

GOPEN ACCESS

Citation: Muturi EJ, Selling GW, Doll KM, Hay WT, Ramirez JL (2020) Leptospermum scoparium essential oil is a promising source of mosquito larvicide and its toxicity is enhanced by a biobased emulsifier. PLoS ONE 15(2): e0229076. https://doi. org/10.1371/journal.pone.0229076

Editor: Ahmed Ibrahim Hasaballah, Al-Azhar University, EGYPT

Received: December 13, 2019

Accepted: January 28, 2020

Published: February 20, 2020

Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the <u>Creative</u> Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are within the manuscript.

Funding: This research was supported by the U.S. Department of Agriculture, Agricultural Research Service. All authors are employed by the USDA. The specific roles of each author are articulated in the 'author contributions' section. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

RESEARCH ARTICLE

Leptospermum scoparium essential oil is a promising source of mosquito larvicide and its toxicity is enhanced by a biobased emulsifier

Ephantus J. Muturi^{1*}, Gordon W. Selling², Kenneth M. Doll³, William T. Hay⁴, Jose L. Ramirez¹

1 USDA, Agricultural Research Service, NCAUR, Crop Bioprotection Research Unit, Peoria, IL, United States of America, 2 USDA, Agricultural Research Service, NCAUR, Plant Polymer Research Unit, Peoria, IL, United States of America, 3 USDA, Agricultural Research Service, NCAUR, Bio-Oils Research Unit, Peoria, IL, United States of America, 4 USDA, Agricultural Research Service, NCAUR, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, United States of America

* Ephantus.Muturi@ars.usda.gov, ephajumu@yahoo.com

Abstract

Synthetic pesticides are the cornerstone of vector-borne disease control, but alternatives are urgently needed to tackle the growing problem of insecticide resistance and concerns over environmental safety. Leptospermum scoparium J.R. Forst and G. Forst (manuka) essential oil and its four fractions were analyzed for chemical composition and toxicity against Aedes aegypti larvae. The use of bio-based amylose-N-1-hexadecylammonium chloride inclusion complexes (Hex-Am) as an emulsifier for L. scoparium essential oil was also investigated. Fraction 1 was inactive, fractions 2 ($LC_{50} = 12.24$ ppm) and 3 ($LC_{50} = 12.24$ ppm) 20.58 ppm) were more toxic than the whole essential oil ($LC_{50} = 47.97$ ppm), and fraction 4 $(LC_{50} = 35.87 \text{ ppm})$ had similar toxicity as the whole essential oil. Twenty-one chemical constituents were detected in L. scoparium essential oil compared to 16, 5, 19 and 25 chemical constituents in fractions, 1, 2, 3 and 4 respectively. The two most dominant chemical constituents were calamenene (17.78%) and leptospermone (11.86%) for L. scoparium essential oil, calamenene (37.73%) and ledene (10.37%) for fraction 1, leptospermone (56.6%) and isoleptospermone (19.73) for fraction 2, cubenol (24.30%) and caryophyllene oxide (12.38%) for fraction 3, and y-gurjunene (21.62%) and isoleptospermone (7.88%) for fraction 4. Alpha-pinene, ledene, and aromandendrene were 2-7 times less toxic than the whole essential suggesting that the toxicity of L. scoparium essential oil was either due to other chemical constituents that were not tested or due synergist interactions among chemical constituents. Leptospermum scoparium essential oil-Hex-Am emulsion (LC₅₀ = 29.62) was more toxic than the whole essential oil. These findings suggest that L. scoparium essential oil is a promising source of mosquito larvicide and that Hex-Am is an excellent emulsifier for L. scoparium essential oil for use as a larvicide.

Competing interests: The authors have declared that no competing interests exist.

Introduction

Mosquito-borne diseases remain one of the most pressing public health challenges facing mankind today. Vector control is one of the primary strategies that have effectively been used to break the transmission cycle and has historically relied on the use of synthetic insecticides. Unfortunately, the widespread use of synthetic insecticides has resulted in alarming levels of insecticide resistance among the target mosquito species, raising concerns that current gains in the fight against mosquito-borne diseases could be lost. Moreover, the use of some synthetic insecticides in vector control has been discontinued or restricted due to their potential to disrupt ecological processes and cause harm to non-target organisms. These challenges have reinforced the urgent need for effective and environmentally-friendly vector control strategies.

Some plants produce essential oils that contain a spectrum of chemical compounds which provide protective role against herbivores and pathogens. Some of these essential oils have insecticidal and repellent activity against mosquitoes [1–6] and possess other traits that make them suitable alternatives to synthetic insecticides. These include low mammalian toxicity, rapid degradation in the environment, limited non-target effects, multiple modes of action that may inhibit development of insecticide resistance, and commercial availability at an affordable cost [7, 8]. As a result, significant research effort has been devoted towards the discovery and development of essential oil-based insecticides for pest and vector management.

Manuka (Myrtaceae: Leptospermum scoparium J.R. Forst and G. Forst) also known as "tea tree", is one of the most abundant and widespread indigenous shrub species in New Zealand. Early records report the traditional use of the bark, leaves, sap, and seed capsules from manuka for treatment of various diseases and ailments including fever, cough, mouth and throat sores, running nose, dysentery, diarrhea, colic pain, breast inflammation, back stiffness, eye problems, and scald and burn injuries [9, 10]. Essential oil derived from L. scoparium is also used as a strong antimicrobial and antifungal agent in creams, soaps, toothpastes and other preparations [11, 12]. During World War II, L. scoparium essential oil was provided in the first aid kits of serving Australian soldiers for use as a general antimicrobial agent and insect repellent [10]. Other studies have demonstrated the toxicity of L. scoparium essential oil and some of its fractions against arthropods of economic and medical significance including the spotted wing drosophila Drosophila suzukii Matsumura, itch mite, Sarcoptes scabiei Linnaeus, poultry red mite, Dermanyssus gallinae De Geer, stored food mite, Tyrophagus putrescentiae Schrank, and house dust mites, Dermatophagoides farinae Hughes and D. pteronyssinus Troussart [13-16]. Leptospermum scoparium essential oil has also been shown to be an attractive bait for the redbay ambrosia beetle, Xyleborus glabratus Eichhoff [17]. A recent study by our research group also demonstrated that L. scoparium essential oil is toxic to Aedes aegypti Linnaeus larvae (LC₅₀ = 53.0 ppm) and interacted synergistically with oregano essential oil and antagonistically with clove bud essential oil [4]. In general, however, knowledge regarding the insecticidal activity of L. scoparium essential oil against arthropods of medical and economic significance is limited. Additionally, most studies on insecticidal properties of essential oils focus on the whole essential oil, yet some studies have shown that bioassay-guided fractionation of some essential oils may yield fractions that are more toxic than the oil itself [3, 18-20]. The use of essential oils as mosquito larvicides also remains a challenge due to their chemical instability, high volatility, and poor solubility in water. Thus, technologies that improve the solubility and environmental stability of essential oils when used as biopesticides are urgently needed.

Oil-in-water emulsions are considered to be efficient delivery systems for hydrophobic compounds by dispersing the lipid phase as a colloidal dispersion [21]. Here, two immiscible liquids are stabilized through the addition of a surfactant (emulsifier) which prevents droplet

coalescence by lowering the interfacial tension [22]. Amylose from starch has attracted significant interest as a low-cost material for the synthesis of emulsifying agents. When amylose is combined with suitable ligands such as fatty amine salts, the hydrophobic portion of the ligand associates with the hydrophobic internal cavity of the amylose helix to form water-soluble amylose-inclusion complexes [23, 24]. These complexes have been shown to be surface active polymers with superior emulsion activity compared to commercial modified starch emulsifiers [25] and have been used to reduce volatility, increase stability, enhance bioactivity and extend the shelf life of the target bioactive compounds [25, 26]. Additionally, amylose inclusion complexes are biodegradable and non-toxic, making them appealing emulsifiers for the development of ecofriendly biopesticides [27].

In this study we analyzed the chemical composition of *L. scoparium* essential oil and its fractions and evaluated their toxicity against larvae of the yellow fever mosquito, *Aedes aegypti*. We also evaluated the use of amylose-N-1-hexadecylammonium chloride inclusion complexes (Hex-Am) as emulsifiers for *L. scoparium* essential oil for use as mosquito larvicides. Our overall goal was to develop a better understanding of the insecticidal activity of *L. scoparium* essential oil against disease vectors and to generate new knowledge that may guide the development of effective biopesticides based on essential oils.

Materials and methods

Preparative chromatography

Separation of *L. scoparium* essential oil fractions was performed using preparative flash chromatography (Cheetah MP200, Bonna-Agela Technologies Inc., Newcastle, DE). The column (Supel Dlash Catridge, 80g, 40–60 μ m silica) was equilibrated with hexane for 10 min at a flow rate of 60 mL per min. The oil sample (5 mL) was injected into the column using a 10-mL syringe and the column was developed with hexane-ethyl ether gradient method over 27 minutes as follows: 100% hexane for 2 min, 0–100% ethyl ether for 20 min, and 100% ethyl ether for 5 min. The effluent was monitored at 254 nm and fractions were collected by volume (60 mL). Fractions containing each absorbance peak were pooled and placed in the fume hood for evaporation of organic solvent. The procedure was repeated until adequate amounts of different fractions were obtained. All fractions were labeled and stored in amber-colored glass bottles until use.

