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Abstract: The maternal immune activation produced by the systemic administration of lipopolysac-
charide (LPS) in rats provides valuable insights into the basis of behavioural schizophrenia-like
disturbances and biochemical changes in the brains of the offspring, such as microglial activation.
Regarding therapy, antipsychotics continually constitute the cornerstone of schizophrenia treatment.
To their various efficacy and side effects, as well as not fully recognised mechanisms of action, further
characteristics have been suggested, including an anti-inflammatory action via the impact on neuron–
microglia axes responsible for inhibition of microglial activation. Therefore, in the present study,
we sought to determine whether chronic treatment with chlorpromazine, quetiapine or aripiprazole
could influence schizophrenia-like behavioural disturbances at the level of sensorimotor gating
in male offspring prenatally exposed to LPS. Simultaneously, we wanted to explore if the chosen
antipsychotics display a positive impact on the neuroimmunological parameters in the brains of
these adult animals with a special focus on the ligand-receptor axes controlling neuron–microglia
communication as well as pro- and anti-inflammatory factors related to the microglial activity. The
results of our research revealed the beneficial effect of quetiapine on deficits in sensorimotor gat-
ing observed in prenatally LPS-exposed offspring. In terms of axes controlling neuron–microglia
communication and markers of microglial reactivity, we observed a subtle impact of quetiapine on
hippocampal Cx3cl1 and Cx3cr1 levels, as well as cortical Cd68 expression. Hence, further research
is required to fully define and explain the involvement of quetiapine and other antipsychotics in
Cx3cl1-Cx3cr1 and/or Cd200-Cd200r axes modulation and inflammatory processes in the LPS-based
model of schizophrenia-like disturbances.

Keywords: schizophrenia; maternal immune activation; sensorimotor gating; neuron–microglia axes;
chlorpromazine; quetiapine; aripiprazole

1. Introduction

Schizophrenia is a psychiatric disorder marked by a variety of disturbances that
can be typically categorised into positive and negative symptoms along with cognitive
impairments [1]. The condition appears during late adolescence or early adulthood and
has been associated with heredity and environmental or immunological factors, among
others [2,3].

The role of inflammation in the pathophysiology of schizophrenia is well-supported by
findings of altered immune parameters in both the postmortem brains [4–6] and the blood of
patients [7,8]. Additionally, animal models of this condition employing exposure to viral or
bacterial immunostimulants provide valuable insights into the basis of schizophrenia-like
disturbances [9–11]. One of the widely implemented approaches is maternal immune acti-
vation (MIA), produced by the prenatal administration of lipopolysaccharide (LPS) [12–16].

Cells 2022, 11, 2788. https://doi.org/10.3390/cells11182788 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11182788
https://doi.org/10.3390/cells11182788
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-1432-7763
https://orcid.org/0000-0002-9573-7026
https://orcid.org/0000-0002-3109-0040
https://doi.org/10.3390/cells11182788
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11182788?type=check_update&version=2


Cells 2022, 11, 2788 2 of 22

When considering a neurodevelopmental model of schizophrenia, MIA with LPS has been
described in terms of various behavioural disturbances, including affected sensorimotor
gating [12,17,18], anxiety-like behaviour [13,19], social interactions [15], exploratory or
locomotor activity [19–21] and cognitive deficits [22,23] as well as diverse biochemical
alterations in the brains of the offspring, including the CX3CL1-CX3CR1 and CD200-
CD200R pairs, which are crucial in neuron–microglia communication [13,19]. CX3CL1 is a
chemokine that differs notably from other representatives of this group in both structure
and role [24], whereas CD200 belongs to a class of surface antigens with immunosuppres-
sive properties [25]. These ligands are produced mainly by neurons and bind to their
corresponding receptors (CX3CR1 and CD200R, respectively) expressed by microglia [11].
Both dyads are neuroinflammatory “off” signals for microglia, whereas their dysfunctions
exaggerate the proinflammatory response in the brain [26–28].

Microglia are major resident immune cells in the central nervous system (CNS), consti-
tuting approximately 10–15% of the total number of CNS cells [29,30]. Under physiological
conditions, microglia remain in a surveillant state with the homeostatic expression of
various markers as well as cytokines and chemokines [31,32]. Some pathophysiological
circumstances, however, result in microglial activation, which is mediated by a wide ar-
ray of cellular mechanisms [33]. Dynamic changes in microglial activity have also been
reported in the course of schizophrenia, although their etiopathogenesis has not yet been
conclusively explained [34–36].

Antipsychotics represent the cornerstone of schizophrenia therapy, leading to an
overall improvement in the long-term outcomes of patients and reducing the severity and
frequency of positive, negative or cognitive symptoms [37–39]. Generally, these drugs
are grouped into two main categories, including typical (first-generation) and atypical, in
which two subgroups are currently distinguished: second and third generation [40,41].

One of the most important representatives of typical antipsychotics is chlorpro-
mazine [42]. This drug blocks dopamine (DA) D2 postsynaptic receptors, but it also
affects serotonin (5-HT), muscarinic, α1-adrenergic and H1-histamine receptors [43]. Addi-
tionally, in some circumstances, chlorpromazine exerts suppressive action on the immune
response [16].

Currently, the spectrum of medications for the treatment of schizophrenia has been
expanded with the introduction of atypical, new-generation drugs with fewer side effects.
Given their impact on DA activity and affinity for various other receptors [44,45], these
antipsychotics seem to be more effective in the treatment of negative symptoms and
cognitive impairment than the typical compounds [46].

Quetiapine is a second-generation atypical antipsychotic that acts as an antagonist
on multiple pathways, including DA transmission, 5-HT2A, 5-HT2B, 5-HT2C, α1- and
α2-adrenergic as well as H1-histamine receptors [47,48]. Additionally, this drug binds to
the 5-HT1A receptor as a partial agonist [48]. It has also been suggested that quetiapine
affects microglial activation and mitigates neuroinflammation [49–51].

An example of a novel atypical antipsychotic of the third generation is aripiprazole,
which acts as a partial agonist of D2, D3, D4, 5-HT1A and 5-HT2C; an inverse agonist of
5-HT2B; and an antagonist of 5-HT2A and 5-HT6 receptors [52]. Furthermore, it has an
affinity for α1-adrenergic and H1-histamine receptors [52]. Similar to quetiapine, some
studies suggest that aripiprazole may exert an anti-inflammatory action via the inhibition
of microglial activation [53].

