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INTRODUCTION 
 

HCC, one of the most prevalent and life-threatening 

malignancies in the world, progresses rapidly and is 

difficult to treat. Most HCC patients are diagnosed with 

late-stage disease and present with distant metastases, 

portal vein tumor thrombus, and other morbid 

conditions, resulting in extremely poor prognoses [1–3]. 

Although chemotherapy, radiotherapy, and other 

treatment methods have modestly improved HCC 

patient survival rates in recent years, therapeutic 

outcomes are still largely unsatisfactory [4–6]. New 

treatment methods for advanced HCC are therefore 

needed to improve overall survival rates. 

 

Immunotherapy has emerged as a promising potential 

treatment for a variety of cancers, including HCC [7, 8]. 

Previous research revealed that reactivation of NK cells 

and their cytotoxic activity against tumor cells can 

enhance anti-HCC effects [9]. In addition, immune-

stimulating cytokines such as IFNG γ can inhibit HCC 

progression by inducing apoptosis or autophagy of HCC 

cells. However, due to inherent cancer variability, 

outcomes after immunotherapy are often unsatisfactory 

[10–13]. Increasing evidence indicates that expression 

of immune-related genes can be associated with tumor 

prognosis, and prognostic signatures based on these 

genes might help identify effective treatments for HCC 

patients [14]. The relationship between immune-related 
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ABSTRACT 
 

Hepatocellular carcinoma (HCC) is a common type of malignant tumor with an extremely poor prognosis. Because 
many HCC patients are diagnosed with advanced disease, surgical treatment is typically not possible, and other 
currently available treatments are often ineffective. Immunotherapy is being explored as a new treatment method 
for a variety of cancers, including HCC. However, there have been no systematic reports about the relationship 
between immune-related genes and HCC patient prognosis. In this study, we established and verified a gene set-
based model to examine the relationship between immune-related genes and prognosis in HCC patients. The 
model was based on a dataset from The Cancer Genome Atlas (TCGA), and its stability and reliability was confirmed 
in four verification datasets. In addition, we performed multivariate Cox regression analyses to identify the 
independent risk factors affecting HCC patient prognoses. We found that this new model based on immune-related 
genes was effective for predicting prognosis, evaluating disease state, and identifying treatment options for HCC 
patients. 
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genes and prognosis therefore deserves further 

investigation. 

 

The immune system plays an important role in the 

development and progression of HCC. The liver’s 

immunosuppressive microenvironment allows it to 

tolerate numerous exogenous intestinal bacteria and 

antigens that arrive via the portal vein. However, the liver 

is also unable to attack malignant tumor cells as a 

consequence. Combined immunotherapies are therefore 

often necessary to alter this pro-tumor microenvironment. 

Studies have shown that inhibiting PD-1 promotes 

vascular normalization and anti-tumor immune response 

in HCC [10, 15]. However, these studies involved small 

numbers of HCC patients, and the relationship between 

HCC immunotherapy and patient prognosis requires 

further investigation. A systematic characterization and 

analysis of the tumor immune microenvironment and its 

impact on prognosis is needed. 

 

In this study, we integrated a multi-gene expression 

cohort of 903 cases to establish and validate an 

individualized immune-related gene set based on HCC 

prognostic signatures. Four independent datasets were 

also evaluated to verify the stability and reliability of 

our models. In addition, we performed a comprehensive 

analysis that incorporated clinical characteristic 

information to improve the accuracy of overall survival 

rate predictions. 

 

RESULTS 
 

Defining the single-sample immune gene set 

enrichment analysis 

 

In total, 903 HCC patients from five datasets were 

included in the immune-based prognostic signature 

HCC (IPSHCC) analysis (Supplementary Table 1). In 

the training set, 1,810 genes representing 17 immune 

categories were identified; 196 of these genes 

representing 15 immune categories were related to 

overall survival. Those 196 genes were used as probes 

in single-sample gene set enrichment analysis (ssGSEA) 

of HCC patients to determine enrichment scores for 

each immune category (Figure 1). IPSHCC was defined 

as the comprehensive influence of coefficients 

generated by a multivariate Cox regression model on 

scores of different categories (Table 1). The median 

score of the training set patients (-0.0087) served as a 

cutoff value for dividing patients among low and high 

immunity risk groups in all datasets. 
 

