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Continuous-variable geometric phase and its
manipulation for quantum computation in a
superconducting circuit
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Da Xu1, Hui Deng3, Keqiang Huang3,5, Dongning Zheng3,5, Xiaobo Zhu3,4 & H. Wang1,4

Geometric phase, associated with holonomy transformation in quantum state space, is an

important quantum-mechanical effect. Besides fundamental interest, this effect has practical

applications, among which geometric quantum computation is a paradigm, where quantum

logic operations are realized through geometric phase manipulation that has some intrinsic

noise-resilient advantages and may enable simplified implementation of multi-qubit gates

compared to the dynamical approach. Here we report observation of a continuous-variable

geometric phase and demonstrate a quantum gate protocol based on this phase in a

superconducting circuit, where five qubits are controllably coupled to a resonator. Our

geometric approach allows for one-step implementation of n-qubit controlled-phase gates,

which represents a remarkable advantage compared to gate decomposition methods, where

the number of required steps dramatically increases with n. Following this approach, we

realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation

for quantum computation.
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A quantum system, when undergoing a cyclic evolution in
the quantum state space, will acquire a geometric phase
that is determined by the path traversed by the system1, 2.

This geometric effect has close relations with a variety of physical
phenomena in areas, including optics, molecular physics, quan-
tum field theories, and condensed matter physics3. Unlike the
time- and energy-dependent dynamical phase, geometric phase
depends only on the global property of the evolution path,
e.g., the enclosed area, and is not affected by any deformation of
the path that preserves the enclosed area. As such, geometric
phase is robust against certain types of noise perturbations and
can be used for coherent manipulation of quantum states and for
implementation of quantum logic gates4, 5. The behaviors of
geometric phases subject to different noise sources have been
investigated for both the adiabatic and nonadiabatic evolutions.
Previous theoretical6 and experimental7, 8 results demonstrated
the robustness of adiabatic geometric phase (Berry phase)1

against random fluctuations of classical control parameters. In
addition, it has been shown that the geometric phases in certain
systems are insensitive to decoherence effects arising from cou-
pling to reservoirs9, 10.

So far, Berry’s phase and its extensions in various discrete-
variable systems, e.g., qubits, have been experimentally
investigated7, 8, 11–14 and used for realization of elementary
quantum gates5, 15–18. Geometric phases of continuous-variable
systems, or harmonic oscillators, whose states are defined in an
infinite-dimensional Hilbert space, are also useful for quantum
gate operations. In the context of ion-trap architectures, a har-
monic vibrational mode has been utilized for implementing high-
fidelity quantum gates for ionic qubit4. Superconducting circuit

quantum electrodynamics (QED) systems represent another
scalable platform for quantum information processing19. In a
recent experiment20, the adiabatic geometric phase of the quan-
tized electromagnetic field stored in a resonator was measured in
a circuit QED device, where the resonator was dispersively cou-
pled to a qubit and driven by a microwave pulse whose amplitude
and phase were slowly and cyclically changed. The geometric
phase was calculated as the difference between the total phase
measured for the area-enclosed path of the resonator state in
phase space and that for a straight line path, the latter of which
produced the same dynamical phase but no geometric one. More
recently, a similar resonator-induced phase was used to realize
two-qubit gates in a three-dimensional circuit QED
architecture21, 22, where four transmon qubits with fixed fre-
quencies were dispersively coupled to a cavity. To cancel the
effects of unwanted interactions, a refocused gate scheme was
designed, where the cavity was sequentially driven by 8 pulses,
intervened by suitably arranged π pulses applied to the qubits.

