable amounts in the whole essential

oil but became enriched in the fractions when some major compounds were either removed or

their abundance reduced through fractionation. For example, γ-Gurjunene accounted for

21.6% of fraction 4 but was neither detected in the other fractions nor in the whole essential

oil. The 29.5 g of oil that was processed yielded only 0.96 g of fraction 4. This is a concentration

factor of 31-fold. Thus, a component of 21.6% in fraction 4 would comprise only 0.7% of the

original oil, which is below our detection limits. Under this scenario, the enhanced toxicity of

L. scoparium essential oil fractions may have resulted from enrichment of some of bioactive

compounds and reduction in the concentration of some inactive compounds. Essential oils

also tend to be highly volatile, thermally unstable, and quite sensitive to oxidation [27, 43].

Therefore, the loss of some components may have resulted from vaporization and/or chemical

degradation during fractionation.

Enhancing the water dispersibility of essential oils is another effective method for improv-

ing insecticidal activity of essential oils. Our results show that amylose-N-1-hexadecylammo-

nium chloride inclusion complexes can be used as an emulsifier to improve the solubility and

efficacy of L. scoparium essential oil in aqueous systems. The higher toxicity of emulsions rela-

tive to the whole essential oil may be due to the reduction in droplet sizes which may have

improved their effective distribution in the water column and interaction with insect tissues

[44]. Amylose inclusion complexes have been shown to be surface active agents that reduce the

interfacial tension at the oil-water interface and inhibit flocculation and coalescence of oil

droplets [25]. Additionally, high molecular weight polymers such as the amylose complexes

can substantially inhibit emulsion breakdown via Ostwald ripening by forming a thick, high

elastic modulus polymer coating around the oil droplets [25, 45].

The ligands bound in the Hex-Am amylose complexes are cationic fatty ammonium salts

with 16 carbon alkyl tails [46]. The amylose complexes may be forming highly stable Pickering

emulsions with the L. scoparium essential oil; where the polymer particles adhere to the oil

droplets forming a steric barrier on the surface [25, 47]. Pickering emulsions using garlic and

asafoetida essential oils with Hex-Am are highly resistant to destabilization processes and are

suitable for long term (6 months) storage [48]. For commercial application however, studies

covering a longer time frame are needed to fully elucidate the stability of amylose inclusion

complex emulsions.

This study focused on the lethal effects caused by L. scoparium essential oil, its fractions and

emulsions. However, essential oils are also known to cause a variety of sublethal effects that are

detrimental to insect survival and reproduction. These effects include repellency, irritability,

altered respiratory activity, changes in swimming pattern, and reduced adult emergence, lon-

gevity, fertility, fecundity and natality [49–52]. Future studies evaluating both the lethal and

sublethal effects of L. scoparium essential oil, its fractions and emulsions could reveal the full

spectrum of their biological effects against mosquitoes. These studies should be conducted
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under a range of temperatures because the insecticidal activity of some essential oils and their

constituents is influenced by post-application temperature [53].

In summary, our results show that L. scoparium essential oil and three of its four fractions

examined are toxic to mosquito larvae and could be harnessed as a source of bio-based mos-

quito larvicides. In addition, we show that amylose-N-1-hexadecylammonium chloride inclu-

sion complexes are a promising emulsifier and increases the toxicity of L. scoparium essential

oil in aqueous dispersions. Amylose inclusion complexes can be composed of bio-based mate-

rials that are relatively safe and are made from low cost materials and processes [25]. Their use

as emulsifiers for essential oil biopesticides is therefore appealing both in terms of cost and

environmental and public health safety. Further studies are needed on the effects of L. scopar-
ium essential oil and its fractions on non-target organisms, and the potential development and

commercialization of amylose inclusion complexes as emulsifiers for essential oil-based insec-

ticides for mosquito control.
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