Verification of IPSHCC 
 

Patients in the IPSHCC training set (hazard ratio [HR] = 

2.985; 95% confidence interval (CI): 1.981–4.497; p = 

1.69 × 10-6) and four verification sets (HR = 2.1723 

[95% CI: 1.045–4.515; p = 0.0377] – 5.089 [95% CI: 

2.221–11.66]) were divided between low and high 

immunity risk groups (Table 2). In the multivariate Cox 

model, even after controlling for age, stage, gender, and 

tumor invasion, immunity risk was still an independent 

prognostic factor (Figure 2A–2E). In an integrated 

analysis of all datasets, the probability of survival for 

the high immunity risk group was 2.6416 times lower 

than that of the low immunity risk group (HR = 2.6416; 

95% CI: 2.053–3.399; p = 4.34 × 10-14) (Figure 3A). 

The distribution of IPSHCC with survival state in the 

composite dataset is shown in Figure 3B. 

 

IPSHCC typing and sensitivity analysis 

 

We analyzed the sensitivity of our model depending on 

age, gender, stage, and tumor invasion to examine its 

stability in different clinical subgroups. IPSHCC was 

significant for all subgroups (Supplementary Figure 1), 

suggesting that it may be independent of clinical 

characteristics. In addition, we identified 196 genes 

associated with immune processes, including anti-

microbials (38.27%), cytokines (26.53%), and cytokine 

receptors (25.51%) (Table 3). We calculated the 

immune score of the different subgroups for each 

immune process using the ssGSEA method. Patients 

with high immune scores had significantly longer 

median survival times for each process (Figure 4A). To 

test the robustness of IPSHCC, we randomly re-

sampled 500 cases 10,000 times from the consolidated 

datasets. P-values of all samples were less than 0.05 in 

each re-sampling instance (Figure 4B and 4C). The 

median C-index value was 0.6819 and the standard 

deviation (SD) was 0.0091, demonstrating robust 

predictive ability. 

 

Pathway enrichment analysis 

 

Enrichment analysis for the 196 unique immune genes 

identified 69 related KEGG pathways (p < 0.05); for 

example, cytokines and cytokine receptors interacted 

with the MAPK, RAS, B/T-cell receptor, and 

PI3K/AKT signaling pathways. The PI3K/AKT 

signaling pathway regulates proliferation and survival 

of hepatoma cells, and abnormal activity in this 

pathway is associated with malignant transformation of 

hepatocytes, migration, adhesion, tumor angiogenesis, 

and degradation of the extracellular matrix. Tumor 

therapy strategies targeting the key molecules of the 

PI3K/AKT signaling pathway are currently being 

developed. In total, pathway analysis based on gene 

ontology identified 205 biological processes, 57 

molecular functions, and 30 cellular constituent 

pathways representing a diverse spectrum of biological 

activities. 
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Comparison with other prognostic signatures and 

clinical characteristics 

 

After evaluating the accuracy and clinical consistency 

of IPSHCC modeling for predicting HCC, we 

calculated and compared continuous prediction scores 

according to five other disease prognostic signatures 

in different datasets using a univariate Cox model. 

Among 10 survival predictors, IPSHCC had the 

highest mean C-index (0.709) compared to age 

(0.526), stage (0.673), invasion (0.571), and gender 

(0.542) (Table 4, Figure 5A). The p-value of the 

IPSHCC prediction score was also the lowest among 

the survival predictors (p = 9.22 × 10-7) across 

datasets. (Table 4, Figure 5B). 

Integrating IPSHCC and clinical characteristics 

 

Besides IPSHCC, clinical characteristics such as age, 

gender, stage, and invasion were independent but 

complementary prognostic factors. To further enhance 

the predictive accuracy of IPSHCC, we integrated 

coefficients generated in the multivariate Cox 

regression model from the training set with IPSHCC 

(continuous score) as follows: (integrated model = 

0.776924010 × IPSHCC + 0.004843653 × age + 

0.625080315 × stage + 0.061769897 × gender - 

0.319739104 × invasion). We then validated the 

integrated model using the HCCDB18 verification set, 

for which complete clinical information was available. 