Accordingly, in the present study, we sought to determine whether chronic treatment
with chlorpromazine, quetiapine or aripiprazole influences schizophrenia-like behavioural
disturbances at the level of sensorimotor gating in male offspring that were prenatally
exposed to LPS. Simultaneously, we wanted to explore if the chosen antipsychotics display
an impact on the neuroimmunological parameters in the brains of these animals, with a
special focus on the CX3CL1-CX3CR1 and CD200-CD200R axes as well as factors related to
microglial activity and immune response.
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2. Materials and Methods
2.1. Animals

Wistar rats (Charles River, Sulzfeld, Germany) were housed under standard conditions
with a room temperature of 23 ◦C, 12/12 h light/dark cycle (lights on at 6:00 am) and ad
libitum access to water and food. After a period of acclimatisation, the pro-oestrus phase
of the cycle was determined based on vaginal smears obtained daily from the females,
which were subsequently placed with males for 12 hours. The presence of sperm in vaginal
smears was assessed the next morning. Pregnant females (n = 36) were randomly divided
into two equal groups, including (1) control and (2) LPS, for further proceedings.

All procedures were approved by the Animal Care Committee of the Maj Institute of
Pharmacology, Polish Academy of Sciences, Cracow and complied with the International
Council for Laboratory Animals and Guide for the Care and Use of Laboratory Animals
(consent number: 236/2016). All possible efforts were made to minimise the number of
animals used and their suffering. The investigators were not blinded to the experimental
conditions. The numbers of animals included in each analysis are presented in the caption
to the corresponding figure or table.

2.2. Prenatal Treatment with LPS

The administration of the bacterial endotoxin to pregnant rats was performed as pre-
viously reported [13,19]. LPS (from Escherichia coli 026:B6; Sigma-Aldrich, St. Louis, MO,
USA) was dissolved to obtain a concentration of 2 mg/kg of body weight in 1 mL of saline.
The solution was subcutaneously administered to pregnant females in the LPS group on
alternate days starting from the 7th day of pregnancy between 9:00 and 10:00 am [16,20,21].
Control pregnant animals were submitted to the same treatment regimen with the cor-
responding volume (1 mL/kg) of saline. After delivery, the dams were allowed to rear
their young until weaning (postnatal day 21, PND21). No differences in litter size and
weight were observed between the control and LPS groups. In the present study, only male
offspring were used; thus, they were transferred and housed in groups of five per cage
under standard conditions until further procedures.

2.3. Behavioural Study—Prepulse Inhibition Test

The prepulse inhibition (PPI) test was performed two times: (1) when the offspring were
at PND90 and (2) after chronic 14-day administration of antipsychotics. The PPI procedure
was adopted with some modifications from our previously published studies [16,20,21].
The examinations were performed in eight sound-proof, ventilated startle cabinets (SR-
LAB, San Diego Instruments, San Diego, CA, USA) with a single Plexiglas cylinder (inner
diameter of 9 cm) attached to a moveable platform in each of them. A startle reflex was
elicited in response to a sound generated by a high-frequency loudspeaker, producing both
continuous 65 dB background noise and various acoustic stimuli, mounted inside each
chamber. Platform movements resulting from the startle reaction were detected for each
animal by a piezoelectric accelerometer during the 200 ms recording window. The data
were digitised and used for subsequent calculations, where the maximum startle response
(Vmax) and average startle amplitude (AVG) were further analysed.

Before the experiments, each chamber was individually calibrated using the external
sensor to display a similar readout of the reference stimulus. After five minutes of habitu-
ation to the background noise, four types of acoustic stimuli were used in random order.
Each trial consisted of either a single pulse alone [intensity 120 dB, duration 40 ms, (P)] or
a pulse preceded by a prepulse at one out of three intensities [70, 75 and 80 dB; duration
20 ms; (PP)] applied 80 ms before a pulse. During each experimental session, 20 trials
of each type were displayed with an interstimulus interval of 20 s. The Vmax and AVG
were recorded, and the percentage of PPI (%PPI) induced by each prepulse intensity was
calculated as %PPI = [(P − PP)/P] × 100%.
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2.4. Antipsychotic Drugs Administration

After the first PPI test at PND90, the offspring (both from the control and prena-
tally LPS-treated groups) were divided into three sets: (1) subjected to chlorpromazine
administration (cohort 1), (2) treated with quetiapine (cohort 2), and (3) injected with
aripiprazole (cohort 3). Then, each cohort was further split to finally form the follow-
ing experimental groups: control + vehicle to chlorpromazine, control + chlorpromazine,
LPS + vehicle to chlorpromazine, LPS + chlorpromazine, control + vehicle to quetiapine,
control + quetiapine, LPS + vehicle to quetiapine, LPS + quetiapine, control + vehicle to
aripiprazole, control + aripiprazole, LPS + vehicle to aripiprazole, and LPS + aripiprazole
(Table 1).

Table 1. The groups of the offspring generated and subsequently subjected to the administration of
the antipsychotic drugs. The number of animals in each group is reported.

Cohort 1 Cohort 2 Cohort 3

chlorpromazine quetiapine aripiprazole

control + vehicle to
chlorpromazine

(n = 13)

control + vehicle to quetiapine
(n = 9)

control + vehicle to
aripiprazole

(n = 7)

control + chlorpromazine
(n = 10)

control + quetiapine
(n = 9)

control + aripiprazole
(n = 7)

LPS + vehicle to
chlorpromazine

(n = 4)

LPS + vehicle to quetiapine
(n = 9)

LPS + vehicle to aripiprazole
(n = 7)

LPS + chlorpromazine
(n = 4)

LPS + quetiapine
(n = 9)

LPS + aripiprazole
(n = 7)

Chlorpromazine (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in 1 mL of saline
to obtain a concentration of 10 mg/kg [54,55]. Quetiapine (Carbosynth, Berkshire, UK)
was prepared as a 10 mg/kg solution in 0.8% acetic acid in 1 mL of saline (pH adjusted
with 1 N NaOH) [56,57]. Aripiprazole (Carbosynth, Berkshire, UK) was dissolved in 5%
dimethyl sulfoxide (BioShop, Burlington, ON, Canada) in 1 mL of saline to a concentration
of 1 mg/kg [58,59].

Antipsychotic drugs were administered intraperitoneally once daily between 9:00
and 10:00 am for 14 days. The control groups for each drug received an intraperitoneal
injection of the appropriate vehicle in the corresponding volume (1 mL/kg) and regimen.
Twenty-four hours after the last dose, the animals underwent the PPI test again.

2.5. Biochemical Study
2.5.1. Tissue Collection and Preparation

The frontal cortices and hippocampi were collected from the animals the day following
the last behavioural examination. The tissues were dissected on an ice-cold glass plate and
stored at −80 ◦C until further processing.

Samples intended for analyses with enzyme-linked immunosorbent assay (ELISA)
were homogenised by Tissue Lyser II (Qiagen Inc., Valencia, CA, USA) in RIPA lysis
buffer enriched with protease inhibitor cocktail, phosphatase inhibitor cocktail, 1 mM
sodium orthovanadate and 1 mM phenylmethanesulfonyl fluoride (all from Sigma-Aldrich,
St. Louis, MO, USA). The protein concentration in the prepared samples was evaluated
using a PierceTM BCA Protein Assay Kit (Thermo Fisher, Rockford, IL, USA) according
to the manufacturer’s instructions. Bovine serum albumin from the kit was applied as a
standard, and the absorbance for each sample was measured at a wavelength of 562 nm in
a Tecan Infinite 200 Pro spectrophotometer (Tecan, Mannedorf, Germany).

