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Abstract: A healthy regime is fundamental for the prevention of cardiovascular diseases (CVD). In
inherited channelopathies, such as Brugada syndrome (BrS) and Long QT syndrome (LQTS), unfortu-
nately, sudden cardiac death could be the first sign for patients affected by these syndromes. Several
known factors are used to stratify the risk of developing cardiac arrhythmias, although none are
determinative. The risk factors can be affected by adjusting lifestyle habits, such as a particular diet,
impacting the risk of arrhythmogenic events and mortality. To date, the importance of understanding
the relationship between diet and inherited channelopathies has been underrated. Therefore, we
describe herein the effects of dietary factors on the development of arrhythmia in patients affected by
BrS and LQTS. Modifying the diet might not be enough to fully prevent arrhythmias, but it can help
lower the risk.

Keywords: Brugada syndrome; long QT syndrome; diet; ingredients; glucose; ketone bodies; ROS;
sudden cardiac death

1. Introduction

A healthy regime is fundamental for the prevention of cardiovascular diseases (CVD).
CVD are widely known to be responsible for 33% of all deaths worldwide [1]. One of
the multiple types of cardiac disorders is arrhythmia, which refers to a group of several
conditions that interfere with heart rhythm. Among different types of cardiac arrhythmias,
there are inherited channelopathies (IC), including long QT syndrome (LQTS), short QT
syndrome (SQTS), Asian sudden unexplained nocturnal death syndrome (SUNDS), cate-
cholaminergic polymorphic ventricular tachycardia (CPVT), and Brugada syndrome (BrS).
Unfortunately, sudden cardiac death (SCD) could be the first symptom of patients affected
by IC. Risk stratification and current diagnosis have been primarily focused on clinically
detectable changes and abnormalities in the heart structure and function [2,3]. Several
known markers are used to predict cardiac arrhythmias, although none are specific for
patients affected by inherited channelopathies.

Several risks factors, such as obesity, diabetes, sleep apnea, anorexia nervosa, elec-
trolyte imbalances, and unhealthy food consumption, are associated with these inherited
channelopathies (Figure 1). Therefore, it is very important to address these risk factors in
order to manage and prevent adverse outcomes. Most of the correlations are well estab-
lished, and, indeed, these risks factors can be affected by adjusting lifestyle habits, such
as a particular diet, impacting the risk of arrhythmogenic events and mortality. Thus, the
aim of this review is to present objective insights into different daily diets. Specifically,
here, we highlight the effects of various dietary factors and their suspected roles in the
development of arrhythmias in BrS and LQTS, providing a summary of current literature
and presenting questions that need to be the subject of future studies. This information is
desperately needed to advise the patients diagnosed with these syndromes in the clinic.
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Figure 1. Cardiac arrhythmias, such as Brugada syndrome and long QT syndrome, can be triggered by a variety of factors, 
but maintaining a certain lifestyle may reduce these risks. 

2. Brugada Syndrome and Long QT Syndrome 
Brugada syndrome and long QT syndrome are among the most common inherited 

cardiac arrhythmias, with high risks of malignant arrhythmias, and they present with ab-
normalities in the 12-lead electrocardiogram (ECG): ST-segment elevation and prolonged 
QT interval, respectively.  

BrS is associated with right ventricular conduction abnormalities and coved-type ST-
segment elevation in the right precordial leads of the ECG [4]. The syndrome is clinically 
characterized by syncope episodes and SCD due to ventricular fibrillation [5]. The major-
ity of the patients are asymptomatic, and they are usually diagnosed by chance due to the 
dynamicity of the BrS ECG pattern, since it fluctuates throughout the day [6]. Moreover, 
these fluctuations can be induced by several factors, such as fever, hypercalcemia, diabe-
tes, excessive consumption of food or alcohol, hyperkalemia, and certain drugs [7]. The 
coved-type ST-segment elevation is diagnostic when the “Type 1” Brugada pattern is seen, 
which can be found either on a spontaneous ECG or after a drug challenge with a class Ia 
anti-arrhythmic drug, such as ajmaline, which can provoke the Type 1 pattern so that the 
syndrome can be discovered [8]. The true incidence of BrS is currently unknown, due to 
the lack of availability of centers that can perform the drug challenge to unmask the syn-
drome. This is because these tests must be performed in specialized centers capable of 
specialized resuscitation due to the risks associated with the drug ajmaline [9], which can 
potentially induce life-threatening ventricular arrhythmias (VAs). For this reason, alt-
hough used widely in Europe, the drug ajmaline is not used in the United States of Amer-
ica, due to risks associated with this drug. The BrS is believed to be genetic in nature, 
described as being oligogenic in nature, although it may occur in a minority of families as 
a Mendelian condition [10,11].  