Gas Chromatography-Mass Spectrophotometry (GC-MS) analysis

Identification of the chemical constituents of *L. scoparium* essential oil and its fractions was accomplished as previously described [4]. Briefly, two different Agilent 7890 (Santa Clara, CA) gas chromatographs, each using Agilent's Mass Hunter software were used to acquire and process the data. A 5975 mass spectrometry detector using NIST05 library (National Institute of Standards and Technology, Gaithersburg, MD) was employed for product identification, whereas flame ionization detection (FID) was used for quantitation. Samples of ~10 μ L were diluted in 1 mL of heptane and 1 μ L was injected by autosampler using a 50:1 split ratio and analyzed on Agilent/J&W DB35-MS column (30m × 320 mm, 0.25 mm film thickness). Helium flow in the column was maintained at 1.37 mL per minute. Oven temperature was programmed at 40°C for 3 min, 10°C min⁻¹ to 190°C for 5 min, and 25°C min⁻¹ to 340°C. Commercial compounds were purchased when available, diluted in heptane, and used for comparison of retention time. To determine the relative retention time, a GC sample of alkanes, ranging in size from decane to tetracosane (10 to 24 carbon atoms) was made and ran on the GC and GC-MS under identical conditions to the sample analysis. The retention times were

calculated according to the formula 7 in ASTM D6730-19 as follows:

 $RRI = 100 \text{ x} (n + ((\log T_{sample} - \log T_n)/(\log T_{n+1} - \log T_n)) \text{ where n is the number of carbons in the preceding paraffin.}$

Preparation of amylose-complexes and oil emulsions

Amylose-complexes were produced following the procedure outlined previously [28-30]. A dispersion of high-amylose starch (100.0 g of starch) and deionized water (1800 mL) was passed through a Penick & Ford laboratory model continuous steam jet cooker (Penford Corp., Cedar Rapids, IA) operating under the following conditions: hydroheater temperature 140°C, steam back pressure 380 kPa, steam line pressure 550kPa and pumping rate of 1 L min⁻¹. Cooked dispersions were collected in a Dewar flask to prevent rapid temperature loss. A solution of N-1-hexadecylammonium chloride was prepared as previously described [29] and added to the hot starch dispersion immediately after jet-cooking. The mixture was rapidly stirred for 1 min, and then cooled to 25°C in an ice bath. Spray drying of amylose-N-1-hexadecylammonium chloride inclusion complexes (Hex-Am) was performed using a Niro atomizer spray dryer (Niro, Columbia, MD, USA) as previously described [29]. Materials were collected and stored at room temperature until use. Spray dried amylose-complexes were used as emulsifiers to prepare oil-in-water (O/W) emulsions. Emulsions were prepared by mixing water, L. scoparium essential oil, and spray-dried Hex-Am at 92.5: 5: 2.5 ratio, respectively. A mixture totaling 10 g, was placed in a 30 mL glass beaker and homogenized for 180 seconds at 20,000 rpm using a Power Gen 35 handheld micro homogenizer (Fisher Scientific, Pittsburgh, PA).

Dynamic light scattering

Dynamic light scattering (DLS) analysis to determine the particle size and distribution was conducted using a Horiba LB-550 Dynamic Light Scattering Particle-Size Analyzer (HORIBA Instruments Incorporated, Irvine, CA). The analysis was conducted at 25°C using a 1 cm path-length cell having a volume of 1.25 mL. Aqueous emulsions (minimum three samples tested) of *L. scoparium* essential oil and Hex-Am were diluted ~1000x to obtain spectra. Horiba software was used to analyze and process the hydrodynamic diameter distribution data to determine the median hydrodynamic diameter. Intensity % for each diameter was calculated by dividing its value by the total area for the spectral curve multiplied by 100.

Larvicidal bioassays

Aedes aegypti (Rockefeller strain) larvae were reared on yeast: lactose albumin (1:1) diet in batches of ~200 larvae at 26°C, 70% relative humidity (RH) and 10:14 h (light: dark cycle). Larvae from all rearing containers were pooled before the bioassays. With exception of the water volume and the starting number of larvae per container, the toxicity bioassays followed the standard World Health Organization guidelines [31]. Twenty late third instar larvae of *Ae. aegypti* were added into 120 mL of DI water held in 400 mL tripour beakers. Treatments included *L. scoparium* essential oil purchased from Sigma-Aldrich and its four fractions obtained via flash chromatography. The oil and its fractions were diluted in absolute ethanol to create stock solutions of similar concentrations to oil emulsions (50,000 ppm). The treatments were tested at varying concentrations depending on their degree of toxicity. *Leptospermum scoparium* essential oil, fraction 1 and fraction 4 were tested at 7 concentrations ranging from 20–80 ppm. Fraction 2, fraction 3 and *L. scoparium* essential oil-Hex-Am emulsion were more toxic and were tested at lower concentrations. Fractions 2 and 3 were tested at 7 concentrations ranging from 5–35 ppm for fraction 2 and 16–34 ppm for fraction 3. *Leptospermum scoparium* essential oil-Hex-Am emulsion was tested at 6 concentrations ranging from 20– 45 ppm. A control group was treated with absolute ethanol without oil/fraction/emulsion treatment. Each treatment was replicated 3 times, and 3 separate trials with different batches of mosquitoes were conducted. The containers were held at room temperature and the total number of larvae surviving 24 hours post-treatment were counted and recorded. Probit analysis conducted using "ecotox" package in R version 3.3.2 was used to calculate the LC_{50} and LC_{90} values for each oil/fraction/emulsion. To determine the contribution of some individual constituents to the toxicity of *L. scoparium* essential oil, three *L. scoparium* essential oil chemical constituents that were commercially available at affordable prices were purchased from Millipore Sigma (Saint Louis, MO) and tested at a concentration of *L. scoparium* essential oil (70 ppm) expected to kill 90% of the test larvae. The chemical constituents were alpha-pinene, ledene, and aromandendrene and were tested using the experimental procedures described above.

Results

A total of 29.5 g of L. scoparium essential oil was processed yielding 13.06 (44.27%), 7.05 (23.90%), 1.43 (4.85%) and 0.96 g (3.25%) of fractions 1, 2, 3, and 4 respectively. GC-MS analysis revealed qualitative and quantitative differences in the chemical composition of L. scoparium essential oil and its fractions (Table 1). Twenty-one chemical constituents were detected in L. scoparium essential oil compared to 16, 5, 19 and 25 chemical constituents in fractions, 1, 2, 3 and 4 respectively (Table 1). Calamenene (17.78%), leptospermone (11.86%), α -selinene (7.17%) and α -cadinene (6.40%) were the four most abundant chemical constituents in L. scoparium essential oil. The four most abundant chemical constituents in fraction 1 were calamenene (37.73%), ledene (10.37%), α -selinene (9.20%), and α -copaene (7.96%). Fraction 2 was predominantly leptospermone (56.6%), isoleptospermone (19.73%), flavesone (16.82%), and γ -muurolene (5.42%). For fraction 3, the dominant constituents were cubenol (24.30%), caryophyllene oxide (12.38%), leptospermone (10.89%), and flavesone (6.78%). The dominant constituents in fraction 4 were γ -gurjunene (21.62%), isoletospermone (7.88%), eudesma-4(14),11 diene (6.61%), and unidentified compound (6.00%). Venn diagrams were used to summarize the chemical constituents that were present/absent in L. scoparium essential oil and its fractions (Fig 1). All 16 constituents detected in fraction 1 were present in the whole essential oil, but 5 constituents present in the whole essential oil were not detected in fraction 1. These were α -pinene, isoleptospermone, leptospermone, cubenol, and γ -muurolene. Similarly, all 5 chemical constituents detected in fraction 2 were present in the whole essential oil. With exception of α -cubebene, these compounds were more abundant in fraction 2 than in the whole essential oil. Seven compounds were shared between L. scoparium essential oil and fraction 3, 14 were only detected in L. scoparium essential oil and 12 were only detected in fraction 3. Five constituents were shared between L. scoparium essential oil and fraction 4, with 16 constituents only detected in L. scoparium essential oil and 20 constituents only detected in fraction 4. Overall, 11, 0, 4, and 12 compounds were unique to L. scoparium essential oil, fraction 2, fraction 3 and fraction 4, respectively and only 2 constituents were shared among the four treatments. When only the four fractions were considered, 10, 0, 4, and 12 constituents were unique to fractions 1, 2, 3 and 4 respectively and no compounds were shared among all four fractions.

The larvicidal activity of *L. scoparium* essential oil fractions and emulsions against *Ae. aegypti* was evaluated relative to the whole essential oil. Fraction 1 was inactive, fractions 2 ($LC_{50} = 12.24 \text{ ppm}$) and 3 ($LC_{50} = 20.58 \text{ ppm}$) were 4 and 2 times more toxic than the whole essential oil ($LC_{50} = 47.97 \text{ ppm}$), and fraction 4 ($LC_{50} = 35.87 \text{ ppm}$) had similar activity as the whole essential oil (Table 2). The three chemical constituents of *L. scoparium* essential oil tested (α -pinene, ledene, and aromandendrene) were 2–7 times less toxic than the whole Table 1. Chemical composition of *L. scoparium* essential oil and its fractions. LP, *L. scoparium* essential oil, F1-F4, fractions 1–4. Also included are retention time from the GC-FID with relative retention index (RRI), and the major fragmentations ions observed by GC-MS listed in order of relative abundance. Dash (-) indicates that the compound was not detected.