Here we report on the observation of the geometric phase of an
electromagnetic resonator in a superconducting circuit QED
system, based on which we demonstrate a universal protocol for
realizing multi-qubit controlled-phase gates in one step. In our
experiment, the state of the resonator is nonadiabatically dis-
placed with a constant-amplitude microwave drive along a circuit
in phase space conditional on the state of the qubit coupled to the
resonator, and the geometric phase associated with this cyclic
evolution is measured by the qubit’s Ramsey interference
experiment. Using this phase, we realize the two-qubit controlled-
phase (CZ) gate, the three-qubit controlled–controlled-phase
(CCZ) gate—the equivalent of the Toffoli gate under a change of
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Fig. 1 Device and scheme for measuring geometric phase. a Device schematic and image illustrating the five frequency-tunable qubits, labeled from Q1 to
Q5, and the bus resonator R, which has a fixed bare frequency (resonator frequency in absence of qubits) ωrb/2π≈ 5.585 GHz. The color-coded icons
identify the pads where pulses are injected onto the circuit chip. The transmission line (TL) carries the multi-tone microwave pulse through the circuit chip,
which is amplified by a Josephson parametric amplifier (JPA) at low temperature and then demodulated at room temperature to yield the state of all qubits.
b Energy level configuration of the qubit-resonator system. The strong coupling between 2;0j i and 1; 1j i produces the dressed states ϕ±

�� �
whose energy

levels are well separated. A microwave drive with a tone of ωd that is slightly detuned from ωr by δ can or cannot excite the resonator depending on
whether the qubit is in the state 0j i or 1j i. c Resonator’s phase-space displacement conditional on the qubit state 0j i. In the drive frame, the resonator,
initially in its ground state, is displaced by the microwave drive of an amplitude Ω along a circle in phase space with the radium Ω/δ and the angular
velocity δ conditional on the qubit state 0j i. At time T= 2π/δ, the resonator makes a cyclic evolution, returning to the ground state, but acquires a
conditional geometric phase proportional to the enclosed phase-space area. d Ramsey interference sequence plotted in the frequency vs. time plane. The
geometric operation, resulting from the combination of the microwave drive (green sinusoid) and the qubit-resonator coupling, is sandwiched in between
the two π/2 rotations (blue sinusoids with Gaussian envelopes), Xπ/2 and θπ/2, whose rotation axes are in the xy plane of the Bloch sphere and differ by an
angle of θ. The corresponding geometric phase β is revealed by measuring the qubit 1j i-state probability as a function of θ, using the microwave pulse
through the TL readout line (light brown sinusoid with a ring-down shape at the beginning)
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the target basis, and the four-qubit controlled–controlled–
controlled-phase (CCCZ) gate. The geometric CZ gate is cali-
brated by quantum process tomography (QPT) and randomized
benchmarking (RB), each giving a fidelity of about 0.94; the CCZ
and CCCZ gates, both achieved without resorting to the
two-qubit-gate decomposition, yield the QPT fidelities of
0.868± 0.004 and 0.817± 0.006, respectively, which compare
favorably to the results obtained by step-by-step dynamical
approaches23–28. Taking advantage of the qubit tunability in our
setup, we implement these resonator-induced phase gates with a
single pulse driving the resonator, which is different from the
long pulse sequence used in the experiment of ref. 22. Our scheme
also minimizes the wiring complexity, i.e., with a bus resonator
we can achieve noise-resilient geometric entangling gates10

among arbitrarily chosen qubits. Further numerical simulations
suggest that, with optimal circuit designs, the two-qubit CZ gate
fidelity can be raised to above the surface code threshold for fault
tolerance29, 30, while the multi-qubit controlled-phase gates,
directly applicable in the quantum search algorithm31 and
quantum error correction, can be executed in one step and with
high fidelity.

Results
Device and geometric phase. Our circuit QED architecture
consists of five frequency-tunable superconducting Xmon qubits,
labeled from Q1 to Q5, all coupled to a bus resonator R (see
Fig. 1a and “Methods” section). First, we introduce the single-
qubit experiment for observing the resonator’s geometric phase,
measured through Q3’s Ramsey interference. The qubit-resonator
(Q3-R) level configuration is illustrated in Fig. 1b, where c and d
in the joint state c; dj i denote the excitation numbers of the qubit
and the resonator, respectively. The qubit 0j i $ 1j i transition at
the tone ω01 is coupled to the resonator with a coupling
strength g01/2π= 20.1 MHz. When the qubit-resonator detuning
Δ (≡ ω01 −ωrb) is much larger than g01 so that the energy
levels 1; 0j i and 0; 1j i are well separated as illustrated in Fig. 1b,
there is no population exchange between these two levels; the
dispersive coupling results in a qubit-state-dependent resonator
frequency shift, described by the effective Hamiltonian
�hλ 1j i 1h j � 0j i 0h jð Þa†a, where a† and a are the creation and
annihilation operators for the photons stored in the resonator, �h
is the Planck constant, and λ ¼ g201=. We note that this effective
Hamiltonian does not include the coupling of the qubit transition
1j i ↔ 2j i and the resonator, which is quasi-resonant (see below).
The resonator is off-resonantly driven by an external microwave
field with the amplitude Ω and the tone ωd. When the qubit is