LQTS is defined by a variable degree of QT prolongation, absence of structural heart 
diseases, and it can manifest in three different subtypes (LQTS1, LQTS2, and LQTS3). The 
syndrome is clinically characterized by syncope episodes and SCD due to ventricular tach-
yarrhythmias [12]. LQTS can be congenital or acquired, therefore, a prolonged QT interval 
may result from genetic abnormalities, mineral imbalances, or certain medications [13]. It 
manifests as ECG abnormalities, including prolonged QT-interval, Torsade de Pointes 

Figure 1. Cardiac arrhythmias, such as Brugada syndrome and long QT syndrome, can be triggered by a variety of factors,
but maintaining a certain lifestyle may reduce these risks.

2. Brugada Syndrome and Long QT Syndrome

Brugada syndrome and long QT syndrome are among the most common inherited
cardiac arrhythmias, with high risks of malignant arrhythmias, and they present with
abnormalities in the 12-lead electrocardiogram (ECG): ST-segment elevation and prolonged
QT interval, respectively.

BrS is associated with right ventricular conduction abnormalities and coved-type ST-
segment elevation in the right precordial leads of the ECG [4]. The syndrome is clinically
characterized by syncope episodes and SCD due to ventricular fibrillation [5]. The majority
of the patients are asymptomatic, and they are usually diagnosed by chance due to the
dynamicity of the BrS ECG pattern, since it fluctuates throughout the day [6]. Moreover,
these fluctuations can be induced by several factors, such as fever, hypercalcemia, diabetes,
excessive consumption of food or alcohol, hyperkalemia, and certain drugs [7]. The coved-
type ST-segment elevation is diagnostic when the “Type 1” Brugada pattern is seen, which
can be found either on a spontaneous ECG or after a drug challenge with a class Ia anti-
arrhythmic drug, such as ajmaline, which can provoke the Type 1 pattern so that the
syndrome can be discovered [8]. The true incidence of BrS is currently unknown, due
to the lack of availability of centers that can perform the drug challenge to unmask the
syndrome. This is because these tests must be performed in specialized centers capable of
specialized resuscitation due to the risks associated with the drug ajmaline [9], which can
potentially induce life-threatening ventricular arrhythmias (VAs). For this reason, although
used widely in Europe, the drug ajmaline is not used in the United States of America, due
to risks associated with this drug. The BrS is believed to be genetic in nature, described as
being oligogenic in nature, although it may occur in a minority of families as a Mendelian
condition [10,11].

LQTS is defined by a variable degree of QT prolongation, absence of structural heart
diseases, and it can manifest in three different subtypes (LQTS1, LQTS2, and LQTS3). The
syndrome is clinically characterized by syncope episodes and SCD due to ventricular tach-
yarrhythmias [12]. LQTS can be congenital or acquired, therefore, a prolonged QT interval
may result from genetic abnormalities, mineral imbalances, or certain medications [13].
It manifests as ECG abnormalities, including prolonged QT-interval, Torsade de Pointes
(TdP), and ventricular fibrillation (VF) [14]. LQTS is usually diagnosed by measuring the
QT interval on the ECG and it can include adrenalin and isoproterenol test. Moreover,
epinephrine test is able to unmask the prolongation of the QT intervals in patients with
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‘concealed LQTS’ [15]. The ECG may result normal at rest but based on the subtype, ECG
abnormalities can be triggered by physical stress, emotional stress, dietary changes, certain
drugs, or during sleep or at rest [16,17], and it has also been associated with metabolic
syndromes and eating disorders [13]. LQTS primarily affects young people and is one of
the main causes of SCD in this population [18].