In order to prepare probes for quantitative real-time polymerase chain reaction
(qRT-PCR), the tissues were initially homogenised by Tissue Lyser II (Qiagen Inc., Va-
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lencia, CA, USA) with an appropriate volume of lysis buffer supplied with a Total RNA
Mini Plus kit (A&A Biotechnology, Gdynia, Poland). Further, the manual provided with the
set was followed to obtain total RNA from the frontal cortices and/or hippocampi of the
rats. Immediately after extraction, the RNA concentration was determined by a NanoDrop
Spectrophotometer (ND/1000 UV/Vis, Thermo Fisher NanoDrop, Waltham, MA, USA).

2.5.2. Quantitative Real-Time Polymerase Chain Reaction

The synthesis of complementary DNA (cDNA) from equal amounts of RNA (1 µg)
via reverse transcription was performed using the NG dART RT kit (EURx, Gdańsk,
Poland). The cDNA was amplified with a FastStart Universal Probe Master (Rox) kit (Roche,
Basel, Switzerland) and TaqMan probes (Life Technologies, Carlsbad, CA, USA) for the
genes: Cx3cl1 (Rn00593186_m1), Cx3cr1 (Rn00591798_m1), Cd200 (Rn01646320_m1), Cd200r
(Rn00576646_m1), Cd40 (Rn01423583_m1), Cd68 (Rn01495634_g1), Arg1 (Rn00691090_m1),
Igf-1 (Rn00710306_m1) and, as the reference, Gapdh (Rn01775763_g1). The PCR products
were generated in mixtures consisting of cDNA used as the PCR template (1 µL), TaqMan
forward and reverse primers (1 µL), 1× FastStart Universal Probe Master (Rox) mix con-
taining 250 nM of hydrolysis probe labelled with the fluorescent reporter dye (fluorescein)
at the 5′-end and a quenching dye at the 3′-end (10 µL), and finally the remainder of PCR
grade distilled water to a total volume of 20 µL. The thermocycling conditions were as
follows: initial denaturation at 95 ◦C for 10 minutes, 45 cycles of denaturation at 95 ◦C for
15 s, annealing at 60 ◦C for 1 minute and extension at 50 ◦C for 2 minutes. The threshold
value (Ct) for each sample was set in the exponential phase of PCR, and the ∆∆Ct method
was used for the data analysis.

2.5.3. Enzyme-Linked Immunosorbent Assay

IL-1β, TNF-α (both from Thermo Fisher Scientific, Waltham, MA, USA), IL-4, IL-6
and IL-10 (all three from BD Biosciences, San Diego, CA, USA) protein levels in the frontal
cortices of the rats were established using commercially available ELISA kits following the
manufacturer’s instructions.

2.6. Statistical Data Analysis

Statistical analysis of the data was performed using Statistica 13.0 software (StatSoft,
Palo Alto, CA, USA). The data from the PPI test are demonstrated as the mean ± SEM. The
results from qRT-PCR studies are displayed as the average fold change ± SEM, whereas
those from ELISA experiments are presented as the mean± SEM. Comparisons of variables
between groups were performed using two-way analysis of variance (ANOVA) with
Duncan’s post hoc except for the PPI test at PND90 when Student’s t test was applied. The
results were considered statistically significant when the p value was less than 0.05. When
applicable, statistical outliers were identified using Grubbs’ test. All graphs were prepared
with GraphPad Prism 7 software (San Diego, CA, USA).

3. Results
3.1. Prepulse Inhibition of the Acoustic Startle Response

PPI is a measure of sensorimotor gating [60], the impairment of which has been widely
reported in patients with schizophrenia [61–63]. In rodents, experimentally induced deficits
in PPI are employed as an endophenotype to reflect this basic schizophrenia-like behaviour
and to study the mechanisms underlying attentional and cognitive disturbances [22,64,65].

Consistent with previously published data [13,16,17,66], the treatment of female rats
with LPS during pregnancy generated a significant inhibition of sensorimotor gating in
the adult offspring both in terms of Vmax (Figure 1A) and AVG (Figure 1B). As exem-
plified by the second cohort, this phenomenon was evidenced by the disruption of PPI
for all tested prepulse intensities of Vmax: 70 (36.52 ± 4.54 control vs. 21.60 ± 2.18 LPS,
F(1,52) = 4.32, p = 0.0046), 75 (59.92 ± 3.27 control vs. 49.60 ± 2.59 LPS, F(1,52) = 1.59,
p = 0.0167) and 80 (58.92 ± 3.39 control vs. 47.15 ± 3.13 LPS, F(1,52) = 1.17, p = 0.0138) dB
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as well as AVG: 70 (36.34 ± 3.92 control vs. 22.01 ± 1.89 LPS, F(1,52) = 4.29, p = 0.0018),
75 (60.17 ± 2.98 control vs. 52.14 ± 2.00 LPS, F(1,52) = 2.22, p = 0.0298) and 80 (59.11 ± 2.97
control vs. 49.81 ± 2.66 LPS, F(1,52) = 1.25, p = 0.0238) dB (Figure 1).
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Next, to examine the ability of chlorpromazine, quetiapine and aripiprazole to nor-
malise the observed PPI deficits in the applied experimental conditions, we subjected the
animals to injections of these antipsychotic drugs for 14 days (Figure 2).

Subsequent behavioural examination revealed that chlorpromazine reduced the PPI of
both Vmax (36.98 ± 1.39 LPS + vehicle vs. 18.45 ± 6.27 LPS + chlorpromazine, F(1,27) = 5.28,
p = 0.0085) and AVG (34.09 ± 2.36 LPS + vehicle vs. 20.39 ± 8.31 LPS, F(1,27) = 0.35,
p = 0.0379) for 70 dB in the LPS-exposed offspring (Figure 2).

In terms of quetiapine, the drug displayed a beneficial impact on the examined be-
haviour, manifesting as an alleviated PPI response in the rats. The outcome for the
LPS + quetiapine group was significantly different from the LPS + vehicle offspring both
at the level of Vmax for 75 (56.33 ± 4.26 LPS + vehicle vs. 72.52 ± 2.97 LPS + quetiapine,
F(1,32) = 12.42, p = 0.0098) and 80 (59.63± 3.73 LPS + vehicle vs. 73.76± 2.43 LPS + quetiapine,
F(1,32) = 11.07, p = 0.0157) dB and AVG for 75 (58.17 ± 3.70 LPS + vehicle vs. 73.74 ± 2.84
LPS + quetiapine, F(1,32) = 11.25, p = 0.0082) and 80 (59.87 ± 3.99 LPS + vehicle vs.
74.72 ± 2.27 LPS + quetiapine, F(1,32) = 12.16, p = 0.0089) dB prepulse intensities. In the
control animals, the administration of quetiapine resulted in an increasing tendency in Vmax
for 75 (61.11 ± 5.29 control + vehicle vs. 73.06 ± 2.96 control + quetiapine, F(1,32) = 12.42,
p = 0.0527) and 80 (65.24 ± 4.92 control + vehicle vs. 76.03 ± 3.46 control + quetiapine,
F(1,32) = 11.07, p = 0.0618) dB and AVG for 75 (62.99 ± 4.82 control + vehicle vs. 71.88 ± 2.87
control + quetiapine, F(1,32) = 11.25, p = 0.0945) and 80 (65.35 ± 4.49 control + vehicle vs.
75.71 ± 3.33 control + quetiapine, F(1,32) = 12.16, p = 0.0631) dB (Figure 2).

