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Abstract: Sorafenib, a multi-kinase inhibitor, is the first-line treatment for advanced hepatocellular
carcinoma (HCC) patients. However, this drug only provides a short improvement of patients’ overall
survival, and drug resistance is commonly developed. Thus, the identification of resistant factor(s)
or biomarker(s) is needed to develop more efficient therapeutic strategies. Long, non-coding RNAs
(lncRNAs) have recently been viewed as attractive cancer biomarkers and drive many important
cancer phenotypes. A lncRNA, ZFAS1 (ZNFX1 antisense RNA 1) has been found to promote HCC
metastasis. This study found that sorafenib induced ZFAS1 expression specifically in sorafenib-
resistant HCC cells. Although ZFAS1 knockdown did not restore the sensitivity of HCC cells to
sorafenib, its expression may act as a resistant biomarker for sorafenib therapy. Bioinformatics analy-
sis predicted that sorafenib tended to induce pathways related to endoplasmic reticulum (ER) stress
and the unfolded protein response (UPR) in sorafenib-resistant HCC cells. In vitro experimental
evidence suggested that sorafenib induced protein kinase RNA-like ER kinase (PERK)/activating
transcription factor 4 (ATF4)-dependent ZFAS1 expression, and sorafenib resistance could be over-
come by PERK/ATF inhibitors. Therefore, PERK/ATF4/ZFAS1 signaling axis might be an attractive
therapeutic and prognostic biomarker for sorafenib therapy in HCC.

Keywords: drug resistance; ER stress; hepatocellular carcinoma; long non-coding RNA; sorafenib;
unfolded protein response

1. Introduction

Multi-kinase inhibitors have been approved for treating hepatocellular carcinoma
(HCC) in recent years, including sorafenib, regorafenib, lenvatinib, and cabozantinib [1–4].
However, they only provide a short improvement of HCC patients’ overall survival [1–4].
Therefore, it is urgently needed to identify sensitive and/or resistant factors to develop
more effective therapeutic protocols. Sorafenib has been approved for treating advanced
HCC since 2007. However, it only benefits about 30% of patients, and acquired resistance
usually develops within six months [1,5,6]. Although the clinical inefficiency of sorafenib
has raised concerns by researchers, the drug resistance mechanism is still elusive [5].
A recent review article summarizes the potential resistant factors, including activation of
EGFR (epidermal growth factor receptor), AKT and c-Jun oncogenic signaling pathways,
autophagy, epithelial–mesenchymal transition (EMT), hypoxia, cancer stemness, dysregula-
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tion of the cell cycle, and apoptosis resistance. Drugs targeting these resistant factors might
be able to improve the sorafenib efficacy or treat sorafenib-refractory HCC patients [7].

The accumulation of unfolded or misfolded proteins within the endoplasmic reticu-
lum (ER), the site for protein synthesis and folding, activates the unfolded protein response
(UPR) through three signal arms: PERK (protein kinase RNA-like ER kinase), IRE1 (ser-
ine/threonine kinases inositol-requiring enzyme-1), and ATF6 (activating transcription
factor 6) [8,9]. The activation of PERK to phosphorylate eIF2α (eukaryotic translation
initiation factor alpha) is an immediate response of ER stress/UPR, which attenuates global
translation, but selectively induces translation of certain mRNAs, such as ATF4 and CHOP
(CCAAT/enhancer binding protein (C/EBP) homologous protein) [10]. ATF4 encodes a
basic zipper (bZIP) transcriptional activator for genes associated with protein folding and
assembly. It also promotes the expression of CHOP (also a bZIP transcription factor) that
directs cell fate to apoptosis [10]. Glucose-regulated protein 78 (GRP78) is also a central
modulator for ER stress/UPR by acting as an ER chaperone and controlling the activation
of IRE1, PERK, and ATF6 through a binding-release mechanism [11].