3. BrS ECG Pattern Triggered by Food or Alcohol Intake

Several studies have repeatedly stressed that the BrS ECG pattern can appear after
the consumption of alcohol [19,20] or caused by glucose-induced insulin secretion after
the ingestion of a meal [21]. A 29-year-old BrS patient experienced several episodes of
palpitation and syncope after alcohol consumption [22]. Another case report described
a 25-year-old man who experienced three syncope events while consuming alcohol [23].
In yet another study, a 21-year-old man was diagnosed with BrS after he developed two
episodes of syncope after the consumption of a high quantity of alcohol; specifically,
his ECG, during the syncope, revealed ventricular fibrillation and the elevation of the
ST-segment at high intercostal space [24]. In addition, a 56-year-old male experienced
cardiac arrest while asleep after the consumption of one bottle of wine. The patient, five
years previously, already had an abnormal ECG showing an elevation of the ST-segment,
however, unfortunately, this abnormality was not considered important as a diagnostic
criteria for BrS [25]. A nine-year-old boy, who was diagnosed with BrS by an ajmaline test,
experienced syncope and cardiopulmonary arrest after the ingestion of a large hot dog [26].
Another case report of a 53-year-old man, who had been diagnosed with BrS after four
weeks of Ramadan-fasting, had syncope events and several sudden cardiac arrests after
the ingestion of a large meal [27].

Glucose and insulin intravenous infusion in patients affected by BrS results in a
significant accentuation of the abnormal J-ST configuration [26]. In one study, 75% of BrS
patients, compared to the controls, had a higher incidence of ECG fluctuation after an oral
glucose tolerance test (OGTT) [28]. Although it is widely understood that large meals can
trigger the BrS ECG pattern, the cellular mechanism responsible for the appearance of this
ECG pattern by high levels of glucose and/or insulin concentration in BrS is still unclear.

In conclusion, the relationship between large meal intake, alcohol, and the develop-
ment of the BrS ECG pattern is still unclear. However, it seems that the interplay between
them is very relevant and should be investigated further.

4. Cortisol and Sudden Death

The majority of sudden cardiac deaths seem to occur from 4 am to 6 am, so in a period
of nocturnal sleep in which cortisol concentration tends to be lower than in other periods
of the day [29]. This observation suggests a role for abnormal sympathetic activity, which
has been observed in a SUNDS cohort (sudden unexplained death during nocturnal sleep),
and SUNDS is still considered to share common genetic causes with BrS [30,31].

Moreover, it is very well known that cortisol can affect the incidence and the clini-
cal manifestations of sudden cardiac death. More recently, the role of the enzyme 11β-
hydroxysteroid dehydrogenase (11β-HSD1) has been considered [32]. This enzyme is one
of the most promising molecular targets to treat Type 2 diabetes mellitus and its compli-
cations [33]. Basically, 11β-HSD1 is able to catalyze the production of cortisol, and the
levels of 11β-HSD1 correspond to the levels of cortisol concentration [29]. High concen-
trations of cortisol have already been demonstrated to be associated with both cardiac
arrhythmias and diabetes mellitus [34]. The drug-mediated 11β-HSD1 inhibition alleviates
most metabolic abnormalities associated with both diabetes and a cortisol concentration
beyond normal levels [32]. The expression of 11β-HSD1 can be induced by high-fat diet in
mouse models [35], suggesting the usefulness to assess the activity of 11β-HSD1 among
human patients with BrS. Therefore, these mechanisms should be further explored to better
understand why the majority of sudden deaths occur during this time period.
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5. The Mechanisms behind Food and Alcohol Intake as a Trigger for BrS ECG
Pattern Manifestation