The results of the PPI test conducted for the cohort of rats treated with aripiprazole
showed no effect of the drug on Vmax or AVG for any of the evaluated prepulse levels
(Figure 2).
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3.2. Cx3cl1, Cx3cr1, Cd200 and Cd200r mRNA Expression in the Frontal Cortices of the Offspring

In the first set of biochemical experiments, we assessed the mRNA expression of
the systems controlling neuron–microglia interactions in the frontal cortices of the prena-
tally LPS-exposed offspring and the influence of chronic chlorpromazine, quetiapine and
aripiprazole treatment in adulthood on these factors (Table 2).

An analysis of the cortical homogenates of the LPS-subjected animals from the first cohort
demonstrated an elevation of the mRNA levels of Cx3cl1 (1.38 ± 0.57 control + vehicle vs.
5.27 ± 1.20 LPS + vehicle, F(1,16) = 28.56, p = 0.0079), Cx3cr1 (1.28± 0.46 control + vehicle vs.
5.39 ± 1.83 LPS + vehicle, F(1,16) = 23.78, p = 0.0248), Cd200 (1.28 ± 0.43 control + vehicle vs.
4.34 ± 1.23 LPS + vehicle, F(1,16) = 13.60, p = 0.0246) and Cd200r (1.33 ± 0.46 control + vehicle
vs. 13.24 ± 4.58 LPS + vehicle, F(1,16) = 23.91, p = 0.0026) compared to the appropriate
control group. Regarding the impact of chlorpromazine on the analysed parameters, we
observed only an increasing tendency in Cx3cr1 expression (5.39 ± 1.83 LPS + vehicle vs.
LPS + chlorpromazine, F(1,16) = 1.89, p = 0.0866) (Table 2A).
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Table 2. The impact of prenatal exposure to LPS and subsequent chronic treatment with chlorpro-
mazine (A), quetiapine (B) or aripiprazole (C) on Cx3cl1, Cx3cr1, Cd200 or Cd200r gene expression in
the frontal cortices of the offspring. The mRNA levels were measured using qRT-PCR with n = 4–6
(chlorpromazine), n = 5–9 (quetiapine) and n = 5–6 (aripiprazole) in each group. The results are
presented as the average fold change ± SEM. * p < 0.05 vs. control + vehicle group.

(A) Cohort 1—chlorpromazine

Factor
Gene Expression in the Frontal Cortices

Control LPS
vehicle chlorpromazine vehicle chlorpromazine

Cx3cl1 1.38 ± 0.57 1.75 ± 0.71 5.27 ± 1.20 * 7.16 ± 1.16

Cx3cr1 1.28 ± 0.46 1.46 ± 0.60 5.39 ± 1.83 * 8.29 ± 1.82

Cd200 1.28 ± 0.43 1.67 ± 0.71 4.34 ± 1.23 * 4.75 ± 1.11

Cd200r 1.33 ± 0.46 1.74 ± 0.50 13.24 ± 4.58 * 11.45 ± 3.03

(B) Cohort 2—quetiapine

Factor
Gene Expression in the Frontal Cortices

Control LPS
vehicle quetiapine vehicle quetiapine

Cx3cl1 1.01 ± 0.06 0.94 ± 0.12 1.09 ± 0.10 1.12 ± 0.10

Cx3cr1 1.01 ± 0.04 1.27 ± 0.12 1.51 ± 0.23 1.48 ± 0.25

Cd200 1.05 ± 0.16 0.42 ± 0.12 1.33 ± 0.41 1.50 ± 0.32

Cd200r 1.12 ± 0.22 0.60 ± 0.24 2.95 ± 0.65 * 2.28 ± 0.71

(C) Cohort 3—aripiprazole

Factor
Gene Expression in the Frontal Cortices

Control LPS
vehicle aripiprazole vehicle aripiprazole

Cx3cl1 1.05 ± 0.15 1.20 ± 0.21 1.58 ± 0.28 1.87 ± 0.26

Cx3cr1 1.04 ± 0.13 0.92 ± 0.12 1.00 ± 0.20 1.19 ± 0.16

Cd200 1.04 ± 0.12 1.16 ± 0.15 1.20 ± 0.17 1.29 ± 0.13

Cd200r 1.10 ± 0.22 1.79 ± 0.43 2.61 ± 0.53 * 2.14 ± 0.34

A study of samples obtained from the second cohort showed upregulation of Cd200r
level (1.12 ± 0.22 control + vehicle vs. 2.95 ± 0.65 LPS + vehicle, F(1,19) = 12.93, p = 0.0202)
and an increasing trend in the mRNA expression of Cx3cr1 (1.01 ± 0.04 control + vehicle
vs. 1.51 ± 0.23 LPS + vehicle, F(1,32) = 3.97, p = 0.0762) in the frontal cortices of the rats
prenatally subjected to LPS. We did not observe an effect of quetiapine injections on any of
the investigated factors (Table 2B).

In the third cohort, prenatal exposure to LPS resulted in significantly raised Cd200r
(1.10 ± 0.22 control + vehicle vs. 2.61 ± 0.53 LPS + vehicle, F(1,20) = 5.48, p = 0.0215) mRNA
level. Aripiprazole administration did not influence gene expression in the frontal cortices
of the animals in any of the examined groups (Table 2C).

3.3. Cd40, Cd68, Arg1 and Igf-1 mRNA Expression in the Frontal Cortices of the Offspring

The axes controlling neuron–microglia communication (CX3CL1-CX3CR1 and CD200-
CD200R) are highly involved in the regulation of microglial activation [25,26]. Since we
found that the mRNA levels of these genes were to some extent affected by prenatal
treatment with LPS but not significantly influenced by the antipsychotics, in the next step,
we wanted to determine the expression of the microglia-related pro- (Cd40 and Cd68) and
anti-inflammatory (Arg1 and Igf-1) markers (Table 3).
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Table 3. The impact of prenatal exposure to LPS and subsequent chronic treatment with chlorpro-
mazine (A), quetiapine (B) or aripiprazole (C) on Cd40, Cd68, Arg1 and Igf-1 gene expression in the
frontal cortices of the offspring. The mRNA levels were measured using qRT-PCR with n = 4–6
(chlorpromazine), n = 6–9 (quetiapine) and n = 5–6 (aripiprazole) in each group. The results are
presented as the average fold change ± SEM. * p < 0.05 vs. control + vehicle group, # p < 0.05 vs.
LPS + vehicle group.