The continuous score of the integrated model was only 

 

 
 

Figure 1. Flowchart of the study. A total of 903 HCC patients from five separate datasets were included in the analysis. We 

developed the immune-based prognostic signature for HCC (IPSHCC) using the training dataset and validated it in five independent validation 
subsets. We also integrated IPSHCC with stage, invasion, age, and gender to improve its prognostic value. 
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Table 1. Coefficients and multivariable Cox model results for each immune category in IPSHCC. 

Immune process coef HR se(coef) z p 

Antigen Processing and Presentation 1.850399 6.362359 1.208288 1.531 0.12567 

Antimicrobials 0.331736 1.393384 0.882671 0.376 0.70704 

BCR Signaling Pathway 0.564767 1.759037 0.74325 0.76 0.44734 

Chemokines -1.060522 0.346275 0.546001 -1.942 0.0521 

Chemokine Receptors 0.066627 1.068896 0.735582 0.091 0.92783 

Cytokines 0.447841 1.56493 1.102603 0.406 0.68462 

Cytokine Receptors -2.791344 0.061339 0.913906 -3.054 0.00226 

Interleukins 0.036797 1.037483 0.448511 0.082 0.93461 

Interleukins Receptor -0.242751 0.784467 0.572702 -0.424 0.67166 

Natural Killer Cell Cytotoxicity -3.251205 0.038728 1.31805 -2.467 0.01364 

TCR signaling Pathway 0.171893 1.187551 1.505667 0.114 0.90911 

TGFb Family Member -0.772064 0.462058 0.547799 -1.409 0.15872 

TGFb Family Member Receptor -0.040184 0.960613 0.322612 -0.125 0.90087 

TNF Family Members -0.024008 0.976278 0.354878 -0.068 0.94606 

 

Table 2. IPSHCC values for high and low immunity risk patients in the training and verification datasets. 

Study coef HR se(coef) z p exp(coef) exp(-coef) lower.95 upper.95 n 

Training 1.0936 2.985 0.2091 5.231 1.69E-06 2.985 0.335 1.981 4.497 308 

HCCDB18 1.627 5.089 0.423 3.847 0.00012 5.089 0.1965 2.221 11.66 212 

HCCDB17 0.9927 2.6986 0.5218 1.902 0.0571 2.699 0.3706 0.9704 7.505 94 

HCCDB7 0.7758 2.1723 0.3733 2.078 0.0377 2.172 0.4603 1.045 4.515 80 

HCCDB6 0.822 2.2751 0.2299 3.575 0.00035 2.275 0.4395 1.45 3.57 209 

Total 0.9714 2.6416 0.1287 7.55 4.34E-14 2.642 0.3786 2.053 3.399 903 

 

related to clinical characteristics (training set C-index: 

0.743 vs. 0.647, p = 5.114 × 10-5; HCCDB18 C-index: 

0.785 vs. 0.745, p = 0.011) and significantly improved 

the survival prediction (Figure 6A and 6B). 

 

DISCUSSION 
 

Hepatocellular carcinoma (HCC) is the fourth leading 

cause (about 8.2%) of cancer-related death among men 

and women globally [16]. Despite the tremendous 

progress made recently in therapeutic strategies for 

HCC, outcomes for patients with advanced disease 

remain poor [2]. Identification of novel mechanisms of 

HCC progression and of effective targets is therefore 

crucial for improving HCC prognosis. 

 

Various immune cells in the tumor microenvironment 

affect HCC development and progression [17–20]. 

Changes to the tumor microenvironment are closely 

associated with alterations in the immune system,  

and immune checkpoint inhibitors might help 

counteract the immunosuppressive effects of the HCC 

microenvironment [21–24]. Immunotherapies such as 

PD-1 [25] and CAR-T cells [26] have already been used 

to treat advanced HCC, and additional immunotherapies 

with novel targets might prove even more effective. 

 

For the first time, we systematically studied the 

relationship between immune-related genes and 

prognosis in HCC patients. We confirmed that our 

IPSHCC model, together with clinical characteristics 

such as age, stage, gender, and tumor invasion, are 

independent prognostic factors for HCC. The immune-

related genes included in the IPSHCC have been well 

characterized and have improved clinical adjunctive 

therapy and understanding of staging and progression in 

HCC [27, 28]. Xu et al. found that gene signatures 

associated with prognosis and immune infiltration in the 

renal cell carcinoma microenvironment might aid in the 

identification of effective immunotherapies [29]. 