Up to 70% of the human genomic DNA sequence are transcribed into RNA with no
protein-coding potential. These RNA molecules are named noncoding RNAs (ncRNAs).
According to their lengths, ncRNAs are classified as small ncRNAs (such as microRNAs
(miRNAs) with 18–25 nucleotides) and long ncRNAs (lncRNAs with more than 200 nu-
cleotides). In recent years, lncRNAs have been found to participate in various biological
processes and human disease pathogenesis through binding with macromolecules, includ-
ing DNA, chromatin, RNA, signaling and regulatory proteins [12]. LncRNAs have been
linked to sorafenib resistance. For example, knockdown of lncRNA TUC338 (transcribed
ultra-conserved region 338) enhances the anticancer activity of sorafenib in HCC cells [13].
LncRNA-SRLR (sorafenib resistance-associated lncRNA in RCC) elicits intrinsic sorafenib
resistance in renal cell carcinoma (RCC) [14]. ZFAS1 (ZNFX1 antisense RNA 1), a lncRNA
newly identified in 2011, is shown to be dysregulated in breast cancer [15]. Later, it was
found to be an oncogenic lncRNA in multiple human cancers through the regulation of
EMT and EMT-regulated genes/miRNAs [16]. The ZFAS1 gene is frequently amplified
in HCC, which promotes metastasis through sponging tumor-suppressive miR-150 and
then activating ZEB1 (zinc finger E-box-binding homeobox 1), MMP14 (matrix metallopep-
tidase 14), and MMP16 [17]. Thus, ZFAS1 is viewed as a novel prognostic biomarker
for HCC [17–19]. However, the role of ZFAS1 in drug resistance of HCC has not been
investigated.

Here, we identified that sorafenib induced ZFAS1 expression, specifically in sorafenib-
resistant HCC cells via the PERK/ATF4-dependent pathway, which is associated with
the sorafenib resistance in HCC cells. Inhibition of PERK/ATF4, but not ZFAS1, could
overcome sorafenib resistance. We concluded that the PERK/ATF4/ZFAS1 signaling axis
may be used as a therapeutic and prognostic biomarker to improve the clinical efficacy of
sorafenib in HCC.

2. Results
2.1. RNA-Sequencing Identifies ZFAS1 as a Sorafenib-Resistant lncRNA

In an attempt to elucidate the potential resistant factors or biomarkers for sorafenib
resistance, cell models of both primary and acquired sorafenib resistance were employed.
It has been reported that HepG2 is a sorafenib-sensitive HCC cell line, whereas PLC5
cells are a sorafenib-resistant HCC cell line [20]. Indeed, our results also showed the
resistance of PLC5 cells to sorafenib (Figure 1A), which will be used as a cell model
for primary sorafenib resistance. The acquired sorafenib-resistant HepG2-SR cells were
established in our previous study [21]. The resistance of HepG2-SR cells to sorafenib was
also confirmed in this study (Figure 1A). To identify the potential lncRNAs contributing to
sorafenib resistance, RNA-sequencing was performed for HepG2, HepG2-SR, and PLC5
cells treated with or without 5 µM sorafenib for 24 h. The differentially expressed genes
(DEGs) are listed in Table S1. The differentially expressed lncRNAs induced by sorafenib