(A) Cohort 1—chlorpromazine

Factor
Gene Expression in the Frontal Cortices

control LPS
vehicle chlorpromazine vehicle chlorpromazine

Cd40 1.41 ± 0.53 1.14 ± 0.45 1.41 ± 0.53 1.14 ± 0.45

Cd68 1.33 ± 0.37 1.19 ± 0.40 1.33 ± 0.37 1.19 ± 0.40

Arg1 1.77 ± 0.71 1.96 ± 0.76 1.77 ± 0.71 1.96 ± 0.76

Igf-1 1.12 ± 0.19 1.30 ± 0.25 1.12 ± 0.19 1.30 ± 0.25

(B) Cohort 2—quetiapine

Factor
Gene Expression in the Frontal Cortices

control LPS
vehicle quetiapine vehicle quetiapine

Cd40 1.02 ± 0.06 0.86 ± 0.11 1.27 ± 0.14 1.02 ± 0.16

Cd68 0.87 ± 0.05 0.73 ± 0.09 1.18 ± 0.11 * 0.86 ± 0.09 #

Arg1 1.12 ± 0.23 0.36 ± 0.11 2.04 ± 0.52 2.29 ± 0.47

Igf-1 1.00 ± 0.03 0.75 ± 0.09 1.15 ± 0.19 1.27 ± 0.22

(C) Cohort 3—aripiprazole

Factor
Gene Expression in the Frontal Cortices

control LPS
vehicle aripiprazole vehicle aripiprazole

Cd40 1.01 ± 0.06 0.88 ± 0.11 1.30 ± 0.17 1.35 ± 0.24

Cd68 1.01 ± 0.07 0.96 ± 0.09 0.96 ± 0.16 1.10 ± 0.22

Arg1 1.06 ± 0.15 1.48 ± 0.22 1.39 ± 0.16 1.56 ± 0.17

Igf-1 1.01 ± 0.05 1.06 ± 0.02 1.27 ± 0.08 * 1.26 ± 0.07

qRT-PCR revealed no significant differences in any measured cortical parameters in
the offspring from any experimental group of the first cohort (Table 3A).

As per the gene expression in the frontal cortices of the rats from the second cohort,
we detected a higher mRNA level of Cd68 (0.87 ± 0.05 control + vehicle vs. 1.18 ± 0.11 LPS
+ vehicle, F(1,31) = 5.91, p = 0.0222) and an increasing trend in Arg1 (1.12 ± 0.23 control +
vehicle vs. 2.04 ± 0.52 LPS + vehicle, F(1,20) = 14.71, p = 0.0952) level due to prenatal LPS
exposure. Subsequent 14-day administration of quetiapine normalized Cd68 (1.18 ± 0.11
LPS + vehicle vs. 0.86 ± 0.09 LPS + quetiapine, F(1,31) = 6.20, p = 0.0259) expression
(Table 3B).

Considering the animals from the third cohort, the LPS-treated group was character-
ized by upregulated expression of Igf-1 (1.01 ± 0.05 control + vehicle vs. 1.27 ± 0.08 LPS +
vehicle, F(1,19) = 14.38, p = 0.0103). We did not note any impact of aripiprazole injections on
the evaluated microglia-associated markers (Table 3C).

3.4. Levels of Pro- and Anti-Inflammatory Cytokines in the Frontal Cortices of the Offspring

Concurrently, we determined the protein levels of selected pro- (IL-1β, IL-6, TNF-α)
and anti-inflammatory (IL-4, IL-10) factors that are crucial in the immune response and
microglial activation in the frontal cortices of the prenatally LPS-subjected animals and the
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effect of the administration of antipsychotics in adulthood on these parameters (Figure 3,
Figure 4).

In the first cohort, we observed a decreasing tendency in IL-1β (3.33 ± 0.40 control
+ vehicle vs. 2.27 ± 0.11 LPS + vehicle, F(1,16) = 4.90, p = 0.0975) level resulting from LPS
exposure. ELISA analysis presented no significant differences in any of the quantified
cortical protein levels after chlorpromazine injections (Figure 3).

Regarding the results obtained from the second cohort, we found a reduction in IL-1β
(4.49 ± 0.48 control + vehicle vs. 3.33 ± 0.37 LPS + vehicle, F(1,20) = 6.82, p = 0.0375) level
in the frontal cortices of the LPS-treated offspring. Quetiapine administration resulted in
trend of reduced IL-1β (4.49 ± 0.48 control + vehicle vs. 3.58 ± 0.30 control + quetiapine,
F(1,20) = 3.54, p = 0.0840) level in control rats (Figure 3).

As in the case of the third cohort, prenatal contact with LPS led to a decreasing
tendency in the cortical level of IL-1β (52.46 ± 1.90 control + vehicle vs. 42.62 ± 3.59 LPS +
vehicle, F(1,24) = 4.46, p = 0.0567). No significant impact of aripiprazole on the examined
proteins was detected in either the control or LPS-exposed animals (Figure 3).
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Along with these results, we did not observe any changes in the levels of IL-6 and
TNF-α either after prenatal exposure to LPS or chlorpromazine, quetiapine or aripiprazole
medication in any of the rat cohorts (Figure 3).

Among the tested markers of the anti-inflammatory profile, we found a decreasing
tendency in IL-4 (0.87 ± 0.06 control + vehicle vs. 0.68 ± 0.04 control + chlorpromazine,
F(1,16) = 0.58, p = 0.0503) level after chlorpromazine treatment in the control group from the
first cohort. Statistical analysis exhibited no effect of either LPS or the drug on IL-4 and
IL-10 protein levels (Figure 4).

The ELISA results for the cortical homogenates of the offspring from the second cohort
revealed no alterations in the estimated cytokines levels after prenatal LPS exposure or the
later quetiapine injections (Figure 4).

In the frontal cortices of the rats prenatally subjected to LPS from the third cohort,
we showed a decline in IL-4 (0.79 ± 0.05 control + vehicle vs. 0.58 ± 0.06 LPS + vehicle,
F(1,20) = 10.66, p = 0.0056) level and a decreasing tendency in IL-10 (62.34 ± 2.99 control
+ vehicle vs. 51.75 ± 3.02 LPS + vehicle, F(1,24) = 5.43, p = 0.0745) level compared to
control animals. Simultaneously, the cortical level of IL-4 (0.79 ± 0.05 control + vehicle vs.
0.65 ± 0.05 control + aripiprazole, F(1,20) = 2.86, p = 0.0467) was reduced after aripiprazole
treatment in the control group (Figure 4).