a-Pinane7.7661.1000108, 64, 117, 16, 1091.4781.5651.01.01.0B-Copanen14.4861279119, 161, 105, 193, 91.95.887.9661.01.01.0B-Lenene15.16128693, 81, 67, 107, 681.011.531.01.01.0B-Lenene15.56129793, 135, 91, 70, 803.011.331.01.01.0CB-Capophyllene16.59129793, 135, 91, 70, 803.080.071.361.01.0a-Cabehene16.111515161, 105, 194, 914.842.401.01.01.0a-Cabehene16.611515161, 105, 194, 911.301.801.01.01.0a-Cabehene16.621553161, 105, 194, 911.301.801.01.01.0a-Cabehene16.64157493, 105, 107, 114, 705.401.01.01.01.0a-Cadenene16.701574190, 105, 114, 1011.741.801.01.01.0a-Cadenene17.221609100, 114, 20, 134, 1055.741.01.01.01.0a-Selanene17.321600159, 119, 101, 101, 1041.401.81.01.01.0a-Selanenee17.321600109, 114, 104, 1045.771.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0	Compound	RT (min)	RRI	M/z	LP	F1	F2	F3	F4
a-Copane14.361.1281.61, 105, 19, 91, 934.175.68β-Copane14.861.279119, 161, 105, 39, 915.887.96β-Copane15.441.26033, 81, 67, 107, 681.011.53α-Gurjuner15.541.200204, 105, 161, 199, 1991.191.43α-Gurjuner15.661.27739, 133, 91, 79, 603.003.38α-Cabebene1.6181.5151.61, 105, 19, 94, 914.842.40α-Cabebene1.6441.5531.61, 105, 19, 94, 914.842.40α-Camerphene1.6471.5749.30, 105, 17, 12, 751.0371.86 <td>α-Pinene</td> <td>7.66</td> <td><1000</td> <td>108, 64, 117, 116, 109</td> <td>1.98</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	α-Pinene	7.66	<1000	108, 64, 117, 116, 109	1.98	-	-	-	-
β-Coganen114.86119.161.105.94.915.887.061.51.01.51.01.5β-Elemene15.541200204.05.61.188.1191.101.431.01.0(F)-Caryophyllene15.64120790.13.3.07.96.073.103.381.01.0ar/Carbonene15.891516091.161.105.91.97.072.724.021.01.0ar/Carbonene16.611552161.105.119.91.914.482.401.01.0ar/Amorphene16.641553161.105.119.91.91.911.301.891.481.48ar/Amorphene16.671574180.105.113.13.2045.421.0.279.201.01.19ar/Salmene17.0716101161.119.204.131.056.407.851.01.001.19ar/Salmene17.121609161.91.91.91.051.741.181.01.001.00Galamenene17.271622119.105.161.91.204.1111.741.181.01.001.00Galamenene17.351630159.129.128.202.13117.783.731.02.761.00Galamenene17.611662252.139.82.279.854.540.9916.526.781.00Galamenene17.641669109.161.82.105.191.01.01.281.001.28Galamenene17.641692252.198.62.974.540.9916.626.781.26Galamenene17.64	α-Copaene	14.37	1268	161, 105, 119, 91, 93	4.17	5.65	-	-	-
β-Bennene15.1612869.9.8.16.7.107.681.011.531.0.1.4.31.0.1.4.3α-Gurjunene15.541290204.105.161.89.1191.191.4.31.0.1.0.α-Gurjunene15.66127793.133.91.79.693.103.381.0.1.0.α-Cabelene15.89150691.161.105.93.1072.224.021.0.1.0.α-Cabelene16.131525161.105.119.19.09.31.080.0771.361.0.1.0.α-Camorphene16.431533161.105.119.19.173.10.1.0.01.0.01.0.01.0.01.0.0α-Calenene16.70157493.01.507.11.0.75.421.0.371.0.01.0.	β-Copaene	14.86	1279	119, 161, 105, 93, 91	5.88	7.96	-	-	-
a-Gongmen15.341200204, 105, 61, 189, 1191.191.491.61.51.5(B)-Caryophylene15.68129793, 133, 91, 79, 693.381.31.51.51.5A-cananderdrene15.1815.6001, 161, 105, 59, 119, 012.724.021.61.5a-Cabebene16.1315.5515.16, 105, 204, 119, 014.482.4001.51.6Zonarene16.6415.5316.10, 50, 119, 91, 931.301.894.71.61.5Zonarene16.7615.7493, 105, 10, 13, 12, 79.201.61.61.61.6S-Calmene16.7615.7493, 105, 10, 13, 12, 121.641.61.61.61.6S-Calmene17.1316.0116.119, 204, 134, 1051.741.841.61.61.6S-Calmene17.2716.0215.19, 129, 128, 203, 1311.783.741.61.51.6S-Biasolene17.5416.0215.19, 129, 128, 203, 1311.783.641.61.61.6S-Biasolene17.5416.0215.19, 129, 129, 129, 129, 129, 129, 129, 1	β-Elemene	15.16	1286	93, 81, 67, 107, 68	1.01	1.53	-	-	-
(f)-Caryophylene15.60127099, 133, 91, 79, 6931.003.2801.01.01.00Aromandendene15.80150691, 161, 105, 19, 1072.724.600.771.361.0Cancheber16.1011528161, 105, 19, 204, 119, 914.482.401.01.01.00Canchere16.670157491, 105, 107, 1174.241.0371.481.481.48Cadnene16.70157491, 105, 107, 1121.2001.01.181.19Sclainene117.051600161, 192, 641, 315, 1017.179.2001.01.0Sclainene17.721602161, 192, 641, 315, 1017.179.2001.01.01.000Sclainene17.721602169, 193, 104, 1056.407.881.01.01.000Cadmenet17.721622119, 105, 161, 91, 2045.873.641.02.451.000Cadmenet17.541660157, 143, 200, 142, 1411.02.451.000 <td>α-Gurjunene</td> <td>15.34</td> <td>1290</td> <td>204, 105, 161, 189, 119</td> <td>1.19</td> <td>1.43</td> <td>-</td> <td>-</td> <td>-</td>	α-Gurjunene	15.34	1290	204, 105, 161, 189, 119	1.19	1.43	-	-	-
Aromandendrene 15.89 1506 91, 161, 105, 93, 107 2.72 4.02 acCubebene 16.11 1525 161, 105, 201, 119, 204, 91 6.06 0.77 1.36 gr.Amorphene 16.53 1515 161, 105, 201, 119, 91 4.84 2.40 acAdmorphene 16.70 1574 93, 105, 107, 121, 67 5.42 10.37 acSchinene 16.76 1579 188, 105, 101, 320, 472, 17 9.20 1.69 Sclainene 17.03 1601 161, 192, 044, 314, 105 6.40 7.85 2.78 Sclainene 17.42 1622 119, 105, 161, 91, 204 5.87 3.44 2.78 Galmanscher 17.35 1630 159, 129, 128, 202, 131 17.78 37.73 2.76 Pislabolene 17.74 1662 157, 143, 200, 142, 141	(E)-Caryophyllene	15.66	1297	93, 133, 91, 79, 69	3.10	3.38	-	-	-
o-Cabebern 16.11 1525 161.105.119.204.91 6.06 0.77 1.36 Cannerplene 16.44 1553 161.05.204.119.913 1.30 1.89 1.88 Ledene 16.70 1574 95.105.107.121.67 5.42 10.37 1.6 1.6 α-Selinene 16.70 1600 161.19.204.131.105 6.40 7.88 1.60 Sclinene 17.32 1600 161.19.204.131.105 6.40 7.88 1.30 Calamene 17.32 1600 161.19.204.131.01 5.40 1.88 1.30 Calamene 17.35 1640 157.143.200.142.141 1 2 1.52 Paisobolene 17.54 1652 25.1918.23.796 4.54 0.99 16.82 6.78 Calamene 17.80 1652 12.1918.23.05.93 1 2 1.59 Delsobore 17.81 169.9 109.161.82.05.93	Aromandendrene	15.89	1506	91, 161. 105, 93, 107	2.72	4.02	-	-	-
Żonarene 16.35 1545 161, 105, 204, 119, 91 4.48 2.40 α -Amorphene 16.44 153 101, 105, 119, 91, 93 1.30 1.89 1.48 α Selinene 16.76 1574 93, 105, 107, 12, 67 5.42 10.37 1.69 δ Cadimene 17.03 1601 161, 19, 204, 134, 105 6.40 7.85 Sclinene 17.12 1609 161, 204, 131, 105 5.47 3.64 1.30 Cadimene 17.35 1630 159, 129, 128, 202, 131 1.7.8 3.7.3 2.7.6 Plasobelne 17.54 1669 109, 161, 82, 105, 93 2.7.6 Virdiflord 18.87 1707 91, 159, 205, 105, 119 2.7.6 Virdiflord 18.31 1711 205, 119, 69, 95 1.8.2 5.99	α-Cubebene	16.11	1525	161, 105, 119, 204, 91	6.06	0.77	1.36	-	-
α-Amorphene 16.44 1553 161, 105, 119, 91, 93 1.30 1.89 1.48 Ledene 16.70 1574 93, 105, 107, 121, 67 5.42 10.37 1.69 δ-Cadinene 117.03 1601 161, 119, 204, 134, 105 6.40 7.85 1.69 β-Schinene 17.12 1609 161, 204, 81, 19, 105 1.74 1.18	Zonarene	16.35	1545	161, 105, 204, 119, 91	4.48	2.40	-	-	-
Ledene 16.70 1574 93, 105, 107, 121, 67 5.42 10.37 . . . ac'sellnene 16.76 1579 189, 105, 161, 133, 204 7.17 9.20 . . 1.69 SCadinene 17.03 1601 161, 119, 204, 134, 105 6.40 7.85 . . p/Selinene 17.12 1669 161, 204, 81, 119, 105 1.74 1.18 Qalamene 17.35 1630 159, 129, 128, 202, 131 177.8 37.3 2.78 p/Bisabolene 17.54 1662 122, 139, 182, 237, 96 4.54 0.99 16.82 6.78 Viridiford 18.07 1692 121, 81, 108, 232, 93 1.62 5.19 2.26 2.162 Spathulenol 18.31 1711 205, 91, 119, 159, 151 1.238 5.09 Loleytospermone 18.44 1736 196, 266, 251, 96, 69	α-Amorphene	16.44	1553	161, 105, 119, 91, 93	1.30	1.89	-	1.48	-
α -Selinene146.761579189, 105, 161, 133, 2047.179.201.1.1.69 δ -Calinene17.031601161, 19, 204, 134, 1056.407.851.30 β -Selinene17.121609116, 204, 134, 1050.5473.64 β -Selinene17.271622119, 105, 161, 91, 2045.873.64 α -Calamenene17.531630159, 129, 128, 202, 13117.783.7732.45 β -Bisabolene17.541646157, 143, 200, 142, 1412.45 β -Bisabolene17.641652252, 139, 182, 223, 964.540.9916.626.782.162 γ -Gurjunene18.85170791, 159, 205, 105, 1191.622.162 γ -Gurjunene18.831711205, 91, 199, 1501.285.09 β -Garjunene18.841724266, 251, 96, 96, 784.401.285.09 β -Isopornone18.4717461196, 266, 251, 96, 6911.861.761.76 γ -Muurolene18.871736196, 266, 251, 96, 6911.864.772.78 β -Isopornone18.4717461196, 105, 204, 11691.761.76	Ledene	16.70	1574	93, 105, 107, 121, 67	5.42	10.37	-	-	-
δ -Cadimene 17.03 1601 161, 119, 204, 134, 105 6.40 7.85 1.30 β -Selinene 17.12 1609 161, 204, 81, 119, 105 1.74 1.18 1.30 Cadima-1,4-diene 17.27 1622 119, 105, 161, 91, 204 5.87 3.64 β -Bisabolene 17.54 1646 157, 143, 200, 142, 141 2.45 β -Bisabolene 17.61 1652 252, 139, 182, 227, 30 2.46 Viridiflorol 18.07 1692 121, 81, 108, 222, 93 2.26 γ -Garjuene 18.25 1707 91, 159, 205, 105, 119 2.128 5.09 Spathulenol 18.31 1711 205, 91, 199, 159, 105 12.38 5.09 Isoleptospermone 18.47 1724 266, 251, 196, 69 11.86 5.60 10.89 Unknown	α-Selinene	16.76	1579	189, 105, 161, 133, 204	7.17	9.20	-	-	1.69
β-Seinene 17.12 1609 161, 204, 81, 119, 105 1.74 1.18 1.30 Cadina-1, 4-diene 17.27 1622 119, 105, 161, 91, 204 5.87 3.64 Galamenene 17.35 1630 159, 129, 128, 202, 131 17.78 37.73 2.78 Flavesone 17.61 1652 252, 139, 182, 237, 96 4.54 0.99 16.82 6.78 Viridiforol 18.07 1669 109, 161, 82, 105, 93 5.19 2.26 ? Yirdidron 18.07 1669 109, 161, 82, 105, 93 21.62 Spathlenol 18.31 1711 205, 91, 196, 957 1.238 5.09 Soleptospermone 18.47 1724 266, 251, 96, 697 1.168 1.60 7.8 Unknown 18.77 1746 119, 161, 152, 04, 91 1.23	δ-Cadinene	17.03	1601	161, 119, 204, 134, 105	6.40	7.85	-	-	