initially in the state 0j i, it remains in this state, and the effective
Hamiltonian for the driven resonator, in the frame rotating at ωd

(the drive frame) becomes

H ¼ ��hδa†aþ �h aþ að Þ; ð1Þ

where δ=ωd −ωr and ωr (≡ ωrb − λ) denotes the resonator fre-
quency conditional on the qubit state 0j i.

With the Hamiltonian shown in Eq. (1), the resonator evolves
from the ground state to the coherent state ϕðtÞj i ¼ eiβðtÞ αðtÞj i,
where βðtÞ ¼ � Ω2

δ t � 1
δ sin δtð Þ� �

, and αðtÞ ¼ Ω
δ 1� eiδtð Þ is the

complex amplitude of the coherent field. After a time T= 2π/δ,
the resonator makes a cyclic evolution, returning to the initial
state but acquiring a phase, β= −2π(Ω/δ)2. The total phase β is
best visualized in phase space spanned by the two quadratures X
= (a + a†)/2 and P= (a − a†)/2i, where the resonator state moves
around a circle with the radium Ω/δ and angular velocity δ, as
shown in Fig. 1c; β is proportional to the enclosed phase-space
area4. We note that the acquired phase contains no dynamical
contribution, defined as2 � 1

�h

R T
0 Hh idt, in the drive frame, while it

has both the Aharonov–Anandan geometric contribution and the
aforementioned dynamical component when it is viewed in the
interaction frame32, i.e., the frame rotating at the resonator
frequency, but where it is still proportional to the enclosed phase-
space area4. As such, for the cyclic evolution of a continuous-
variable system, the phase that depends on the enclosed phase-
space area in the interaction frame or in the drive frame, other
than the Aharonov–Anandan phase, is usually termed as the
geometric phase4, 20, and the area-independent part corresponds
to the dynamical component. We further note that the acquired
phase is insensitive to the resonator dissipation, as shown
elsewhere10.

The strong coupling between the qubit-resonator states 1; 1j i
and 2; 0j i is used to freeze the resonator’s evolution associated
with the qubit state 1j i. When these two states are on near-
resonance, they are strongly coupled and form two dressed states
ϕ±

�� �
with modified energy levels that are separated by about g12

(see Supplementary Note 1), where g12 � ffiffiffi
2

p
g01

� �
is the coupling

strength between the qubit 1j i ↔ 2j i transition and the resonator
(Fig. 1b). Under the weak driving condition Ω � g12, the external
field cannot drive the system to evolve from the state 1; 0j i to
either one of ϕ±

�� �
, but shifts its energy level and produces a

dynamical phase. We eliminate this dynamical phase by adjusting
the qubit-resonator detuning so that the energy shifts associated
with the off-resonant couplings to ϕ±

�� �
cancel each other. Under

this condition, nothing changes when the qubit is in 1j i (see
detailed calculations in Supplementary Note 1).
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Fig. 2 Ramsey interference for geometric phase. a Occupation probability P1 of Q3 in 1j i as a function of θ and Ω2, which is measured using the pulse
sequence shown in Fig. 1d with the drive detuning δ/2π= 4MHz. b −β vs. Ω2 (red dots), where β is obtained by tracing the P1-maximum contour in a: For
each Ramsey trace of P1 vs. θ sliced along a fixed Ω2, we perform the cosinusoidal fit with the phase offset giving the value of β. The blue solid line shows
the theoretical result. c Measured average photon numbers with error bars of the resonator as functions of time during the application of the microwave
drive with Ω/2π= 2MHz conditional on the qubit states 0j i (blue dots) and 1j i (red dots). Error bars represent statistical errors (s.d.) of repeated sets of
measurement. Lines are the numerical results
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The geometric phase acquired by the resonator can be encoded in
the relative probability amplitude of the qubit basis states 0j i and
1j i, and measured in a Ramsey interference experiment.
During the application of the resonator drive, the 0j i $ 1j i