3.5. Cx3cl1, Cx3cr1, Cd200, Cd200r, Cd40, Cd68, Arg1 and Igf-1 mRNA Expression in the
Hippocampi of the Offspring

Having found that quetiapine exhibited the most prominent effect on the PPI from the
selected antipsychotics, but the impact of this drug on the gene expression of measured
parameters in the frontal cortex was minimal, we additionally analysed the mRNA levels of
Cx3cl1, Cx3cr1, Cd200, Cd200r, Cd40, Cd68, Arg1 and Igf-1 in the hippocampi of the offspring
from the second cohort (Table 4).
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Table 4. The impact of prenatal exposure to LPS and subsequent chronic treatment with quetiapine
on the gene expression of Cx3cl1, Cx3cr1, Cd200 and Cd200r (A) as well as Cd40, Cd68, Arg1 and Igf-1
(B) in the hippocampi of the offspring. The mRNA levels were measured using qRT-PCR with n = 7–8
in each group. The results are presented as the average fold change ± SEM.

(A)

Factor
Gene Expression in the Hippocampi

control LPS
vehicle quetiapine vehicle quetiapine

Cx3cl1 1.02 ± 0.08 1.56 ± 0.27 0.97 ± 0.16 1.31 ± 0.25

Cx3cr1 1.10 ± 0.18 1.91 ± 0.37 1.17 ± 0.26 1.47 ± 0.28

Cd200 1.02 ± 0.07 1.12 ± 0.09 1.03 ± 0.11 1.13 ± 0.14

Cd200r 1.20 ± 0.29 1.90 ± 0.43 1.28 ± 0.34 1.64 ± 0.25

(B)

Factor
Gene Expression in the Hippocampi

control LPS
vehicle quetiapine vehicle quetiapine

Cd40 1.05 ± 0.13 1.42 ± 0.23 1.07 ± 0.20 1.34 ± 0.24

Cd68 1.02 ± 0.07 1.26 ± 0.06 1.02 ± 0.14 1.20 ± 0.17

Arg1 1.04 ± 0.11 1.27 ± 0.14 1.11 ± 0.09 1.32 ± 0.11

Igf-1 1.02 ± 0.08 1.27 ± 0.12 1.04 ± 0.10 1.35 ± 0.19

The hippocampal gene expression of the chosen factors was not altered by exposure
to LPS during the prenatal period, and the administration of quetiapine did not affect these
parameters (Table 4A,B). However, analyses of the homogenates generated from the control
rats showed a growing tendency in the levels of Cx3cl1 (1.02 ± 0.08 control + vehicle vs.
1.56 ± 0.27 control + quetiapine, F(1,28) = 4.61, p = 0.0896) and Cx3cr1 (1.10 ± 0.18 control
+ vehicle vs. 1.91 ± 0.37 control + quetiapine, F(1,28) = 3.84, p = 0.0730) after chronic drug
delivery (Table 4A).

4. Discussion

The present study aimed to investigate the potential effect of chronic antipsychotic
drugs on behavioural deficits observed in adult offspring prenatally treated with LPS as
well as the cortical and/or hippocampal expression of the Cx3cl1-Cx3cr1 and Cd200-Cd200r
axes, which are essential in the determination of microglial profile and immune response.

We confirmed that MIA, induced by LPS treatment, leads to behavioural disturbances
expressed as deficits in sensorimotor gating in adult offspring. Furthermore, among the
tested antipsychotic drugs, quetiapine alleviated the altered behaviour and attenuated MIA-
upregulated expression of Cd68 in the frontal cortex. Furthermore, quetiapine moderately
modulated the hippocampal mRNA levels of the Cx3cl1-Cx3cr1 axis.

As previously described [13,16,19–21], our research was conducted in a neurodevel-
opmental rat model of schizophrenia, the principle of which involves the administration
of bacterial endotoxin (LPS) to pregnant females throughout pregnancy (see details in the
Materials and Methods section). This experimental approach has demonstrated validity at
the face [13,67], predictive [16,21] and construct [19,20,67] levels. Prenatal exposure to LPS
induces behavioural deficits expressed as disturbances in exploration [20,67], spontaneous
and amphetamine-stimulated locomotor activity changes [21], social interaction deficits [67]
and the presence of anxiety behaviour [19]. It has also been reported that the antenatal
administration of LPS generates deficits in sensorimotor gating in an age-dependent man-
ner [13,20]. Herein, we again confirmed this phenomenon showing that LPS treatment
during pregnancy leads to behavioural disturbances expressed as an altered PPI in adult
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offspring. It is particularly important in terms of schizophrenia symptoms given that,
despite being also observed in several other neuropsychiatric disorders [68], impaired
sensorimotor gating is considered one of the behavioural hallmarks of this condition [69].
This feature reflects the brain’s ability to filter out irrelevant information before it reaches
high levels of conscious processing [70] and can be displayed as PPI, which occurs when a
weak, subthreshold stimulus presented prior to an intense startling stimulus inhibits the
startle response [71].

In our study, PPI was applied not only as a useful tool in evaluating the impact of
environmental risk factors (in the form of prenatal exposure to LPS) during development
but also in the context of its possible pharmacological modulation by chronic treatment
with antipsychotics. For this purpose, in the experiments described here, we introduced
three antipsychotics that strongly varied in pharmacological action profiles, specifically
chlorpromazine, quetiapine and aripiprazole.

Chlorpromazine belongs to the group of phenothiazines that are primarily used for the
treatment of schizophrenia and acts mainly in subcortical structures of the brain [72]. It is
not a selective drug, as it interacts with DA (mainly with D2 receptors), noradrenergic, glu-
tamatergic (GLU), 5-HT and histaminergic systems and with some intracellular processes,
such as inhibition of nitric oxide synthase or the activity of calmodulin and protein kinase
C [73,74]. Notably, PPI deficits can be observed in rats treated with psychotomimetic agents,
including DA agonists and GLU antagonists [75]. DA agonist-induced changes in PPI are
reversed by both typical and atypical antipsychotics, whereas those generated by GLU
antagonists seem to be alleviated only by atypical antipsychotics [75]. However, regarding
chlorpromazine, available data on its impact on PPI still appear to heavily depend on the
model applied in the research [76–78]. In the present study, we did not observe a favourable
effect of this drug on the PPI deficit, which corresponds with some previously published
reports [16,21]. Contrary, for the weakest prepulse (70 dB), transitional PPI reduction was
found in the MIA model after chlorpromazine administration. A similar effect was not
observed in control animals as well as for other prepulse intensities (75 and 80 dB), which
suggests that it was most likely unrelated to the effect of this drug on motor functions.
Since chlorpromazine is not a selective compound, the modulatory impact of MIA on the
profile and sensitivity of multiple receptors affected by this drug (including noradrenergic
and histaminergic) should not be excluded. However, this phenomenon requires further
research. Yet, in the LPS-produced MIA model, chlorpromazine showed other beneficial
effects, including reduction of amphetamine-induced hyperactivity, normalisation of the
HPA axis and deficits in the level of glucocorticoid receptors in the hippocampus as well as
balancing MIA-evoked changes in the peripheral immune response (including cytokines
IL-1β, TNF-α and IL-2) [16,21].