Cadina-1,4-diene 17.27 1622 119,105,161,91,204 5.87 3.64 . . . Calamenene 17.35 1630 159,129,128,020,131 17.78 37.73 . 2.78 . pBisabolene 17.54 1666 157,143,200,142,141 . . 2.45 . Alloaromandendrene 17.61 1652 252,139,182,227,95 4.54 0.99 16.82 6.78 . Viridiforol 18.07 1692 121,81,108,222,93 . . . 2.76 . 2.162 Spathulenol 18.31 1711 206,91,119,159,105 . . . 2.52 1.83 Carbophyllene oxide 18.35 1714 79,93,91,69,95 . . . 12.38 5.09 Isoleptospermone 18.64 1736 196,62,51,96,69 11.86 . 9.47 2.78 Cubenol 18.77 1746 119,161,105,204,91 1.23 . . .<	β-Selinene	17.12	1609	161, 204, 81, 119, 105	1.74	1.18	-	-	1.30
Calamenen 17.35 1630 159, 129, 128, 202, 131 17.78 37.73 . 2.78 . β-Bisoblene 17.54 1646 157, 143, 200, 142, 141 - . 2.45 . Plavesone 17.61 1652 252, 139, 182, 237, 96 4.54 0.99 16.82 6.78 . Virdiflorol 18.07 1669 109, 161, 82, 105, 93 - . . 2.76 . . 216.2 Spathulenol 18.31 1711 205, 91, 119, 159, 105 - . . 12.38 5.09 Isoleptospermone 18.47 1724 266, 251, 196, 96, 178 4.40 . 19.73 1.60 7.88 Leptospermone 18.64 1736 196, 266, 251, 96, 69 11.86 . 56.60 10.89 . Unknown 18.77 1746 119, 161, 204, 91, 105 . . . 1.76 YMurolene 18.91 1756 161, 119, 179, 105, 204 1.69	Cadina-1,4-diene	17.27	1622	119, 105, 161, 91, 204	5.87	3.64	-	-	-
β-Bisabolene 17.54 1646 157, 143, 200, 142, 141 - - 2.45 - Flavesone 17.61 1652 252, 139, 182, 237, 96 4.54 0.99 16.82 6.78 - Alloaromandendrene 17.80 1669 109, 161, 82, 105, 93 - - - 2.76 - Yridiflorol 18.07 1692 121, 81, 108, 222, 93 - - - 2.76 2.76 Yridiflorol 18.31 1711 205, 91, 119, 159, 105 - - - 2.52 1.83 Caryophyllene oxide 18.35 1714 79, 93, 91, 69, 55 - - - 12.38 5.09 Loptospermone 18.47 1724 266, 251, 96, 69 11.86 - 56.60 10.89 - Unknown 18.70 1741 149, 59, 107, 164, 135 - - 4.77 2.78 Cubenol 18.77 1753 189, 161, 204, 105 - - 1.76 7/4	Calamenene	17.35	1630	159, 129, 128, 202, 131	17.78	37.73	-	2.78	-
Plavesone 17,61 1652 252,139,182,237,96 4.54 0.99 16.82 6.78 . Alloaromandendrene 17.80 1669 109,161,82,105,93 - - - 2.76 . Viridiforol 18.07 1692 121,81,108,222,93 - - - 5.19 2.26 γ Gurjunene 18.25 1707 91,159,205,105,119 - - - 2.52 1.83 Caryophyllene oxide 18.35 1714 79,93,91,69,95 - - - 12.38 5.09 Isoleptospermone 18.47 1724 266,251,96,95 - - 4.00 19.73 1.60 7.88 Leptospermone 18.47 1741 149,59,107,164,135 - - 4.777 2.78 Cubenol 18.77 1746 119,161,204,91 1.23 - - 1.76 γ/Lunknown 18.87 1753 189,161,204,91 1.23 - - 1.76	β-Bisabolene	17.54	1646	157, 143, 200, 142, 141	-		-	2.45	-
Alloaromandendrene 17.80 1669 109, 161, 82, 105, 93 . . . 2.76 . Viridilorol 18.07 1692 121, 81, 108, 222, 93 5.19 2.26 γ -Gurjunene 18.25 1707 91, 159, 205, 105, 119 2.162 Spathulenol 18.33 1711 205, 91, 119, 159, 105 . . 12.38 5.09 Isopophyllen oxide 18.33 1714 79, 93, 91, 69, 95 . . 12.38 5.00 Isoleptospermone 18.47 1724 266, 251, 96, 69 11.86 . 55.60 10.89 . Unknown 18.70 1741 149, 59, 107, 164, 135 . . . 4.77 2.78 Cubenol 18.87 1753 189, 161, 204, 91 1.23 . . 1.76 y:Murolene 18.91 1756 161, 119, 179, 105, 204 1.69 . . 1.60 </td <td>Flavesone</td> <td>17.61</td> <td>1652</td> <td>252, 139, 182, 237, 96</td> <td>4.54</td> <td>0.99</td> <td>16.82</td> <td>6.78</td> <td>-</td>	Flavesone	17.61	1652	252, 139, 182, 237, 96	4.54	0.99	16.82	6.78	-
Viridiflorol 18.07 1692 121, 81, 108, 222, 93 - - - 5.19 2.26 γ-Gurjunene 18.25 1707 91, 159, 205, 105, 119 - - - 2.162 Spathulenol 18.31 1711 205, 91, 119, 159, 105 - - 2.52 1.83 Caryophyllene oxide 18.35 1714 79, 93, 91, 69, 95 - - 1.2.38 5.09 Isoleptospermone 18.47 1724 266, 251, 96, 69, 178 4.40 - 19,73 1.60 7.88 Leptospermone 18.64 1736 196, 266, 251, 96, 69 11.86 - 24.30 1.34 Unknown 18.70 1741 149, 59, 107, 164, 135 - - 4.77 2.78 Cubenol 18.77 1746 119, 161, 105, 204, 91 1.23 - - 1.76 γ-Muurolene 18.91 1756 161, 19, 79, 105, 204 1.69 - 5.49 5.42 3.29 Unknown	Alloaromandendrene	17.80	1669	109, 161, 82, 105, 93	-	-	-	2.76	-
y-Gurjunene 18.25 1707 91, 159, 205, 105, 119 - - - 21.62 Spathulenol 18.31 1711 205, 91, 119, 159, 105 - - 2.52 1.83 Caryophyllene oxide 18.35 1714 79, 93, 91, 69, 95 - - 12.38 5.09 Isoleptospermone 18.47 1724 266, 251, 196, 69, 178 4.40 - 19.73 1.60 7.88 Leptospermone 18.64 1736 196, 266, 251, 96, 69 11.86 - - 4.77 2.78 Cubenol 18.77 1741 149, 59, 107, 164, 135 - - - 1.76 y-Muurolene 18.87 1753 189, 161, 204, 91, 105 - - 1.76 2.32 Unknown 19.01 1764 161, 19, 179, 105, 204 1.69 - 5.49 5.42 3.29 Unknown 19.01 1764 161, 190, 193 - - 1.56 2.33 Unknown 19.0	Viridiflorol	18.07	1692	121, 81, 108, 222, 93	-	-	-	5.19	2.26
Spathulenol 18.31 1711 205, 91, 119, 159, 105 - - 2.52 1.83 Caryophyllene oxide 18.35 1714 79, 93, 91, 69, 95 - - 12.38 5.09 Isoleptospermone 18.47 1724 266, 251, 196, 96, 178 4.40 - 19.73 1.60 7.88 Leptospermone 18.64 1736 196, 266, 251, 96, 69 11.86 - 56.60 10.89 - Unknown 18.70 1741 149, 59, 107, 164, 135 - - 4.77 2.78 Cubenol 18.77 1746 119, 161, 105, 204, 91 1.23 - 24.30 1.34 Unknown 18.87 1753 189, 161, 204, 91, 105 - - - 1.76 Y-Muurolene 18.91 1756 161, 119, 179, 105, 204 1.69 - 5.49 5.42 3.29 Unknown 19.01 1764 161, 204, 105, 119, 162 - - - - 6.00 <t< td=""><td>γ-Gurjunene</td><td>18.25</td><td>1707</td><td>91, 159, 205, 105, 119</td><td>-</td><td>-</td><td>-</td><td>-</td><td>21.62</td></t<>	γ-Gurjunene	18.25	1707	91, 159, 205, 105, 119	-	-	-	-	21.62
Caryophyllene oxide 18.35 1714 79, 93, 91, 69, 95 - - 1.2.38 5.09 Isoleptospermone 18.47 1724 266, 251, 196, 96, 178 4.40 - 19.73 1.60 7.88 Leptospermone 18.64 1736 196, 266, 251, 96, 69 11.86 - 56.60 10.89 - Unknown 18.70 1741 149, 59, 107, 164, 135 - - 4.77 2.78 Cubenol 18.77 1746 119, 161, 105, 204, 91 1.23 - - 24.30 1.34 Unknown 18.87 1753 189, 161, 204, 91 1.23 - - 1.76 7.4 Y-Muurolene 18.91 1756 161, 197, 105, 204 1.69 - 1.56 2.33 Unknown 19.01 1764 161, 204, 105, 119, 162 - - 1.56 2.33 Unknown 19.03 1769 121, 105, 161, 91, 93 - - 4.64 7 Y-Eudesmol	Spathulenol	18.31	1711	205, 91, 119, 159, 105	-	-	-	2.52	1.83
Isoleptospermone 18.47 1724 266, 251, 196, 96, 178 4.40 - 19.73 1.60 7.88 Leptospermone 18.64 1736 196, 266, 251, 96, 69 11.86 - 56.60 10.89 - Unknown 18.70 1741 149, 59, 107, 164, 135 - - 4.77 2.78 Cubenol 18.77 1746 119, 161, 105, 204, 91 1.23 - - 24.30 1.34 Unknown 18.87 1753 189, 161, 204, 91, 105 - - - 1.76 Y-Muurolene 18.91 1756 161, 119, 179, 105, 204 1.69 - 5.49 5.42 3.29 Unknown 19.01 1764 161, 204, 105, 119, 162 - - 1.56 2.33 Unknown 19.01 1764 161, 149, 204, 189, 19 - - 4.64 Y-Eudesmol 19.31 1786 161, 149, 204, 189, 95 - - - 4.61 Dekadesmol 19	Caryophyllene oxide	18.35	1714	79, 93, 91, 69, 95	-	-	-	12.38	5.09
Leptosprimone 18.64 1736 196, 266, 251, 96, 69 11.86 - 56.60 10.89 - Unknown 18.70 1741 149, 59, 107, 164, 135 - - 4.77 2.78 Cubenol 18.77 1746 119, 161, 105, 204, 91 1.23 - - 24.30 1.34 Unknown 18.87 1753 189, 161, 204, 91, 105 - - - 1.76 y-Muurolene 18.91 1756 161, 119, 179, 105, 204 1.69 - 5.49 5.42 3.29 Unknown 19.01 1764 161, 204, 105, 119, 162 - - 1.56 2.33 Unknown 19.08 1769 121, 105, 161, 91, 93 - - 4.64 y-Eudesmol 19.31 1786 161, 149, 204, 189, 95 - - 4.11 5.71 B-Eudesmol 19.37 1790 59, 149, 164, 109, 108 - - - 2.92 Eudesmol 19.43 1794	Isoleptospermone	18.47	1724	266, 251, 196, 96, 178	4.40	-	19.73	1.60	7.88
Unknown 18.70 1741 149, 59, 107, 164, 135 - - 4.77 2.78 Cubenol 18.77 1746 119, 161, 105, 204, 91 1.23 - - 24.30 1.34 Unknown 18.87 1753 189, 161, 204, 91, 105 - - - 1.76 Y-Muurolene 18.91 1756 161, 119, 179, 105, 204 1.69 - 5.49 5.42 3.29 Unknown 19.01 1764 161, 204, 105, 119, 162 - - 1.56 2.33 Unknown 19.08 1769 121, 105, 161, 91, 93 - - 4.64 Y-Eudesmol 19.31 1786 161, 149, 204, 189, 95 - - - 4.64 Y-Eudesmol 19.37 1790 59, 149, 164, 109, 108 - - - 3.62 Isoaromadendrene epoxide 19.43 1794 91, 93, 79, 105, 107 - - - 2.92 Eudesma-4(14),11 diene 19.50 1799 <td< td=""><td>Leptospermone</td><td>18.64</td><td>1736</td><td>196, 266, 251, 96, 69</td><td>11.86</td><td>-</td><td>56.60</td><td>10.89</td><td>-</td></td<>	Leptospermone	18.64	1736	196, 266, 251, 96, 69	11.86	-	56.60	10.89	-
Cubenol 18.77 1746 119, 161, 105, 204, 91 1.23 - - 24.30 1.34 Unknown 18.87 1753 189, 161, 204, 91, 105 - - - 1.76 Y-Muurolene 18.91 1756 161, 119, 179, 105, 204 1.69 - 5.49 5.42 3.29 Unknown 19.01 1764 161, 204, 105, 119, 162 - - - 1.56 2.33 Unknown 19.08 1769 121, 105, 161, 91, 93 - - - 6.00 Unknown 19.16 1775 161, 189, 119, 105, 95 - - - 4.64 Y-Eudesmol 19.31 1786 161, 149, 204, 189, 95 - - - 4.61 Soaromadendrene epoxide 19.43 1794 91, 93, 79, 105, 107 - - - 2.92 Eudesma-4(14),11 diene 19.50 1799 81, 135, 189, 204, 93 - - - 6.61 Unknown 19.59	Unknown	18.70	1741	149, 59, 107, 164, 135	-	-	-	4.77	2.78