Additionally, Shen et al. developed a promising 

prognostic signature and a method for evaluating 

clinical immunotherapies based on an immune gene set 

in ovarian cancer [30]. IPSHCC might aid in the 

discovery of new targets for molecular immuno-

therapies similar to those that have already proven 

effective in previous basic research and clinical 

studies. 
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Figure 2. Kaplan-Meier survival analyses of IPSHCC. Patients in all five datasets were assigned to low-immune (blue) and high-immune 

(red) risk groups using median IPSHCC value as the cutoff. (A) In the training set, the survival probability of the “IPSHCC Low” group is higher 
than the “IPSHCC High” group (p < 0.0001). The 1, 3, and 5 year AUCs were 0.77, 0.76, and 0.75, respectively. (B–E) The IPSHCC prognostic 
signature was further validated in four independent validation sets. In each independent validation subset, survival probabilities were higher 
for the “IPSHCC Low” group than the “IPSHCC High” group (p < 0.0001). In validation sets 1 and 4, the 1-, 3-, and 5-year AUCs were > 0.65. In 
validation set 2, the 1-, 3-, and 5-year AUCs were 0.72, 0.63, and 0.74, respectively. In validation set 3, the 1-, 3-, and 5-year AUCs were ≤ 0.65. 

 

 
 

Figure 3. Verification of IPSHCC. (A) Meta-analysis of IPSHCC and overall survival in the five datasets. In the IPSHCC training set, the 

hazard ratio [HR] was 2.985 and the 95% confidence interval (CI) was 1.981-4.497 (p = 1.69 × 10-6). In the four verification sets, the HRs were 
between 2.1723 [95% CI: 1.045–4.515; p = 0.0377] and 5.089 [95% CI: 2.221–11.66; p = 0.0001]. In the integrated analysis of all datasets, the 
survival probability for the high immunity risk group was 2.6416 times lower than that of the low immunity risk group (HR = 2.6416; 95% CI: 
2.053–3.399; p = 4.34 × 10-14). (B) IPSHCC distribution with survival status in the combined dataset. Upper half of panel: IPSOV distribution 
with patient survival status. The X axis is sorted by IPSHCC values. Red color indicates deceased patients, while green indicates living patients. 
Lower half of panel: Heatmap showing enrichment scores for the corresponding 15 immune categories. 
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Table 3. Genes (n = 196) participating in the immune process. 

Gene number Ratio Immune process 

75 38.27% Antimicrobials 

52 26.53% Cytokines 

50 25.51% Cytokine_Receptors 

22 11.22% Antigen_Processing_and_Presentation 

17 8.67% NaturalKiller_Cell_Cytotoxicity 

12 6.12% Chemokine_Receptors 

12 6.12% TCRsignalingPathway 

11 5.61% Chemokines 

7 3.57% BCRSignalingPathway 

4 2.04% Interleukins 

4 2.04% Interleukins_Receptor 

2 1.02% TGFb_Family_Member 

2 1.02% TNF_Family_Members 

2 1.02% TNF_Family_Members_Receptors 

1 0.51% TGFb_Family_Member_Receptor 

 

Because IPSHCC is based on large sets of sequencing 

results obtained using different platforms and 

representing many patients, it generated more reliable 

prognostic predictions than other clinical characteristics. 

This allowed the classification of patients into different 

subgroups that might benefit from different per-

sonalized treatments based on their immune 

classification. However, IPSHCC only describes 

biomarkers; the biological mechanisms by which these 

biomarkers affect the development and progression of 

HCC require further investigation. Incorporation of 

additional patient follow-up data would also help 

improve the accuracy of this model for prognostic 

prediction. 

 

In summary, our results demonstrate that IPSHCC is a 

promising model for predicting prognosis in HCC 

patients based on immune gene sets. Furthermore, this 

model might help identify novel therapeutic targets for 

advanced HCC. 