Int. J. Mol. Sci. 2021, 22, 5848 3 of 13

in these cells were visualized as a Venn diagram (Figure 1B). We found that sorafenib
induced many lncRNAs in sorafenib-resistant HepG2-SR and PLC5 cells, and there are
four commonly upregulated lncRNAs, including GAS5 (growth arrest specific 5), SNHG5
(small nucleolar RNA host gene 5), SNHG8, and ZFAS1 (Figure 1B). To identify the most
important lncRNA(s) in HCC, their gene expressions and prognostic values were analyzed
by mining The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) data
via the GEPIA website [22]. As shown in Figure 2, ZFAS1 and GAS5, but not SNHG5 and
SNHG8 were significantly upregulated in cancer tissues in HCC patients. Only ZFAS1
was significantly associated with tumor progression (Figure 2), and its high expression
predicted poorer overall (p = 0.01) and disease-free (p = 0.042) survival in HCC patients
(Figure 3). Other lncRNAs did not show prognostic values in HCC patients, except for
GAS5, which had an unfavorable prognostic value in overall survival (p = 0.0031) (Figure 3).
Therefore, we will focus on investigating the role of ZFAS1 in sorafenib resistance in HCC.
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Figure 1. Identification of sorafenib-induced lncRNAs in sorafenib-resistant HCC cells. (A) HepG2, HepG2-SR, and
PLC5 cells were treated with 0–10 µM sorafenib for 48 h. The cell proliferation was examined by BrdU incorporation
assay. ** p < 0.01 and *** p < 0.001 indicated the statistically significant difference compared to sorafenib-treated HepG2
cells. (B) HepG2, HepG2-SR, and PLC5 cells were treated with 5 µM sorafenib for 24 h. Total RNAs were subjected to
RNA-sequencing. The altered lncRNAs were shown as a Venn diagram. Genes in red or blue indicated that they were
upregulated or downregulated by sorafenib, respectively.

2.2. ZFAS1 Knockdown Does Not Reverse Sorafenib Resistance in HCC Cells

To validate whether sorafenib induced ZFAS1 expression specifically in sorafenib-
resistant HCC cells, a real-time quantitative polymerase chain reaction (qPCR) was per-
formed. As shown in Figure 4A, ZFAS1 was indeed induced by sorafenib in sorafenib-
resistant HepG2-SR and PLC5 cells, but not sorafenib-sensitive HepG2 cells. To confirm
the role of ZFAS1 in sorafenib resistance, its expression was knocked down by siRNA
(Figure 4B). However, ZFAS1 knockdown was not sufficient to reverse sorafenib resistance
in both HepG2-SR and PLC5 cells (Figure 4C). Therefore, we hypothesized that, although
ZFAS1 itself did not contribute to the sorafenib resistance, its upregulation by sorafenib
may act as a predictive prognostic biomarker in HCC patients receiving sorafenib therapy.
To demonstrate this hypothesis, an HCC cohort containing sorafenib responders and non-
responders (GSE109211 [23]) was employed. Indeed, ZFAS1 tended to express higher in
sorafenib non-responders (Figure 4D).
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Figure 2. The expression of lncRNAs in HCC. The expressions of ZFAS1 (A), GAS5 (B), SNHG5 (C), and SNHG8 (D) in
normal and cancer tissues (left part), and during tumor stage (right part) in HCC patients were obtained from the GEPIA
database. * p < 0.05 indicated the statistically significant difference compared to the normal group.
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Figure 4. The effect of ZFAS1 knockdown on sorafenib resistance in HCC cells. (A) HepG2, HepG2-SR, and PLC5 cells were
treated with 5 µM sorafenib for 18 h, and then ZFAS1 expression was analyzed by real-time qPCR. *** p < 0.001 indicated
the statistically significant difference between sorafenib-treated and untreated cells. (B,C) HepG2, HepG2-SR, and PLC5
cells were transfected with si-ZFAS1 or its negative control siRNA (si-Cont) for 24 h, and then ZFAS1 expression was
analyzed by real-time qPCR (B). The transfected cells were treated with 5 µM sorafenib for 48 h. The cell proliferation was
examined by BrdU incorporation assay (C). * p < 0.05 and ** p < 0.01 indicated the statistically significant difference between
sorafenib-treated and untreated cells. # p < 0.05 and ## p < 0.01 indicated the statistically significant difference between
si-Cont and si-ZFAS1-transfected cells. (D) The ZFAS1 mRNA expression levels in sorafenib responsive and non-responsive
HCC patients were obtained from the microarray data set (GSE109211). *** p < 0.001 indicated the statistically significant
difference between sorafenib responders and non-responders.