Unknown 18.87 1753 189, 161, 204, 91, 105 - - - 1.76 Y-Muurolene 18.91 1756 161, 119, 179, 105, 204 1.69 - 5.49 5.42 3.29 Unknown 19.01 1764 161, 204, 105, 119, 162 - - - 1.56 2.33 Unknown 19.08 1769 121, 105, 161, 91, 93 - - - 6.00 Unknown 19.16 1775 161, 189, 119, 105, 95 - - - 4.64 Y-Eudesmol 19.31 1786 161, 149, 204, 189, 95 - - - 4.64 Y-Eudesmol 19.37 1790 59, 149, 164, 109, 108 - - - 3.62 Isoaromadendrene epoxide 19.43 1794 91, 93, 79, 105, 107 - - - 2.92 Eudesma-4(14),11 diene 19.59 1802 159, 132, 135, 91, 107 - - - 1.61 Unknown 19.59 1805	Cubenol	18.77	1746	119, 161, 105, 204, 91	1.23	-	-	24.30	1.34
γ-Muurolene 18.91 1756 161, 119, 179, 105, 204 1.69 - 5.49 5.42 3.29 Unknown 19.01 1764 161, 204, 105, 119, 162 - - - 1.56 2.33 Unknown 19.08 1769 121, 105, 161, 91, 93 - - - 6.00 Unknown 19.16 1775 161, 189, 119, 105, 95 - - - 4.64 γ-Eudesmol 19.31 1786 161, 149, 204, 189, 95 - - - 4.61 β-Eudesmol 19.37 1790 59, 149, 164, 109, 108 - - - 3.62 Isoaromadendrene epoxide 19.43 1794 91, 93, 79, 105, 107 - - - 2.92 Eudesma-4(14),11 diene 19.50 1799 81, 135, 189, 204, 93 - - - 6.61 Unknown 19.69 1805 175, 157, 143, 142, 126 - - - 1.01 Unknown 19.75 1807	Unknown	18.87	1753	189, 161, 204, 91, 105	-	-	-	-	1.76
Unknown 19.01 1764 161, 204, 105, 119, 162 - - 1.56 2.33 Unknown 19.08 1769 121, 105, 161, 91, 93 - - - 6.00 Unknown 19.16 1775 161, 189, 119, 105, 95 - - - 4.64 γ -Eudesmol 19.31 1786 161, 149, 204, 189, 95 - - 4.11 5.71 β -Eudesmol 19.37 1790 59, 149, 164, 109, 108 - - - 3.62 Isoaromadendrene epoxide 19.43 1794 91, 93, 79, 105, 107 - - - 2.92 Eudesma-4(14),11 diene 19.50 1799 81, 135, 189, 204, 93 - - - 2.01 - Unknown 19.59 1802 159, 132, 135, 91, 107 - - 2.01 - Unknown 19.69 1805 175, 157, 143, 142, 126 - - 3.52 3.82 Unknown 19.75 1807 159, 91, 117,	γ-Muurolene	18.91	1756	161, 119, 179, 105, 204	1.69	-	5.49	5.42	3.29
Unknown 19.08 1769 121, 105, 161, 91, 93 - - - - 6.00 Unknown 19.16 1775 161, 189, 119, 105, 95 - - - 4.64 γ -Eudesmol 19.31 1786 161, 149, 204, 189, 95 - - - 4.11 5.71 β -Eudesmol 19.37 1790 59, 149, 164, 109, 108 - - - 4.11 5.71 β -Eudesmol 19.37 1790 59, 149, 164, 109, 108 - - - 3.62 Isoaromadendrene epoxide 19.43 1794 91, 93, 79, 105, 107 - - - 2.92 Eudesma-4(14),11 diene 19.50 1799 81, 135, 189, 204, 93 - - - 2.01 - Unknown 19.59 1802 159, 132, 135, 91, 107 - - 2.01 - Unknown 19.69 1805 175, 157, 143, 142, 126 - - - 1.01 Unknown	Unknown	19.01	1764	161, 204, 105, 119, 162	-	-	-	1.56	2.33
Unknown19.161775161, 189, 119, 105, 954.64γ-Eudesmol19.311786161, 149, 204, 189, 954.115.71β-Eudesmol19.37179059, 149, 164, 109, 1084.115.71β-Eudesmol19.37179059, 149, 164, 109, 1083.62Isoaromadendrene epoxide19.43179491, 93, 79, 105, 1072.92Eudesma-4(14),11 diene19.50179981, 135, 189, 204, 936.61Unknown19.591802159, 132, 135, 91, 1072.01-Unknown19.691805175, 157, 143, 142, 1263.523.82Unknown19.751807159, 91, 117, 118, 1051.01Unknown19.891811159,91, 132, 105, 934.78Unknown19.941813164, 206, 122, 121, 914.78Unknown20.771836Unclear2.10Unknown21.521856Unclear4.45Calamenol 122.681887175, 176, 160, 145, 2181.903.82	Unknown	19.08	1769	121, 105, 161, 91, 93	-	-	-	-	6.00
γ-Eudesmol 19.31 1786 161, 149, 204, 189, 95 - - 4.11 5.71 β-Eudesmol 19.37 1790 59, 149, 164, 109, 108 - - - 4.11 5.71 β-Eudesmol 19.37 1790 59, 149, 164, 109, 108 - - - - 3.62 Isoaromadendrene epoxide 19.43 1794 91, 93, 79, 105, 107 - - - 2.92 Eudesma-4(14),11 diene 19.50 1799 81, 135, 189, 204, 93 - - - 6.61 Unknown 19.59 1802 159, 132, 135, 91, 107 - - - 2.01 - Unknown 19.69 1805 175, 157, 143, 142, 126 - - 3.52 3.82 Unknown 19.75 1807 159, 91, 117, 118, 105 - - - 1.01 Unknown 19.94 1813 164, 206, 122, 121, 91 - - - 1.18 Unknown 20.77 1836 Unclear - - - 2.10 Unknown <td>Unknown</td> <td>19.16</td> <td>1775</td> <td>161, 189, 119, 105, 95</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>4.64</td>	Unknown	19.16	1775	161, 189, 119, 105, 95	-	-	-	-	4.64
β-Eudesmol 19.37 1790 59, 149, 164, 109, 108 - - - - 3.62 Isoaromadendrene epoxide 19.43 1794 91, 93, 79, 105, 107 - - - 2.92 Eudesma-4(14),11 diene 19.50 1799 81, 135, 189, 204, 93 - - - - 6.61 Unknown 19.59 1802 159, 132, 135, 91, 107 - - - 2.01 - Unknown 19.69 1805 175, 157, 143, 142, 126 - - - 3.52 3.82 Unknown 19.75 1807 159, 91, 117, 118, 105 - - - 1.01 Unknown 19.89 1811 159,91, 132, 105, 93 - - - 1.18 Unknown 19.94 1813 164, 206, 122, 121, 91 - - - 4.78 Unknown 20.77 1836 Unclear - - - 2.10 Unknown 21.52 1856 <td>γ-Eudesmol</td> <td>19.31</td> <td>1786</td> <td>161, 149, 204, 189, 95</td> <td>-</td> <td>-</td> <td>-</td> <td>4.11</td> <td>5.71</td>	γ-Eudesmol	19.31	1786	161, 149, 204, 189, 95	-	-	-	4.11	5.71
Isoaromadendrene epoxide 19.43 1794 91, 93, 79, 105, 107 - - - 2.92 Eudesma-4(14),11 diene 19.50 1799 81, 135, 189, 204, 93 - - - - 6.61 Unknown 19.59 1802 159, 132, 135, 91, 107 - - - 2.01 - Unknown 19.69 1805 175, 157, 143, 142, 126 - - - 3.52 3.82 Unknown 19.75 1807 159, 91, 117, 118, 105 - - - 1.01 Unknown 19.89 1811 159,91, 132, 105, 93 - - - 1.18 Unknown 19.94 1813 164, 206, 122, 121, 91 - - - 4.78 Unknown 20.77 1836 Unclear - - - 2.10 Unknown 21.52 1856 Unclear - - - 4.45 Calamenol 1 22.68 1887 175, 176, 160, 145,	β-Eudesmol	19.37	1790	59, 149, 164, 109, 108	-	-	-	-	3.62
Eudesma-4(14),11 diene 19.50 1799 81, 135, 189, 204, 93 - - - - 6.61 Unknown 19.59 1802 159, 132, 135, 91, 107 - - - 2.01 - Unknown 19.69 1805 175, 157, 143, 142, 126 - - - 3.52 3.82 Unknown 19.75 1807 159, 91, 117, 118, 105 - - - 101 Unknown 19.89 1811 159, 91, 132, 105, 93 - - - 1.18 Unknown 19.94 1813 164, 206, 122, 121, 91 - - - 4.78 Unknown 20.77 1836 Unclear - - - 2.10 Unknown 21.52 1856 Unclear - - - 4.45 Calamenol 1 22.68 1887 175, 176, 160, 145, 218 - - 1.90 3.82	Isoaromadendrene epoxide	19.43	1794	91, 93, 79, 105, 107	-	-	-	-	2.92
Unknown 19.59 1802 159, 132, 135, 91, 107 - - 2.01 - Unknown 19.69 1805 175, 157, 143, 142, 126 - - 3.52 3.82 Unknown 19.75 1807 159, 91, 117, 118, 105 - - - 1.01 Unknown 19.89 1811 159, 91, 117, 118, 105 - - - 1.01 Unknown 19.89 1811 159, 91, 132, 105, 93 - - - 1.18 Unknown 19.94 1813 164, 206, 122, 121, 91 - - - 4.78 Unknown 20.77 1836 Unclear - - - 2.10 Unknown 21.52 1856 Unclear - - - 4.45 Calamenol 1 22.68 1887 175, 176, 160, 145, 218 - - 1.90 3.82	Eudesma-4(14),11 diene	19.50	1799	81, 135, 189, 204, 93	-	-	-	-	6.61
Unknown 19.69 1805 175, 157, 143, 142, 126 - - 3.52 3.82 Unknown 19.75 1807 159, 91, 117, 118, 105 - - - 1.01 Unknown 19.89 1811 159, 91, 117, 118, 105 - - - 1.01 Unknown 19.89 1811 159, 91, 132, 105, 93 - - - 1.18 Unknown 19.94 1813 164, 206, 122, 121, 91 - - - 4.78 Unknown 20.77 1836 Unclear - - - 2.10 Unknown 21.52 1856 Unclear - - - 4.45 Calamenol 1 22.68 1887 175, 176, 160, 145, 218 - - 1.90 3.82	Unknown	19.59	1802	159, 132, 135, 91, 107	-	-	-	2.01	-
Unknown 19.75 1807 159, 91, 117, 118, 105 - - - 1.01 Unknown 19.89 1811 159, 91, 132, 105, 93 - - - 1.18 Unknown 19.94 1813 164, 206, 122, 121, 91 - - - 4.78 Unknown 20.77 1836 Unclear - - 2.10 Unknown 21.52 1856 Unclear - - 4.45 Calamenol 1 22.68 1887 175, 176, 160, 145, 218 - - 1.90 3.82	Unknown	19.69	1805	175, 157, 143, 142, 126	-	-	-	3.52	3.82
Unknown 19.89 1811 159,91, 132, 105, 93 - - - 1.18 Unknown 19.94 1813 164, 206, 122, 121, 91 - - - 4.78 Unknown 20.77 1836 Unclear - - - 2.10 Unknown 21.52 1856 Unclear - - 4.45 Calamenol 1 22.68 1887 175, 176, 160, 145, 218 - - 1.90 3.82	Unknown	19.75	1807	159, 91, 117, 118, 105	-	-	-	-	1.01
Unknown 19.94 1813 164, 206, 122, 121, 91 - - - 4.78 Unknown 20.77 1836 Unclear - - - 2.10 Unknown 21.52 1856 Unclear - - - 4.45 Calamenol 1 22.68 1887 175, 176, 160, 145, 218 - - 1.90 3.82	Unknown	19.89	1811	159,91, 132, 105, 93	_	_	_	_	1.18
Unknown 20.77 1836 Unclear - - - 2.10 Unknown 21.52 1856 Unclear - - - 4.45 Calamenol 1 22.68 1887 175, 176, 160, 145, 218 - - 190 3.82	Unknown	19.94	1813	164, 206, 122, 121, 91	_	_	_	_	4.78
Unknown 21.52 1856 Unclear - - - 4.45 Calamenol 1 22.68 1887 175, 176, 160, 145, 218 - - 190 3.82	Unknown	20.77	1836	Unclear	-	-	-	-	2.10
Calamenol 1 22.68 1887 175, 176, 160, 145, 218 - - 1 90 3.82	Unknown	21.52	1856	Unclear	_	_	_		4.45
	Calamenol 1	22.68	1887	175, 176, 160, 145, 218	-	-	-	1.90	3.82
Unknown 26.83 2099 91, 244, 243, 314, 296 3.57 -	Unknown	26.83	2099	91, 244, 243, 314, 296	-	-	-	3.57	_