 

 
 

Figure 4. IPSHCC typing and sensitivity analysis. (A) Immune scores are calculated based on IPSHCC coefficients in antimicrobial, 

cytokine, and cytokine receptor immune processes. Scores were divided between low and high immune risk groups based on the median 
value. Median survival times were compared using the log-rank test. (B, C) To test the robustness of IPSHCC, we randomly re-sampled 500 
cases from the consolidated datasets 10,000 times. (B) Histogram showing –log10 (P) values from the 10,000 resampled datasets. P-values 
were < 0.05 for all samples. (C) Histogram of C-index values from the 10,000 resampled datasets. The median C-index value was 0.6819, and 
standard deviation (SD) was 0.0091, demonstrating robust predictive ability. 
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Table 4. Continuous prediction score p-values from univariate Cox model. 

Signatures p-value C-index 

IPSHCC 9.22E-07 0.70962095 

Chang_2019 0.51980352 0.70716302 

Zhu_2019 0.48024456 0.70672321 

Binghua_2017 0.08273801 0.6955979 

Wang_2018 0.01635625 0.67220945 

Zheng_2018 0.4165027 0.66521844 

INVASION 0.29467416 0.57185805 

GENDER 0.11775663 0.5420349 

AGE 0.56301431 0.52690351 

STAGE 6.80E-05 0.67329566 

 

 
 

Figure 5. Comparison with other prognostic signatures and clinical characteristics. We calculated continuous prediction scores 
based on five other disease prognostic signatures and compared the different datasets using a univariate Cox model. (A) Mean C-index of 
IPSHCC, age, stage, gender, tumor invasion, and 5 reported signatures. Among 10 survival predictors, IPSHCC had the highest mean C-index 
(0.709) compared to age (0.526), stage (0.673), invasion (0.571), and gender (0.542). (B) P value comparison of IPSHCC and 5 reported 
signatures. Red block indicates the model is significant (P ≤ 0.05) while black indicates lack of significance (P > 0.05). IPSHCC demonstrated 
the lowest p-value among survival predictors (p = 9.22 × 10-7) across datasets. 

 

 
 

Figure 6. Integration of IPSHCC and clinical characteristics. To further enhance the predictive accuracy of IPSHCC, we integrated 
coefficients for clinical characteristics generated in the multivariate Cox regression model from the training and validation set. Restricted 
mean survival (RMS) curves for IPSHCC and the integrated model are shown. C-index values for the clinical characteristics alone and for the 
integrated model were compared. The p-value represents the difference between the C-index values for the two models. (A) In the training 
set, the C-index values of the clinical characteristics and the integrated model were 0.647 and 0.743, respectively (p < 0.001). (B) In the 
validation set, the C-index values of the clinical characteristics and the integrated model were 0.745 and 0.785, respectively (p = 0.011). 
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MATERIALS AND METHODS 
 

Gene expression profiles and study objectives 

 

HCC gene expression profiles were retrospectively 

collected from the following five datasets: one from the 

Cancer Genome Atlas-Liver Hepatocellular Carcinoma 

(TCGA-LIHC) cohort, three from Gene Expression 

Omnibus (GEO), and one from the Liver Cancer 

Institute (LIRI-JP cohort). All patients had undergone a 

primary surgical excision of the tumor, and all pertinent 

clinical information, such as follow-up time, survival 

state, and gene expression levels were available. Our 

main objectives of this study were to compare overall 

survival of HCC patients with different immune 

characteristics. 

 

Processing of gene expression data 

 

Only GEO cohorts with ≥ 80 subjects were used. 

Because a large number of samples in the TCGA-LIHC 

cohort had been characterized by RNA-seq gene 

expression (n = 308), we specifically examined 

microarray data from the Affymetrix Human Genome 

U133A array (n = 209) as described previously [29, 31]. 

Finally, data from the different GEO and TCGA-LIHC 

platforms were grouped into five independent datasets 

(Supplementary Table 1). An Entrez ID was utilized to 

represent each gene. The independent verification phase 

was executed as described previously [30]. All gene 

expression probes were individually adjusted in each 

dataset. Gene expression levels were logarithmically 

transformed before adjusting the batch effect. 

 

Identification of immune-related genes 

 

We constructed a predictive signal gene set for immune-

related genes which was divided into 17 categories 

based on molecular function, such as antimicrobials, 

cytokines, interleukins, T-cell receptor signaling, B-cell 

receptor signaling, and TNF family receptors. The 

details of genes in each category have been reported 

previously [32]. 