2.3. Pathway Enrichment Predicts a Potential Role of UPR in Sorafenib Resistance

To identify the potential signaling pathways linking to the upregulation of ZFAS1 in
response to sorafenib in sorafenib-resistant HCC cells, the RNA-sequencing data (Table S1)
were further analyzed, using the WebGestalt for cancer hallmark enrichment [24,25]. As
shown in Figure 5A, UPR and mTORC1 (mammalian target of rapamycin complex 1) signal-
ing were two commonly enriched cancer hallmarks upregulated by sorafenib in HepG2-SR
and PLC5 cells, implying their roles in sorafenib resistance. To further investigate the
relationship of ZFAS1 with these cancer hallmarks, ZFAS1-high expressing HCC patients
were selected from the TCGA-LIHC dataset (via the cBioPortal website [26,27]) to obtain
the ZFAS1-associated over- and under-expressed genes. As shown in Figure 5B, 59 out of
348 (17%) HCC patients exhibited higher ZFAS1 expression. The ZFAS1-associated genes
(Table S2) were also analyzed by the WebGestalt and it was found that UPR was one of the
enriched cancer hallmarks (Figure 4C). Furthermore, like ZFAS1, UPR was also enriched
in sorafenib non-responders (Figure 6). Therefore, ZFAS1 upregulation may be associated
with ER stress/UPR in sorafenib-resistant HCC.
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Figure 5. Pathway enrichment for ZFAS1-associated cancer hallmark. (A) The RNA-sequencing data in Table S1 were
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2.4. PERK/ATF4 Inhibitors Inhibits ZFAS1 Expression and Reverses Sorafenib Resistance

To investigate whether ER stress/UPR was responsible for the induction of ZFAS1
by sorafenib, chemical inhibitors of PERK (GSK-2606414), ATF4 (ISRIB), IRE1 (4µ8c), and
ATF6 (Ceapin-A7) were used. As shown in Figure 7A,B, only GSK-2606414 and ISRIB
could suppress sorafenib-induced ZFAS1 expression in PLC5 cells, suggesting that the
PERK/ATF4 arm of UPR is responsible for the upregulation of ZFAS1 by sorafenib in
sorafenib-resistant HCC cells. To ascertain the role of three arms of UPR in sorafenib
resistance, HepG2, HepG2-SR, and PLC5 cells were pretreated with GSK-2606414, 4µ8c,
and Ceapin-A7, and then exposed to sorafenib. The cell proliferation assay indicated that
GSK-2606414 enhanced the anticancer activity of sorafenib in HepG2-SR and PLC5 cells
(Figure 7C). Therefore, the PERK/ATF4 arm of UPR is responsible for sorafenib resistance
in HCC cells.

3. Discussion

ER stress/UPR was identified to participate in hepatocarcinogenesis. The expression
of GRP78 and ATF6 mRNAs and the splicing of XBP1 mRNA were elevated in HCC tissues
with increased histological grading [28]. In a hepatitis B virus (HBV) surface antigen
(HBsAg)-driven HCC model, prolonged ER stress leads to the accumulation of DNA
damage in hepatocytes and promotes HCC incidence [29]. CHOP-knockout mice develop
smaller tumor nodules, relative to wild-type mice, in a carcinogen-induced HCC model [30].
Tauroursodeoxycholic acid (TUDCA), a well-known chemical chaperone, retards Mst1/2
(macrophage-stimulating 1/2) mutant-driven liver tumorigenesis in mice [31]. Therefore,
inhibition of ER stress/UPR may have clinical benefits for HCC.
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It was found that sorafenib activates the PERK and IRE1 arms of UPR but inhibits
the ATF6 arm in HCC cells [32,33]. However, the inhibitors of PERK (GSK-2606414) and
IRE1 (4µ8c) had no or minimal inhibitory effect on the clonogenic growth of HCC cells
exposed to sorafenib [34]. In another study, sorafenib activated three UPR arms and ER
stress inhibitors, TUDCA and 4-phenylbutyrate (4-PBA), and enhanced sorafenib-induced
apoptosis in HCC cells, suggesting a protective role of ER stress/UPR [35]. Moreover, it was
characterized that sorafenib-induced IRE1 arm of UPR is responsible for the induction of
autophagy that counteracts with sorafenib-induced ER stress-dependent apoptosis in HCC
cells [36]. In addition, early induction of ER stress/UPR by sorafenib is correlated with the
induction of pro-survival autophagy, whereas prolonged ER stress/UPR during sustained
sorafenib treatment leads to the shift from autophagy to apoptosis in HCC cells [37]. Given
the ambiguous role of ER stress/UPR in the sorafenib sensitivity of HCC cells, modulation
of ER stress/UPR by genetic manipulation and pharmacological intervention can either
sensitize or block the anticancer activity of sorafenib in HCC cells [35,38–43]. Therefore, the
exact role of ER stress/UPR in sorafenib sensitivity of HCC warrants further investigations.