https://doi.org/10.1371/journal.pone.0229076.t001

essential oil (Fig 2). *Leptospermum scoparium* essential oil-Hex-Am emulsion (LC₅₀ = 29.62 ppm) was more toxic to *Ae. aegypti* larvae than the whole essential oil. Dynamic light scattering analysis of *L. scoparium* essential oil-Hex-Am emulsion revealed that the complexes had a median (\pm SD) hydrodynamic diameter of 1.96 \pm 0.74 microns.

Discussion

Leptospermum scoparium essential oil is known for its many medicinal applications, but its insecticidal properties remain poorly understood. Here, we show that *L. scoparium* essential oil can serve as an important source of larvicides for mosquito control. Fractions 2 and 3, respectively were 4 and 2 times more toxic than the whole essential oil, while fraction 4 had similar toxicity as the whole essential oil. The World Health Organization (WHO) has not established a standard criterion for determining the larvicidal activity of natural products but several scientists have developed their own criteria. Komalamisra et al. [32] considered products showing $LC_{50} < 50$ mg/L active, 50 mg/L $<LC_{50} < 100$ mg/L moderately active, 100 mg/L $<LC_{50} < 750$ mg/L effective, and $LC_{50} > 750$ mg/L inactive. Kiran et al. [33] considered

Table 2. LC ₅₀ and LC ₉₀ values for <i>Leptospermum scoparium</i> essential oil and its fractions and emulsions produced
with hexadecyl ammonium chloride amylose inclusion complexes. ND, not determined because it was outside the
range of concentrations tested. LP, Leptospermum scoparium.

Treatment	LC ₅₀ (95% CI)	LC ₉₀ (95% CI)	Slope		
LP	47.97 (45.72–50.22)	66.62 (62.48-72.69)	y = 8.99x - 15.10		
Fraction 1	ND	ND	ND		
Fraction 2	12.24 (10.94–13.43)	18.78 (16.94–21.70)	y = 6.90x - 7.50		
Fraction 3	20.58 (19.85-21.27)	26.07 (25.01-27.49)	y = 12.49x - 16.41		
Fraction 4	35.87 (33.09-38.49)	79.31 (71.50–90.78)	y = 3.72x - 5.78		
Hex-Am	29.62 (28.97-30.25)	35.92 (34.94-37.13)	y = 15.29x -22.51		

https://doi.org/10.1371/journal.pone.0229076.t002

https://doi.org/10.1371/journal.pone.0229076.g002

compounds with LC₅₀<100 mg/L to exhibit a significant larvicidal effect. Cheng et al. [34] considered compounds with LC₅₀<50 mg/L highly active, 50 mg/L<LC₅₀<100 mg/L active, and LC₅₀>100 mg/L inactive. Based on these criteria, *L. scoparium* essential oil and three of its four fractions can be considered active/highly active. Moreover, the use of Hex-Am emulsifier enhanced the toxicity of *L. scoparium* essential oil against the mosquito larvae. These findings

highlight the need to explore the potential for development and commercialization of *L. sco-parium* essential oil as a mosquito larvicide.

Most of the chemical constituents identified in this study have been reported in *L. scopar-ium* essential oil albeit at different quantities [9, 13, 16, 35, 36]. These differences are expected because the chemical composition of essential oils is known to vary by plant geographic origin, stage of development, growing conditions, developmental stage of the plant, method of extraction, solvent used for extraction, and photosensitivity of some compounds in the extract [36–38].