 

Establishment of Immune-Based Prognostic 

Signature HCC (IPSHCC) 

 

The immune-based prognostic signature HCC 

(IPSHCC) model was established as follows. We 

utilized the TCGA-LIHC cohort as the training set to 

screen genes associated with overall survival. The 

immune-related gene set included 1,810 genes, of which 

1,356 were detected in the TCGA-LIHC cohort. We 

utilized the Cox proportional hazards model to evaluate 

the effect of each gene in combination with age, stage, 

invasion, and gender on overall survival. Genes with p-

values greater than 0.05 were excluded. Next, we 

adopted single-sample gene set enrichment analysis 

(ssGSEA) to define an enrichment score representing 

the absolute enrichment of a gene in each sample of a 

given dataset as described previously [33]. Standardized 

enrichment scores were calculated for each immune 

category, and ssGSEA was conducted using the GSVA 

package for R. Finally, we established the IPSHCC 

model by combining the effect of every immune 

category in the training set. Multivariate Cox regression 

analysis was used to determine the coefficient of each 

category. Model: 1IPSHCC K
i i iS==  , where Si is the 

ssGSEA score of ith immune category. 
 

Verification of IPSHCC 
 

For a unified cutoff value, we divided patients into 

high- and low-risk groups. Gene expression levels were 

standardized in each dataset (the average value is 0, SD 

is 1). IPSHCC prognostic scores obtained from the 

training dataset were further analyzed using four 

verification datasets. For the multivariate Cox 

regression, age, stage, gender, and tumor invasion were 

all covariates. 
 

Pathway enrichment analysis 
 

To further understand the function of the genes in 

IPSHCC, pathway enrichment analysis was conducted 

based on KEGG and GO databases as described 

previously [34]. Biological processes, molecular 

functions, and cellular constituents were included in the 

analysis. Multiple comparisons of p-values were made 

using the false discovery rate method, and all analysis 

was conducted in the R package cluster analysis 

program. 
 

Comparison with existing prognostic signatures 
 

We collected five public prognostic signatures for 

comparison, including three to nine genes, to explore 

the survival classifications and predictive ability of 

IPSHCC. Continuous prognostic scores were calculated 

for each signature. Differences in continuous score p-

values and population Cointegration statistics (C-index) 

from the univariate Cox model were compared in the 

five data sets. 
 

Statistical analysis 
 

All data are shown as mean ± standard deviation (SD). 

For survival analysis, the Cox proportional hazards 

model was used to evaluate the relationship between 

gene signature and overall survival. Kaplan-Meier 

survival curves were plotted for each subgroup and 

compared with the Log-Rank Test. The R packages 
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survival and survrm2 were used to estimate C-index 

values and mean survival rate curve limits, and the R 

package prelim was used to compare C-index values. 

 

Abbreviations 
 

HCC: Hepatocellular carcinoma; IPSHCC: immune-

based prognostic signature HCC; TCGA: the Cancer 

Genome Atlas; ssGSEA: single-sample gene set 

enrichment analysis; HR: hazard ratio; CI: confidence 

interval; GEO: Gene Expression Omnibus. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 

 
 

Supplementary Figure 1. Subgroup and sensitivity analysis for IPSHCC. We analyzed sensitivity according to age, gender, stage, and 

invasion to explore model stability for different clinical subgroups. IPSHCC was significant for all subgroups. 
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Supplementary Table 
 

Supplementary Table 1. Summary of 903 HCC patients from 5 independent datasets included in the analysis. 

Dataset ID Source Platform 
No. of 

Adjacent 

No. of 

HCC 

Available 

No. 
Drop reason 

HCCDB6 GSE14520(GP

L3721 Subset) 

Affymetrix Human Genome 

U133A 2.0 Array 

220 225 209 Missing survival 

information (n=16) 

HCCDB7 GSE10143 Human 6k Transcriptionally 

Informative Gene Panel for 

DASL 

82 80 80 - 

HCCDB15 TCGA-LIHC RNA-Seq 49 356 308 Missing survival 

information (n=48) 

HCCDB17 GSE76427 Illumina HumanHT-12 V4.0 

expression beadchip 

52 115 94 Missing survival 

information (n=21) 

HCCDB18 ICGC-LIRI-JP RNA-Seq 177 212 212 - 

Totals - - 580 988 903 - 

 