Support for the application of atypical antipsychotics in schizophrenia therapy comes,
among others, from their efficacy against negative symptoms and, to some extent, impaired
cognitive functions [79–81]. Nevertheless, in the present study, chronic 14-day treatment
with aripiprazole showed no influence on the PPI deficit in the LPS-subjected offspring.
Some data demonstrated that aripiprazole ameliorates behavioural disturbances in mice
following prenatal polyinosinic:polycytidylic acid (poly I:C) treatment [82]. Interestingly,
the antipsychotic effect of this drug in the MK-801-induced rat model of schizophrenia
seems to be related to its action both through 5-HT1A and D1 receptors, as cotreatment
with antidepressants potentiates the pro-cognitive effects of aripiprazole [83]. Clinical
studies have reported that this drug significantly ameliorates a broad range of symptoms
in schizophrenia and schizoaffective disorders over a short-term period [84,85]. Fejgin and
colleagues suggested that the preclinical efficacy of short-term aripiprazole treatment in
improving the impairment of prepulse inhibition may rely on its partial agonism leading
to DA stabilising effects [86]. This action can be mediated differently by the dose of the
drug and is highly dependent on the affected brain structure [87]. Therefore, the lack
of favourable aripiprazole influence in the PPI test may result from the specificity of the
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MIA model employed and requires further investigation using a different schedule of
experiments or drug administration (time, dose, etc.).

The most important finding of our multicohort study is the observation that quetiapine
was able to normalise the PPI disturbances in adult male offspring in the MIA model. As
presented in the literature, this atypical antipsychotic has shown efficacy in treating positive
and negative symptoms as well as cognitive impairment in schizophrenia patients [88].
Moreover, consistent with our data, quetiapine attenuated schizophrenia-like behaviours,
including not only sensorimotor gating deficits but also hyperactivity and memory impair-
ment, in the MK-801-treated mouse model [88]. Therefore, the present research reaffirmed
the face and construct validity of the use of MIA in modelling schizophrenia-like symptoms
and the predictive validity of quetiapine administration.

The complete picture of antipsychotic drug action in the treatment of schizophre-
nia has not been fully elucidated. In addition to the affinity for neurotransmitter recep-
tors [89,90], their potential modulatory role on inflammatory processes in the emergence of
schizophrenia-like symptoms is strongly postulated [91]. Growing evidence suggests that
proper neuron–microglia interactions are of key importance for the control of the immune
response, whereas dysfunction of this dynamic crosstalk leads to microglial activation and
exaggerated inflammation [11,28,92,93]. Our data strongly suggest that changes in the
CX3CL1-CX3CR1 and CD200-CD200R axes observed in the MIA model can be crucial in
the development of behavioural disturbances [13]. Most malfunctions were observed in the
brains of 7-day-old offspring, albeit some were long-lasting and present in adulthood [13].
Therefore, the question arises whether antipsychotics, specifically chlorpromazine, with
high immunosuppressive potential [21,94], as well as atypical drugs with modulatory prop-
erties on glial activity [50,51,95], can affect the mentioned ligand-receptor communications
and consequently, microglial phenotype.

The most striking finding from the present study was the upregulation of Cd200r
expression in the frontal cortex of the animals in the MIA model. Additionally, we demon-
strated variations in the ligand (Cd200) as well as the Cx3cl1-Cx3cr1 axis levels. Chronic
treatment with antipsychotics did not significantly affect these modifications, although
quetiapine showed a positive trend for an increase in Cx3cl1-Cx3cr1 expression in the
hippocampus, in which deficits in neurotransmission (e.g., GABAergic) are particularly
strongly expressed in male offspring in the MIA model [67]. To the best of our knowledge,
the above-described observations are the first to address this issue and are thereby difficult
to interpret.

As it is commonly accepted that both axes play a crucial role in the regulation of
microglial activation, in the next set of experiments, we analysed the expression of selected
pro- (Cd40, Cd68) and anti- (Arg1, Igf-1) inflammatory markers after administration of
antipsychotic drugs in the MIA model. The only significant observation was quetiapine’s
ability to lower elevated Cd68 expression in the frontal cortex of adult offspring prenatally
treated with LPS. CD68 is a member of a growing family of haematopoietic mucin-like
molecules that are present in macrophages/microglia [96]. It is not only a marker of cell
proliferation but also carries the potential to label lysosomal and endosomal transmem-
brane glycoproteins of microglia, indicating phagocytic activity [97]. Previous literature
looking at CD68 expression in control and schizophrenia cases has reported ambiguous
outcomes [98,99].

Microglial dysfunction and neuroinflammation are thought to contribute to the patho-
genesis of schizophrenia [100,101]. Nevertheless, given that schizophrenia is not a pro-
gressive but a chronic condition, it is possible that changes in glial dynamics may be more
pronounced closer to disease onset, and these disturbances would have subsided later in
time. In young 7-day-old offspring that were prenatally exposed to LPS, we found not only
upregulation of cortical Cd40 and IBA1 levels but also various changes in the hippocampus,
for example, enhanced mRNA expression of Il-1β, Tnf-α, Arg1, Tgf-β and Il-10 [13]. Hence,
microglial activation is not a sustained event within a schizophrenia-like model [102],
which may, at least in part, explain the slight changes observed in the present study.
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Our results contradict some observations in other experimental models, in which
antipsychotics have been shown to modulate glial reactivity. It has been found that the
anti-inflammatory properties (suppression of IL-1β and IL-2 from microglial cells acti-
vated with LPS) of chlorpromazine may be partly derived from their ability to inhibit
microglial proton currents [103]. However, it should be noted that chronic treatment with
phenothiazines itself might have pro-oxidant effects because chlorpromazine metabolites
have been shown to undergo auto-oxidation, generating hydrogen peroxide [104,105].
Simultaneously, aripiprazole not only inhibits interferon-γ-induced microglial activation
and superoxide generation [53,106] but also limits oligodendrocyte damage caused by
activated microglial cells [107]. In RAW264.7 cells, aripiprazole suppresses the expres-
sion of proinflammatory genes, such as cyclooxygenase-2, inducible NO synthase and
TNF-α through inhibition of both the AP-1 and NF-κB pathways [95]. Interestingly, the
antipsychotic activity of aripiprazole in a schizophrenia-like poly I:C-induced model may
be related to the limitation of microglial inflammatory reactions as well as TRPM7 receptor
suppression [108]. Regarding quetiapine, it inhibits NO generation by activated microglia
in vitro [49]. Moreover, this drug reduces the microglial number in the hippocampus and
attenuates Aβ1-42-induced glial activation in APP/PS1 transgenic mice [51,109]. However,
in the context of the present study, of crucial importance seems to be the observation that
the efficiency of quetiapine’s anti-inflammatory action appears to be dependent on the
“previous” inflammatory activation state of cells. For example, in nonactivated conditions,
this drug triggered a consistent inflammatory response (including a high level of NO,
proinflammatory gene expression and diminished level of IL-10). In contrast, after stimu-
lation, the effects of quetiapine revealed an anti-inflammatory profile [110]. This finding
points to its immunomodulatory potential, which was also observed in clinical studies in
first-episode psychosis patients [111]. Therefore, we hypothesise that the limited impact of
quetiapine on the neuron–microglia axes and, consequently, microglial activation may be
related to the absence of their activation in offspring prenatally treated with LPS.