Leptospermum scoparium essential oil has been shown to be toxic against the spotted wing drosophila Drosophila suzukii Matsumura [16] and several species of mites [13-16], and also can synergize the activity of some essential oils against mosquito larvae [4]. Leptospermum scoparium essential oil has also been shown to be an attractive bait for the redbay ambrosia beetle, *Xyleborus glabratus* [17]. The finding that some *L. scoparium* essential oil fractions are more toxic than the whole essential oil is similar to our recent findings with the Italian honeysuckle (Lonicera caprifolium Linnaeus) essential oil where the whole essential oil (LC_{50} of 34.4 mg/L) was 2 times less toxic to Ae. aegypti larvae than 4 of its 5 fractions ($LC_{50s} = 20.6, 19.7, 18.6, and$ 17.7 mg/L for fraction B, C,D and E, respectively) [3]. Similar findings were also reported on parsley (Petroselinum crispum Mill.(Fuss)) essential oil where the LC_{50s} for fractions 1, 3, and 4 against Ae. aegypti larvae were 0.49, 0.88 and 0.01 mg/L respectively, compared to 4.19 mg/L for the whole essential oil [20]. Sweet orange, Citrus sinensis (L.) Osbeck essential oil was also a less potent fumigant against the red imported fire ant Solenopsis invicta Buren compared to its fractions [19]. We were unable to identify the chemical constituents responsible for the larvicidal properties of L. scoparium essential oil since the three chemical constituents tested (α pinene, ledene, and aromandendrene) were less toxic than the whole essential oil, and our efforts to test additional chemical constituents did not materialize because the other chemical constituents of L. scoparium essential oil were either too expensive or not commercially available. Thus, it is possible that the toxicity of L. scoparium essential oil is due to one or more chemical constituents that were not tested, or due to synergistic interactions between multiple chemical constituents. Further studies are needed to clarify this.

The two fractions that were more toxic than the whole essential oil (fractions 2 and 3) constituted 28.75% of the total essential oil processed, with fraction 2 accounting for 23.9% of the total oil. Because *L. scoparium* essential oil is generally recognized as safe to humans and environment and is commercially available in large quantities and affordable cost, our findings suggest that commercial development and application of *L. scoparium* essential oil as a mosquito larvicide is feasible. However, it is also important to note that fraction 1 which was inactive, accounted for 44.27% of the total yield suggesting that large scale production of fractions 2 and 3 would also yield large amounts of fraction 1. This fraction would be useless with regard to mosquito control and might pose substantial disposal challenges. Further studies should be conducted to identify the value-added uses of fraction 1 in order to improve the efficiency and economic viability of this process. These studies may include bioassays with other insects of medical, veterinary and wildlife significance, and tests for antimicrobial activity and potential application in cosmetics and pharmaceutical industries.

We did not investigate the mechanism(s) underlying the enhanced toxicity of *L. scoparium* essential oil fractions relative to whole essential. However, previous studies have shown that different chemical constituents present in essential oils or their fractions may act in synergy through enhanced penetration, targeting multiple sites, and exhibiting multiple modes of action [39–41]. There also are reports that when exposed to a mixture of terpenes, the insect may preferentially oxidize the major terpene in the mixture while the minor terpene acts as a toxicant with higher toxicity than when used alone [42]. We observed qualitative and

quantitative differences in the chemical compositions of L. scoparium essential oil and its fractions and it is likely that at least one of the mechanisms described above may have contributed to the enhanced toxicity of some oil fractions relative to the whole essential oil. For example, the major compounds detected in fraction 1 which was inactive, were either absent or found in much lower quantities in other fractions (e.g. calamenene, ledene, α -selinene, α -copaena, δ cadinene, β -copaena, aromandendrene). The five compounds detected in fraction 2 were also detected in substantial amounts in some of the other active fractions as well as in the whole essential oil suggesting their potential contribution to the observed bioactivity. In addition, a good number of chemical constituents that were present in L. scoparium essential oil fractions especially fractions 3 and 4 were not detected in the whole essential oil and vice versa. A simple explanation for the presence of some constituents in the fractions but not in the whole essential oil would be that these chemicals were present in undetectable amounts in the whole essential oil but became enriched in the fractions when some major compounds were either removed or their abundance reduced through fractionation. For example, γ -Gurjunene accounted for 21.6% of fraction 4 but was neither detected in the other fractions nor in the whole essential oil. The 29.5 g of oil that was processed yielded only 0.96 g of fraction 4. This is a concentration factor of 31-fold. Thus, a component of 21.6% in fraction 4 would comprise only 0.7% of the original oil, which is below our detection limits. Under this scenario, the enhanced toxicity of L. scoparium essential oil fractions may have resulted from enrichment of some of bioactive compounds and reduction in the concentration of some inactive compounds. Essential oils also tend to be highly volatile, thermally unstable, and quite sensitive to oxidation [27, 43]. Therefore, the loss of some components may have resulted from vaporization and/or chemical degradation during fractionation.

Enhancing the water dispersibility of essential oils is another effective method for improving insecticidal activity of essential oils. Our results show that amylose-N-1-hexadecylammonium chloride inclusion complexes can be used as an emulsifier to improve the solubility and efficacy of *L. scoparium* essential oil in aqueous systems. The higher toxicity of emulsions relative to the whole essential oil may be due to the reduction in droplet sizes which may have improved their effective distribution in the water column and interaction with insect tissues [44]. Amylose inclusion complexes have been shown to be surface active agents that reduce the interfacial tension at the oil-water interface and inhibit flocculation and coalescence of oil droplets [25]. Additionally, high molecular weight polymers such as the amylose complexes can substantially inhibit emulsion breakdown via Ostwald ripening by forming a thick, high elastic modulus polymer coating around the oil droplets [25, 45].

The ligands bound in the Hex-Am amylose complexes are cationic fatty ammonium salts with 16 carbon alkyl tails [46]. The amylose complexes may be forming highly stable Pickering emulsions with the *L. scoparium* essential oil; where the polymer particles adhere to the oil droplets forming a steric barrier on the surface [25, 47]. Pickering emulsions using garlic and asafoetida essential oils with Hex-Am are highly resistant to destabilization processes and are suitable for long term (6 months) storage [48]. For commercial application however, studies covering a longer time frame are needed to fully elucidate the stability of amylose inclusion complex emulsions.

This study focused on the lethal effects caused by *L. scoparium* essential oil, its fractions and emulsions. However, essential oils are also known to cause a variety of sublethal effects that are detrimental to insect survival and reproduction. These effects include repellency, irritability, altered respiratory activity, changes in swimming pattern, and reduced adult emergence, longevity, fertility, fecundity and natality [49–52]. Future studies evaluating both the lethal and sublethal effects of *L. scoparium* essential oil, its fractions and emulsions could reveal the full spectrum of their biological effects against mosquitoes. These studies should be conducted

under a range of temperatures because the insecticidal activity of some essential oils and their constituents is influenced by post-application temperature [53].

In summary, our results show that *L. scoparium* essential oil and three of its four fractions examined are toxic to mosquito larvae and could be harnessed as a source of bio-based mosquito larvicides. In addition, we show that amylose-N-1-hexadecylammonium chloride inclusion complexes are a promising emulsifier and increases the toxicity of *L. scoparium* essential oil in aqueous dispersions. Amylose inclusion complexes can be composed of bio-based materials that are relatively safe and are made from low cost materials and processes [25]. Their use as emulsifiers for essential oil biopesticides is therefore appealing both in terms of cost and environmental and public health safety. Further studies are needed on the effects of *L. scoparium* essential oil and its fractions on non-target organisms, and the potential development and commercialization of amylose inclusion complexes as emulsifiers for essential oil-based insecticides for mosquito control.

Acknowledgments

We thank Bruce Zilkowski for his invaluable technical support. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author Contributions

Conceptualization: Ephantus J. Muturi.

Formal analysis: Ephantus J. Muturi, Jose L. Ramirez.

Investigation: Ephantus J. Muturi, Gordon W. Selling, Kenneth M. Doll, William T. Hay.

Methodology: Ephantus J. Muturi, Gordon W. Selling, Kenneth M. Doll, William T. Hay, Jose L. Ramirez.

Writing - original draft: Ephantus J. Muturi.

Writing - review & editing: Gordon W. Selling, Kenneth M. Doll, William T. Hay.

References

- Lee HS. Mosquito larvicidal activity of aromatic medicinal plant oils against Aedes aegypti and Culex pipiens pallens. J Am Mosq Control Assoc. 2006; 22(2):292–295. https://doi.org/10.2987/8756-971X (2006)22[292:MLAOAM]2.0.CO;2 PMID: 17019775
- 2. Manimaran A, Cruz MM, Muthu C, Vincent S, Ignacimuthu S. Larvicidal and knockdown effects of some essential oils against *Culex quinquefasciatus* Say, *Aedes aegypti* (L.) and *Anopheles stephensi* (Liston). Adv Biosc Biotech. 2012; 3:855–862.
- Muturi EJ, Doll K, Berhow M, Flor-Weiler LB, Rooney AP. Honeysuckle essential oil as a potential source of ecofriendly larvicides for mosquito control. Pest Manag Sci. 2019; 75:2043–2048. <u>https://doi. org/10.1002/ps.5327</u> PMID: 30632272
- Muturi EJ, Ramirez JL, Doll KM, Bowman MJ. Combined toxicity of three essential oils against Aedes aegypti (Diptera: Culicidae) larvae. J Med Entomol. 2017; 54(6):1684–1691. https://doi.org/10.1093/ jme/tjx168 PMID: 29029151
- 5. Adam F, Deslandes E, Bernier U, Menut C, Vahirua-Lechat I. Mosquito repellents from essential oils and crude extracts of plants of French Polynesia, 2008; 74: 162.
- Albuquerque EL, Lima JK, Souza FH, Silva IM, Santos AA, Araujo AP, et al. Insecticidal and repellence activity of the essential oil of *Pogostemon cablin* against urban ants species. Acta Trop. 2013; 127 (3):181–186. https://doi.org/10.1016/j.actatropica.2013.04.011 PMID: 23643519
- Isman MB. Plant essential oils for pest and disease management. Crop Protection. 2000; 19(8– 10):603–608.