and 1j i $ 2j i transitions of Q3 are blue-detuned from the
resonator frequency ωr/2π by 284 and 39MHz, respectively. The
resulting geometric phase is observed by the Ramsey-type
measurement, where the above-mentioned geometric operation
is sandwiched in between two π/2 rotations on Q3 as illustrated in
Fig. 1d (also see “Methods” section). In Fig. 2a, we present the
measured probability of Q3 in 1j i after the second π/2 rotation,
P1, as a function of θ and Ω2 in a two-dimensional colourmap,
where Ω is calibrated by measuring the drive-generated resonator
photon number with Q4. Tracing the contour of the P1-maximum
yields, the linear dependence of the negative geometric phase, −β,
on Ω2, which agrees exceptionally well with the analytic solution
(solid line in Fig. 2b). Figure 2c displays the average photon
numbers with error bars of the resonator as functions of time
during application of the drive with Q3 in 0j i (blue) and 1j i (red),
which are measured by tuning Q4, initially in its ground state, on
resonance with the resonator for an interaction time before its
readout; the resulting P1 vs. time curve is used to extract the
photon populations. As expected, when Q3 is in the state 1j i, the
resonator almost remains unpopulated; for the qubit state 0j i, the
resonator makes a cyclic evolution, returning to the ground state
after the duration T= 250 ns.

Geometric two-qubit CZ gate. Now we turn to the imple-
mentation of the geometric CZ gate with Q1 and Q5. We arrange
the 0j i ↔ 1j i transition frequencies of Q1 and Q5 to be blue-
detuned from the resonator frequency ωr/2π by ~264 and 285
MHz, respectively, where the qubit lifetimes are measured to be
around 14.8 μs for Q1 and 12.3 μs for Q5, and the Gaussian
dephasing times33 T�

2 of both qubits are around 5 μs. With this
arrangement and the qubit anharmonicities (see Supplementary
Note 2), the 1j i ↔ 2j i transition frequencies of Q1 and Q5 are
blue-detuned from ωr/2π by ~19 and 41MHz, respectively, which
are comparable to the coupling strength g12/2π of

ffiffiffi
2

p
´ 20:9MHz

for Q1 and
ffiffiffi
2

p
´ 19:8MHz for Q5, i.e., the 1j i $ 2j i transitions of

both qubits are on near-resonance with the resonator. The
detuning between Q1 and Q5, 22MHz, is much larger than the
dispersive coupling strengths between the 0j i $ 1j i transitions of
both qubits to minimize the resonator-induced qubit excitation
exchange. With these settings and in the drive frame, the external
microwave field will drive the resonator to traverse a circle in
phase space when both qubits are in the state 0j i; when one qubit
is in 1j i, the strong coupling between the joint states 1; 1j i and
2; 0j i of this qubit and the resonator is again used to freeze the
resonator’s evolution for the same reason outlined in the single-
qubit experiment, and so is the case when both qubits are in 1j i
(see Supplementary Note 1). A geometric two-qubit phase gate
can thus be constructed, where a geometric phase β is produced if
and only if both qubits are in the state 0j i.
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MHz and detuning δ/2π= 4MHz. a Pulse sequences

illustrated in three dimensions (left) and projected to two dimensions (right), with the axes as labeled. For each qubit, the first sinusoid with a Gaussian
envelope is for state preparation, which is varied to generate one of the four states 0j if , 0j i � i 1j ið Þ= ffiffiffi