How ZFAS1 is transcriptionally regulated is still largely unclear. The only experi-
mentally confirmed transcription factor binding site on the ZFAS1 promoter is the SP1
site [44,45]. In addition, there are two potential upstream transcription factor 1 (USF1)-
binding sites on the ZFAS1 promoter, which was predicted in a previous study without any
experimental evidence [46]. Therefore, more investigations are needed to understand how
to regulate ZFAS1 gene transcription. Our results suggest that ZFAS1 may also be tran-
scriptionally regulated by ATF4. Supportively, two potential ATF4-binding sites on ZFAS1
gene promoter were predicted using the JASPAR database (http://jaspar.genereg.net/, last
accessed on 27 March 2021) [47] (Figure S1), which warrants further investigation.
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One limitation in this study is that the RNA-sequencing data were obtained from two
biological replicates, which may cause false-positive or false-negative results. It is proposed
that at least 6 biological replicates should be used for RNA-sequencing experiments,
and the numbers should be increased to 12 when identifying significant DEGs [48]. In
contrast, according to the “ENCODE Experimental Guidelines for ENCODE3 RNA-seq”
at https://www.encodeproject.org/about/experiment-guidelines/ (last accessed on 26
April 2021), two or more biological replicates should be performed for RNA-sequencing
experiments. Although the RNA-sequencing experimental design in this study was not the
most optimized, subsequent in vitro experiments could support the conclusion.

In conclusion, this study identifies ZFAS1 as a sorafenib-inducible lncRNA, specifically
in sorafenib-resistant HCC cells. Mechanistically, sorafenib induces ZFAS1 via the activation
of the PERK/ATF4 arm of UPR. Interestingly, inhibition of PERK/ATF4, but not ZFAS1,
could overcome sorafenib resistance. Our results provide a molecular basis for using
ZFAS1 as a therapeutic and prognostic biomarker to predict the clinical efficacy of sorafenib
therapy in HCC. In addition, the inhibition of PERK/ATF4 may be an attractive strategy to
overcome sorafenib resistance.

4. Materials and Methods
4.1. Chemicals and Reagents

The RNeasy Kit, RT2 First Strand Kit, RT2 SYBR Green ROX qPCR Mastermix, and
RT2 lncRNA qPCR Assay for Human ZFAS1 were purchased from Qiagen (Valencia, CA,
USA). The BrdU Cell Proliferation Assay Kit was purchased from BioVision (Mountain
View, CA, USA). The sorafenib was purchased from LC Laboratories (Woburn, MA, USA).
The GSK-2606414 was purchased from APExBIO (Boston, MA, USA). The trans-ISRIB
was purchased from Tocris Bioscience (Ellisville, MO, USA). Ceapin-A7 and 4µ8c were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Silencer Select pre-designed siRNA
for human ZFAS1, negative control siRNA, and RNAiMAX transfection reagent were
purchased from Thermo Fisher Scientific (Wilmington, DE, USA).

4.2. Cell Culture and Cell Proliferation Assay

Human HCC cells, HepG2 and PLC/PRF/5 (PLC5), were purchased from the Biore-
source Collection and Research Center (Hsinchu, Taiwan). The sorafenib-resistant HepG2
(HepG2-SR) cells were established in our previous study [21]. Cells were cultured in
DMEM with the following supplements: 10% fetal bovine serum (FBS), 1% L-glutamine,
1 mM sodium pyruvate, and 1% antibiotic-antimycotic solution (100 units/mL penicillin,
100 µg/mL streptomycin, and 0.25 µg/mL of Gibco Amphotericin B). The cell proliferation
was examined using the bromodeoxyuridine (BrdU) cell proliferation assay kit, which is
based on the ability of proliferating cells to incorporate BrdU, the thymidine analog, into
newly synthesized DNA strands.