- Isman MB. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol. 2006; 51:45–66. https://doi.org/10.1146/annurev.ento.51.110104. 151146 PMID: 16332203
- Porter NG, Wilkins AL. Chemical, physical and antimicrobial properties of essential oils of *Leptospermum scoparium* and *Kunzea ericoides*. Phytochemistry 1998; 50:407–415.
- Lis-Balchin M, Hart SL, Deans SG. Pharmacological and antimicrobial studies on different tea-tree oils (*Melaleuca alternifolia, Leptospermum scoparium* or Manuka and Kunzea ericoides or Kanuka), originating in Australia and New Zealand. Phytother Res. 2000; 14(8):623–629. https://doi.org/10.1002/ 1099-1573(200012)14:8<623::aid-ptr763>3.0.co;2-z PMID: 11114000
- Lis-Balchin M. Essential oils and aromatherapy: their modern role in healing. J Roy Soc Health. 1997; 117(5):324–329.
- 12. Blackwell R. An insight into aromatic oils: lavender and tea tree. Br J Phytother 1991; 2:26–30.
- Jeong EY, Kim MG, Lee HS. Acaricidal activity of triketone analogues derived from Leptospermum scoparium oil against house-dust and stored-food mites. Pest Manag Sci. 2009; 65(3):327–331. https://doi.org/10.1002/ps.1684 PMID: 19051215
- George DR, Smith TJ, Shiel RS, Sparagano OA, Guy JH. Mode of action and variability in efficacy of plant essential oils showing toxicity against the poultry red mite, *Dermanyssus gallinae*. Vet Parasitol. 2009; 161(3–4):276–282. https://doi.org/10.1016/j.vetpar.2009.01.010 PMID: 19233565
- Fang F, Candy K, Melloul E, Bernigaud C, Chai L, Darmon C, et al. In vitro activity of ten essential oils against Sarcoptes scabiei. Parasit Vectors. 2016; 9(1):594. https://doi.org/10.1186/s13071-016-1889-3 PMID: 27876081
- Park CG, Jang M, Shin E, Kim J. Myrtaceae plant essential oils and their beta-triketone components as insecticides against *Drosophila suzukii*. Molecules. 2017; 22(7): 1050.
- Hanula JL, Sullivan B. Manuka oil and phoebe oil are attractive baits for *Xyleborus glabratus* (Coleoptera: Scolytinae), the vector of laurel wilt. Environ Entomol. 2008; 37(6):1403–1409. https://doi.org/10.1603/0046-225X-37.6.1403 PMID: 19161682
- Tripathi AK, Prajapati V, Aggarwal KK, Kumar S. Insecticidal and ovicidal activity of the essential oil of *Anethum sowa* Kurz against *Callosobruchus maculatus* F. (Coleoptera: Bruchidae). Insect Sci Applic. 2001; 21:61–66.
- Hu W, Zhang N, Chen H, Zhong B, Yang A, Kuang F, et al. Fumigant activity of sweet orange essential oil fractions against red imported fire ants (Hymenoptera: Formicidae). J Econ Entomol. 2017; 110 (4):1556–1562. https://doi.org/10.1093/jee/tox120 PMID: 28444322
- Camilotti J, Ferarrese L, Bortolucci W, Gonçalves JE, Takemura OS, Junior RP, et al. Essential oil of parsley and fractions to in vitro control of cattle ticks and dengue mosquitoes. J Med Plants Res. 2015; 9:1021–1030.
- 21. McMclements DJ. Food emulsions 2nd ed. Boca Raton, FL: CRC Press. pp 2–26; 2004.
- 22. Tadros TF. Liquid/liquid interfaces. In: Becher P, editor. Encyclopedia of emulsion technology 1. New York, NY, USA: Marcel Dekker, Inc.; 1983.
- Fanta GF, Kenar JA, Byars JA, Felker FC, Shogren RL. Properties of aqueous dispersions of amylosesodium palmitate complexes prepared by steam jet cooking. Carbohyd Polym. 2010; 81(3):645–651.
- Fanta GF, Kenar JA, Felker FC. Preparation and properties of amylose complexes prepared from hexadecylamine and its hydrochloride salt. Carbohyd Polym. 2013; 98(1):555–561.
- Hay WT, Fanta GF, Felker FC, Peterson SC, Skory CD, Hojilla-Evangelista MP, et al. Emulsification properties of amylose-fatty sodium salt inclusion complexes. Food Hydrocolloid. 2019; 90:490–499.
- Maes C, Bouquillon S, Fauconnier ML. Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review. Molecules. 2019; 24(14): 2539.
- Marinopoulou A, Papastergiadis E, Raphaelides SN, Kontominas MG. Morphological characteristics, oxidative stability and enzymic hydrolysis of amylose-fatty acid complexes. Carbohyd Polym. 2016; 141:106–115.
- Fanta GF, Shogren RL, Salch JH. Steam jet cooking of high-amylose starch fatty acid mixtures. An investigation of complex formation. Carbohyd Polym. 1999; 38(1):1–6.
- Hay WT, Behle RW, Fanta GF, Felker FC, Peterson SC, Selling GW. Effect of spray drying on the properties of amylose-hexadecylammonium chloride inclusion complexes. Carbohydr Polym. 2017; 157:1050–1056. https://doi.org/10.1016/j.carbpol.2016.10.068 PMID: 27987806
- Hay WT, Fanta GF, Peterson SC, Thomas AJ, Utt KD, Walsh KA, et al. Improved hydroxypropyl methylcellulose (HPMC) films through incorporation of amylose-sodium palmitate inclusion complexes. Carbohydr Polym. 2018; 188:76–84. https://doi.org/10.1016/j.carbpol.2018.01.088 PMID: 29525174
- 31. WHO. Guidelines for laboratory and field testing of mosquito larvicides. Geneva2005.

- Komalamisra N, Trongtokit Y, Rongsriyam Y, Apiwathnasorn C. Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian J Trop Med Public Health. 2005; 36 (6):1412–1422. PMID: 16610643
- 33. Kiran SR, Bhavani K, Devi PS, Rao BRR, Reddy KJ. Composition and larvicidal activity of leaves and stem essential oils of *Chloroxylon swietenia* DC against *Aedes aegypti* and *Anopheles stephensi*. Bioresource Technology. 2006; 97(18):2481–2484. <u>https://doi.org/10.1016/j.biortech.2005.10.003</u> PMID: 16815011
- Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresource Technology. 2003; 89(1):99–102. https:// doi.org/10.1016/s0960-8524(03)00008-7 PMID: 12676507
- Christoph F, Kubeczka KH, Stahl-Bisup E. The composition of commercial Manuka oils from New Zealand. J Essential Oil Res. 1999; 11:705–710.
- Douglas MH, van Klink JW, Smallfield BM, Perry NB, Anderson RE, Johnstone P, et al. Essential oils from New Zealand manuka: triketone and other chemotypes of *Leptospermum scoparium*. Phytochemistry. 2004; 65(9):1255–1264. https://doi.org/10.1016/j.phytochem.2004.03.019 PMID: 15184010
- Aboukhalid K, Al Faiz C, Douaik A, Bakha M, Kursa K, Agacka-Moldoch M, et al. Influence of environmental factors on essential oil variability in *Origanum compactum* Benth. growing wild in Morocco. Chem Biodivers. 2017; 14(9).
- Barra A. Factors affecting chemical variability of essential oils: a review of recent developments. Nat Prod Commun. 2009; 4(8):1147–1154. PMID: 19769002
- Regnault-Roger C, Vincent C, Arnason JT. Essential oils in insect control: low-risk products in a highstakes world. Annu Rev Entomol. 2012; 57:405–424. <u>https://doi.org/10.1146/annurev-ento-120710-100554 PMID: 21942843</u>
- 40. Tak JH, Isman MB. Enhanced cuticular penetration as the mechanism for synergy of insecticidal constituents of rosemary essential oil in *Trichoplusia ni*. Sci Rep. 2015; 5:12690. <u>https://doi.org/10.1038/srep12690</u> PMID: 26223769
- Tak JH, Isman MB. Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, *Trichoplusia ni*. Sci Rep. 2017; 7: 42432. https://doi.org/10.1038/ srep42432 PMID: 28181580
- Scalerandi E, Flores GA, Palacio M, Defago MT, Carpinella MC, Valladares G, et al. Understanding synergistic toxicity of terpenes as insecticides: contribution of metabolic detoxification in *Musca domestica*. Front Plant Sci. 2018; 9: 1579. https://doi.org/10.3389/fpls.2018.01579 PMID: 30420868
- **43.** Martin A, Varona S, Navarrete A, Cocero MJ. Encapsulation and co-precipitation processes with supercritical fluids: applications with essential oils. The Open Chem Engine J. 2010; 4:31–41.
- 44. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006; 311 (5761):622–627. https://doi.org/10.1126/science.1114397 PMID: 16456071
- Mun S, McClements DJ. Influence of interfacial characteristics on Ostwald ripening in hydrocarbon oilin-water emulsions. Langmuir. 2006; 22(4):1551–1554. https://doi.org/10.1021/la052575I PMID: 16460073
- Eller FJ, Hay WT, Kirker GT, Mankowski ME, Sellling GW. Hexadecyl ammonium chloride amylose inclusion complex to emulsify cedarwood oil and treat wood against termites and wood-decay fungi. Int Biodeter Biodegr. 2018; 129:95–101.
- **47.** Dickinson E. Food emulsions and foams: Stabilization by particles. Curr Opin Colloid In. 2010; 15(1–2):40–49.
- **48.** Muturi EJ, Hay WT, Behle RW, Selling GW. Amylose inclusion complexes as emulsifiers for garlic and asafoetida essential oils for mosquito control. Insects. 2019; 10(10): 337.
- 49. Benelli G, Pavela R, Giordani C, Casettari L, Curzi G, Cappellacci L, et al. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito *Culex quinquefasciatus* and the housefly *Musca domestica*. Ind Crop Prod. 2018; 112:668–680.
- Brugger BP, Martinez LC, Plata-Rueda A, Castro B, Soares MA, Wilcken CF, et al. Bioactivity of the *Cymbopogon citratus* (Poaceae) essential oil and its terpenoid constituents on the predatory bug, *Podi sus nigrispinus* (Heteroptera: Pentatomidae). Sci Rep. 2019; 9(1):8358. https://doi.org/10.1038/ s41598-019-44709-y PMID: 31175321
- Izakmehri K, Saber M, Mehrvar A, Hassanpouraghdam MB, Vojoudi S. Lethal and sublethal effects of essential oils from *Eucalyptus camaldulensis* and *Heracleum persicum* against the adults of *Callosobruchus maculatus*. Journal of Insect Science. 2013; 13: 152. <u>https://doi.org/10.1673/031.013.15201</u> PMID: 24773362

- Silva IM, Martins GF, Melo CR, Santana AS, Faro RR, Blank AF, et al. Alternative control of *Aedes* aegypti resistant to pyrethroids: lethal and sublethal effects of monoterpene bioinsecticides. Pest Manag Sci. 2018; 74(4):1001–1012. https://doi.org/10.1002/ps.4801 PMID: 29160036
- **53.** Pavela R, Sedlak P. Post-application temperature as a factor influencing the insecticidal activity of essential oil from *Thymus vulgaris*. Ind Crop Prod. 2018; 113:46–49.