2
p

, 0j i þ 1j ið Þ= ffiffiffi
2

p
, 1j ig}; the second sinusoid with a

Gaussian envelope is also variable, acting as the rotation pulse needed in QST; sandwiched in between the two sinusoids is the big square pulse used to
adjust the qubit energy levels of Q5 (there is no frequency adjustment on Q1), which combines with the resonator microwave drive to fulfill the CZ gate; the
next small square pulse produces a single-qubit rotation on each qubit to partially compensate for the dynamical phase accumulated during the CZ gate;
finally qubits are measured by demodulation of the two-tone microwave through the TL readout line (light brown lines with color-coded sinusoids).
Here the readout and gate frequencies of Q5 are different for minimizing the Q1–Q5 interaction during readout. b Ideal (χid, left) and experimental
(χexp, right) quantum process matrices. The color code for Pauli basis {I, X, Y, Z} is shown at the top-left corner. Imaginary components of χexp are
measured to be no larger than 0.015 in magnitude. χexp has a fidelity F= Tr(χidχexp)= 0.936± 0.013. The 2j i-state occupation probability of each qubit
averaged over the 16 output states is no higher than 0.015 in a separate measurement. We also perform the CZ gate with Q1 and Q3, and obtain a similar
gate fidelity
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To examine the phase acquired by each of the two-qubit
computational states during the gate operation, we perform the
Ramsey-type measurements on each qubit with the other qubit in
0j i and 1j i, respectively (see Supplementary Fig. 3 and
Supplementary Note 3). In addition to the dominant
Ω2-dependent geometric phase β gained by 0; 0j i, the Ramsey
data show that the two-qubit computational states also
accumulate different but small dynamical phases, which con-
stitute the majority of phase errors to the CZ gate in our
experimental realization. We perform additional single-qubit
rotations to partially compensate for the dynamical-phase-
induced errors.

To characterize the resulting CZ gate, the two-qubit QPT is
performed by creating 16 distinct two-qubit input states and
mapping out these input and corresponding output states with
quantum state tomography (QST), using the pulse sequence
illustrated in Fig. 3a. The resulting experimental process matrix
χexp is shown in Fig. 3b together with the ideal matrix χid for
comparison, which corresponds to a gate fidelity of 0.936± 0.013.
We also examine the gate performance using interleaved RB,
where we insert the CZ gate between random gates from the one-
and two-qubit Clifford groups, measuring a fidelity of 0.939
±0.011 (see Supplementary Fig. 4 and Supplementary Note 3).
The Bell state produced by this gate has a fidelity of 0.949± 0.018
and a concurrence of 0.914± 0.038.

The experimental CZ fidelity values agree well with the
numerical simulation using the Lindblad master equation, where
the pure dephasing times TΦ are set to be around 15 μs for both
qubits. Empirically we have found33 that using the Markovian TΦ
much longer than the Gaussian T�

2 ensures a good agreement
between the theory and experiment for sequences much shorter
than T�

2 .

Geometric three-qubit CCZ gate. One important feature of our
geometric approach is that it allows one-step implementation of
an n-qubit controlled-phase gate—the key element in the quan-
tum search algorithm31 and quantum error correction, irrespec-
tive of n, which is in remarkable contrast with methods based on
gate decomposition, where the number of required
two-qubit gates increases dramatically with n34. Here we
demonstrate the three-qubit CCZ gate, which produces a
π-phase shift if and only if all three qubits are in 0j i, without
using concatenated two-qubit gates as required in previous

experiments23–28. The CCZ gate, in combination with single-
qubit rotations, is equivalent to the Toffoli gate that inverts the
state of the target qubit conditional on the state of the two control
qubits, and which is essential for constructing a universal set of
quantum operations35 and for quantum error correction24.

We realize the CCZ gate with Q1, Q3, and Q5 by carefully
adjusting the qubit level configuration (see Supplementary
Note 4): The 0j i ↔ 1j i transition frequencies of Q1, Q3, and Q5

are blue-detuned from the resonator frequency ωr/2π by ~268,
249, and 285MHz, respectively, and the 1j i ↔ 2j i transition
frequencies are blue-detuned from ωr/2π by ~23, 4, and 41MHz.
At the above-mentioned frequencies the qubit lifetimes are
around 14.8, 16.4, and 12.3 μs. The reconstructed experimental
QPT matrix χexp has a fidelity of 0.868± 0.004 (Fig. 4), which
agrees well with the Lindblad master equation simulation using
TΦ≈ 10 μs for all three qubits. The slight drop of TΦ, which is still
much longer than T�

2 , suggests that other error sources may be
involved in the three-qubit implementation, which will be
investigated next. The Ramsey interference patterns of each of
the three qubits conditional on the state of the rest two qubits are
shown in Supplementary Fig. 5 with details described in
Supplementary Note 4.