Finally, to further characterise the influence of antipsychotics on the immune response
in the MIA model, we evaluated their potential impact on cytokine release. However, the
consequence of MIA on the levels of proinflammatory cytokines (IL-6, TNF-α, IL-1β) in the
frontal cortex of adult rats was marginal. In addition, we did not find an effect of chronic
administration of quetiapine and other drugs on the levels of these proteins.

Recently, a retrospective analysis revealed elevated peripheral and/or cerebrospinal
fluid IL-6 levels in schizophrenic patients [112]; however, there are also reports of reduced
production of this cytokine [8]. Simultaneously, other research does not find a strict positive
correlation between the severity of positive symptoms, cognitive deficits and enhanced
levels of proinflammatory cytokines, such as IL-6, IL-1β and TNF-α [113–115]. Moreover,
inflammation leads to structural brain changes via activation of microglia and/or astrocytic
dysfunction, which determine the alterations in proinflammatory factors depending on
the area of the brain [116]. It thus follows that the level of cytokines and the effect of
the administered drugs are largely associated not only with the “previous” status of cell
activation but also with many other factors, such as the experimental procedure, the
age of animals and/or patients, the course of illness and the pharmacotherapy and its
duration, which undoubtedly complicates the ability to obtain unambiguous results [117].
An alternative (but not mutually exclusive) mechanism of the lack of proinflammatory
status in the MIA model may relate to the upregulation of the sIL-1Ra protein level,
which can block the inflammatory effects typically associated with IL-1 signalling [118].
Similarly, a significant increase in sTNFR levels observed in schizophrenic patients [119]
can potentially limit proinflammatory processes [120,121].

Regarding IL-10 level, we did not detect changes in the frontal cortices of the adult
offspring either from the MIA group or after the administration of antipsychotics. Although
quetiapine and its metabolite norquetiapine appear to have an anti-inflammatory action, in
particular on IL-10 and IFN-γ following acute LPS challenge in serum and brain, this effect
did not translate into behavioural changes [122]. Additionally, there was no evidence that
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the modulation of these changes influenced the levels of other cytokines, which indicates a
rather partial immunomodulatory potential of both drugs in the LPS-induced model [122].

The involvement of IL-4 in the pathogenesis of schizophrenia has been widely investi-
gated, yet published data remain highly heterogeneous [123,124]. In the present study, we
showed a reduction in the IL-4 level in the group of MIA animals. This observation corre-
sponds with several reports presenting significantly lower IL-4 levels in patients suffering
from schizophrenia compared to healthy controls [125–127]. Furthermore, in our conditions,
the detected change in cortical IL-4 production was not affected by exposure to any of the
examined drugs. A few meta-analyses have confirmed no disturbances in IL-4 levels after
treatment with antipsychotics [128,129]. However, in line with the inconsistency related to
basal IL-4 levels in schizophrenia, there is also contradictory evidence concerning the effects
of pharmaceuticals on this cytokine. Some findings revealed that treatment with typical or
atypical antipsychotics or a combination of them led to decreased levels of IL-4 [130–132].
Herein, we noted a decline in IL-4 expression after aripiprazole treatment in the control
offspring. Romeo et al. described a similar trend in their meta-analysis referring to the
administration of this drug [129]. Nevertheless, the role of IL-4 in schizophrenia-related
disturbances remains ambiguous and undoubtedly requires further investigation.

Overall, the present study accentuates the complexity of the possible link between
chronic treatment with antipsychotics and behavioural schizophrenia-like disturbances
as well as the axes controlling neuron–microglia communication and immune response
in prenatally LPS-subjected adult male rats. Given that our data failed to establish an
unequivocal association between these aspects, we feel it is reasonable to conclude that
the beneficial impact of quetiapine on the onset of PPI malfunction in adulthood was
not primarily the result of changes either in the Cx3cl1-Cx3cr1 and Cd200-Cd200r axes or
the pronounced modulation of microglia activation by this drug. However, it is neces-
sary to mention once again that such a relationship cannot be fully excluded due to the
double-faced immunomodulatory mechanism of quetiapine action. Nevertheless, our study
provided the basis for further research to identify the CX3CL1-CX3CR1 and/or CD200-
CD200R axes as new potential targets for antipsychotics in a model of schizophrenia-like
behavioural disturbances.
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124. Şimşek, Ş.; Yıldırım, V.; Çim, A.; Kaya, S. Serum IL-4 and IL-10 Levels Correlate with the Symptoms of the Drug-Naive Adolescents
with First Episode, Early Onset Schizophrenia. J. Child Adolesc. Psychopharmacol. 2016, 26, 721–726. [CrossRef] [PubMed]

125. Na, K.-S.; Kim, Y.-K. Monocytic, Th1 and Th2 Cytokine Alterations in the Pathophysiology of Schizophrenia. Neuropsychobiology
2007, 56, 55–63. [CrossRef] [PubMed]

126. O’Brien, S.M.; Scully, P.; Dinan, T.G. Increased tumor necrosis factor-alpha concentrations with interleukin-4 concentrations in
exacerbations of schizophrenia. Psychiatry Res. 2008, 160, 256–262. [CrossRef] [PubMed]

127. Kim, Y.-K.; Myint, A.-M.; Verkerk, R.; Scharpe, S.; Steinbusch, H.; Leonard, B. Cytokine Changes and Tryptophan Metabolites in
Medication-Naïve and Medication-Free Schizophrenic Patients. Neuropsychobiology 2009, 59, 123–129. [CrossRef] [PubMed]

128. Tourjman, V.; Kouassi, É.; Koué, M.-È.; Rocchetti, M.; Fortin-Fournier, S.; Fusar-Poli, P.; Potvin, S. Antipsychotics’ effects on blood
levels of cytokines in schizophrenia: A meta-analysis. Schizophr. Res. 2013, 151, 43–47. [CrossRef] [PubMed]

129. Romeo, B.; Brunet-Lecomte, M.; Martelli, C.; Benyamina, A. Kinetics of Cytokine Levels during Antipsychotic Treatment in
Schizophrenia: A Meta-Analysis. Int. J. Neuropsychopharmacol. 2018, 21, 828–836. [CrossRef] [PubMed]

130. Noto, C.; Ota, V.K.; Gouvea, E.S.; Rizzo, L.B.; Spindola, L.M.N.; Honda, P.H.S.; Cordeiro, Q.; Belangero, S.I.; Bressan, R.A.;
Gadelha, A.; et al. Effects of Risperidone on Cytokine Profile in Drug-Naive First-Episode Psychosis. Int. J. Neuropsychopharmacol.
2015, 18, 1–8. [CrossRef]
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