4.3. RNA-Sequencing and Real-Time Quantitative Polymerase Chain Reaction (qPCR)

HepG2 and PLC5 cells were treated with 5 µM sorafenib for 24 h. Total RNA was
isolated by the RNeasy Kit. The extracted RNA was quantified by the Nanodrop (Thermo
Fisher Scientific, Wilmington, DE, USA) and the RNA quality was checked by the ratio of
absorbance at 260 nm and 280 nm. Sequencing (two biological replicates) was performed
using the BGISEQ-500 platform (Beijing Genomics Institute, Beijing, China) to averagely
generate 23,568,563 clean reads. Gene expression levels were quantified by a software
package called RSEM [49]. DEGs were screened using the NOISeq method [50] according to
the following criteria: |fold-change| ≥ 2 and diverge probability ≥ 0.8. The full DEGs are
shown in Table S1. The VENNY 2.1 online tool [51] was used to compare the overlapped
genes and generate the Venn diagram. For the determination of ZFAS1 expression, the
first-strand cDNA was synthesized using the RT2 First Strand Kit. Then, PCR amplification
was performed in triplicate on the Applied Biosystems ABI 7500 Real-Time PCR System
(Foster City, CA, USA), using the RT2 lncRNA qPCR Assay for human ZFAS1 gene and
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the RT2 SYBR Green ROX qPCR Mastermix for human 18S ribosomal (r)RNA (forward 5′-
CGGCGACGACCCATTCGAAC-3′ and reverse 5′-GAATCGAACCCTGATTCCCCGTC-3′).
No-revere transcription controls were included in each run to detect potential contamina-
tion. Gene expression fold-changes were calculated by the comparative CT method, using
the 18S rRNA as the reference gene and untreated cells as the calibrator.

4.4. siRNA Knockdown Analysis

HepG2 and PLC5 cells were transfected with ZFAS1 siRNA and the negative control
siRNA using RNAiMAX transfection reagent according to the manufacturer’s instruction.
Twenty-four hours later, the transfection mixture was replaced with the regular medium,
and cells were prepared for further experiments.

4.5. Bioinformatics Tools

The GEPIA (Gene Expression Profiling Interactive Analysis) database at the web-
site (http://gepia2.cancer-pku.cn/ [22]) was used to compare the lncRNA levels in nor-
mal/cancer liver tissues and their impacts on cancer patients’ overall/disease-free survivals
in TCGA-LIHC data set. The cBioPortal (http://www.cbioportal.org/ [25,26]) was used
to obtain the over- and under-expressed genes (Table S2) associated with ZFAS1-high
expressing patients in TCGA-LIHC (PanCancer Atlas) dataset. Genes in Tables S1 and S2
were subjected to cancer hallmark enrichment using the WebGestalt (WEB-based Gene SeT
AnaLysis Toolkit; http://www.webgestalt.org/ [13,24]). The over-representation analysis
(ORA) and gene set enrichment analysis (GSEA) approaches were used for analyzing
sorafenib-induced DEGs (Table S1) and ZFAS1-associated genes (Table S2), respectively.
The GSEA v3.0 software (http://www.broadinstitute.org/gsea/ [14,15]) was used for the
enrichment of ZFAS1 and cancer hallmarks in an HCC patient cohort (GSE109211 [27]).
The last accessed date for the above analyses was 23 March 2021.

4.6. Statistical Analysis

All in vitro experimental results (cell proliferation assay and qPCR) were represented
by the mean ± standard deviation of at least three independent experiments. Statistical
analysis was performed using a two-way analysis of variance (ANOVA) with the Bonferroni
post-test. A p-value less than 0.05 was considered statistically significant.
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