Geometric four-qubit CCCZ gate. For illustration of the
remarkable scaling performance of our protocol, here we imple-
ment the four-qubit CCCZ gate, which produces a π-phase shift if
and only if all four qubits are in 0j i. An equivalent of the CCCZ
gate up to single-qubit rotations was recently implemented with
trapped ions for the first time, which requires 11 two-qubit gates
and has a fidelity of 0.705± 0.003 as characterized by a limited
tomography procedure28. It was also reported with the same
setup28 that the three-qubit Toffoli gate requires 5 two-qubit gates
and has a fidelity of 0.896± 0.002.

Our four-qubit CCCZ gate is implemented on the same device
but in a separate cooldown, and therefore the device parameters
might drift very slightly. We realize the CCCZ gate with Q1, Q2,
Q4, and Q5 by carefully adjusting the qubit level configuration, so
that the 0j i ↔ 1j i transition frequencies are blue-detuned from
the resonator frequency ωr/2π by ~270, 247, 282, and 262MHz,
respectively, and the 1j i ↔ 2j i transition frequencies are
blue-detuned from ωr/2π by ~25, 5, 39, and 18MHz. At the
above-mentioned frequencies, the qubit lifetimes are around 16.5,
13.5, 15.4, and 13.9 μs for Q1, Q2, Q4, and Q5, respectively, and
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Fig. 4 QPT of the geometric three-qubit CCZ gate, obtained with the drive amplitude Ω=2π � ffiffiffiffiffiffiffi
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Pauli basis {I, X, Y, Z} is shown at the top-left corner. The process matrix is reconstructed by preparing a complete set of 64 input states, and measuring
both the input and output density matrices using QST. The ideal (χid) and experimental (χexp) quantum process matrices are presented in the left and right
panels, respectively. Imaginary components of χexp are measured to be no larger than 0.063 in magnitude. The fidelity of χexp is 0.868± 0.004. The
2j i-state occupation probability of each qubit resulting from the drive Ω is no higher than 0.025 in a separate measurement, in which the test qubit is
initialized in 1j i and the other two qubits are in 0j i
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the Gaussian dephasing times of all qubits are measured to be
around 4 μs. For the CCCZ gate, we drive the resonator through
Q3’s microwave line. The reconstructed experimental QPT matrix
χexp involves 256 input states and 256 output states, and has a
fidelity of 0.817± 0.006 (Fig. 5), which is close to the numerical
simulation taking TΦ to be close to 10 μs for all qubits. Different
from the two- and three-qubit experiments, here right before the
tomographic pulses to characterize the output states, we do not
append single-qubit rotations to partially compensate for the
dynamical-phase-induced errors, instead we add the desired
correction phase to each qubit’s tomographic pulses following the
procedure used in refs. 29, 30. The much less drop in fidelities
from the CCZ gate to the CCCZ gate in our case as compared
with the very recent ion-trap experiment28 verifies the remarkable
scaling performance of our multi-qubit controlled-phase gate
protocol.

Discussion
The dynamical effect, one of the main error sources in the current
multi-qubit controlled-phase gate implementations, can be sup-
pressed with the quantum-bus circuit architecture (Fig. 1a), fea-
turing stronger qubit-resonator couplings, larger qubit
anharmonicities, and larger differences in qubit anharmonicities,
which would enable geometric entangling gates with significantly
higher fidelity targeting two and more arbitrarily chosen qubits
with our one-step scheme. As verified by numerical simulations,
if the two qubits, e.g., the capacitively shunted flux qubits36, 37,
have anharmonicities of 0.8 and 1.0 GHz, respectively, both
coupled to the resonator with g01/2π= 38MHz, the CZ gate
fidelity can be improved to 0.991 with coherence times around
100 μs (the decoherence-free gate fidelity is 0.996), which is above
the surface code threshold for fault tolerance29, 30; introducing a
third qubit with an anharmonicities of 0.9 GHz would give a CCZ
gate fidelity of 0.987 (0.994 without decoherence). The geometric
gates are robust against variations of certain device parameters
likely due to the imperfection of the circuit design and fabrication
process, e.g., a 10% variation of g01 from qubit to qubit only
causes the gate fidelity to vary around 10–3, provided that one can
fine-tune each qubit’s frequency and the microwave drive para-
meters for an optimal gate fidelity. Using qubits with sufficiently

large ratios of the anharmonicities to the qubit-resonator cou-
plings, the geometric gates can be produced by strongly driving
the qubits38; within this scenario, the gate speed and thus fidelity
can be further significantly improved.

Methods
Experimental device. Our circuit QED architecture consists of five frequency-
tunable superconducting Xmon qubits29, 30, all coupled to a bus resonator with a
fixed bare frequency; each qubit can be effectively decoupled from the resonator by
tuning it far off-resonant with the resonator. The qubit combinations of Q3, Q1–Q5

(Q1–Q3), Q1–Q3–Q5, and Q1–Q2–Q4–Q5 are selected in the one-, two-, three-, and
four-qubit experiments, respectively, with Q2 serving as the microwave bridge
through which the resonator can be driven and Q4 as the meter for measuring the
resonator photon number (during the four-qubit experiment, which is done in a
separate cooldown, Q3 serves as the microwave bridge and no qubit is used to
measure the resonator photon number). Each qubit dispersively interacts with its
own readout resonator, which couples to a common transmission line for multi-
plexed readout of all qubits. Single-shot quantum non-demolition measurement is
achieved with an impedance-transformed Josephson parametric amplifier whose
bandwidth is above 200MHz at desired frequencies, following the design in ref. 39.
We can simultaneously probe populations in the ground 0j i, the first-excited 1j i,
and the second-excited 2j i states of all qubits; the 2j i-state probability is measured
in this work for examining the state-leakage error. The device and the measure-
ment setup are sketched in Fig. 1a, with details described in Supplementary Fig. 1
and Supplementary Note 2.

Ramsey-type measurement. The Ramsey interference sequence starts by applying
an Xπ/2 gate that rotates Q3 around the x-axis on the Bloch sphere by an angle of
π/2, transforming it from the ground state 0j i to the superposition state
0j i � i 1j ið Þ= ffiffiffi

2
p

, with the experimental sequence shown in Fig. 1d. Other qubits
remain in 0j i and are all far-detuned at their individual sweetpoint frequencies
except for Q4, which is set 300MHz below the resonator and will be used for
reading out the resonator photon number. Then the external microwave drive Ω is
applied, which is blue-detuned from the resonator conditional upon the qubit state
0j i by δ/2π= 4MHz. After a duration T= 250 ns, the qubit evolves to the state
eiβ 0j i � i 1j i� �

=
ffiffiffi
2

p
, with the resonator going back to the ground state. A θπ/2 gate is

subsequently applied to rotate Q3 by π/2 around the axis with a θ-angle to the
x-axis in the xy plane. Finally the qubit is detected, with the probability of being
measured in the state 1j i given by P1 ¼ 1

2 1þ cos β þ θð Þ½ �.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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Fig. 5 QPT of the geometric four-qubit CCCZ gate, obtained with the drive amplitude Ω=2π � ffiffiffiffiffiffiffi
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p
MHz and detuning δ/2π= 4MHz. The color code for

Pauli basis {I, X, Y, Z} is shown at the top-left corner. The partially shown process matrix χexp is reconstructed by preparing a complete set of 256 input
states, and measuring both the input and output density matrices using QST. Imaginary components of χexp are measured to be no larger than 0.062 in
magnitude. The fidelity of χexp is 0.817± 0.006. Numerical simulation suggests that the 2j i-state occupation probability for each qubit is no higher than
0.025
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