The mechanism behind the manifestation of ventricular arrhythmias after ingestion
of alcohol or large amounts of food is still uncertain. The main product produced by the
metabolism of fatty acids (FA), carbohydrates, ketones, and amino acids [36] is adenosine
triphosphate (ATP), which is essential as energy source for cardiac work. The energy
metabolic pathways include (1) glycolysis, where ATP is produced by glucose oxidation,
(2) the citric acid cycle (Krebs cycle or TCA cycle), where guanosine-triphosphate (GTP),
nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) are
produced by acetyl-CoA oxidation, (3) the electron-transport chain (ETC), where most
of the ATP is produced, and (4) fatty acid beta-oxidation, where FAs breakdown into
acetyl-CoA and they are used by the TCA cycle. Acetyl-coenzyme A (CoA) is produced
by either oxidative decarboxylation of pyruvate from glycolysis, beta-oxidation of long
chain fatty acids, or oxidative degradation of some amino acids [37]. CoA is synthesized
within the mitochondria, and it is the main substrate for the TCA cycle, which is a series of
enzyme catalyzed reactions that generate energy sources via oxidative reactions. NADH
and FADH2 are generated, then they enter into the ETC and, together with oxygen, they
generate ATP through a redox reaction. The ATP level in the cells is maintained constant via
two mechanisms: the production of ATP by oxidative phosphorylation and the hydrolysis
of ATP [38]. In order to sustain normal cardiac activity in a healthy human heart, if there is
an increase of fatty acid oxidation, there is also a decrease of pyruvate oxidation, and thus
a glucose oxidation, and vice versa [39].

However, dysfunction of glucose metabolism, whether hypoglycemia or hyperglycemia,
could have detrimental effects on cardiomyocytes. Several studies describe the deleterious
effect of high glucose and alcohol on cardiomyocytes. In addition, the deprivation of glucose
results in cardiac myocyte apoptosis [40–42]. A study conducted on rat cardiomyocytes
demonstrated that high glucose-induced mitochondrial hyperpolarization increases cell
injury [43]. Moreover, an in vitro induction of high glucose resulted in cardiomyocyte
apoptosis [44]. Furthermore, several studies have demonstrated that ethanol depresses
myocardial contractility both in humans and animals [45,46]. The first enzyme involved
in alcohol metabolism is alcohol dehydrogenase (ADH), which catalyzes the conversion
of ethanol into acetaldehyde, which is a reactive and toxic product that contributes to
the formation of reactive oxygen species (ROS) and reduces the oxidation process in liver
cells; the second enzyme involved is aldehyde dehydrogenase 2 (ALDH2), which converts
acetaldehyde into acetate, which is then ready to be incorporated into Acetyl CoA and then
entered into the TCA cycle. Indeed, a study conducted on 198 Japanese patients affected
by BrS demonstrated that arrhythmic events caused by the consumption of alcohol were
associated with the increased activity of the alcohol-metabolizing enzyme ADH1B in BrS
patients [47].

BrS is a complex disease that has been described to have an oligogenic model of
inheritance [10,48], and several possible genetic causes have been proposed, reviewed
elsewhere [10,49]. It has also been hypothesized that, when people are overstressed by
large meals and alcohol, especially during festivities, possible mutations in genes encoding
for SULT1A enzymes result in the inability of those enzymes to deactivate catecholamines in
the intestine, possibly inducing cardiac arrhythmia [50]. Finally, another hypothesis could
be that glucose metabolism dysfunction can interfere with the homeostasis of ATP and ROS
within the cardiomyocytes [51], possibly leading to arrhythmic events via mitochondria
defects and impaired intracellular cation homeostasis.

Adhering to the “Mediterranean diet” may reduce the risk of cardiovascular disease.
However, unfortunately, this diet is not clearly defined. However, generally, it consists
of eating smaller portions throughout the day, such as eating five smaller meals instead
of three larger ones. The Mediterranean diet could allow for max one glass of red wine
per day, but patients with cardiac arrhythmias are probably best to abstain completely
from alcohol, especially if even low amounts of alcohol make them feel unwell. In our
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experience, even one glass of alcohol can make some patients with BrS fell unwell. In
these cases, it is best to avoid alcohol completely. The Mediterranean diet includes a lot
of plant-based foods and olive oil, but tends to be low in saturated fat, meat, and dairy
products. Red meat could be eaten once per week. Fish are generally included minimum
twice per week, but oily fish, such as salmon, which are larger fish and could contain a
higher amount of mercury, should be limited to only once per week, although it is still
good because it contains a high amount of omega-3 fatty acids. Nuts are also good for
omega fatty acids and legumes are good for proteins.

6. Sudden Cardiac Death and QT Prolongation Triggered by Ketogenic Diet

While carbohydrates provide a readily available fuel for our body, fats and oils (lipids)
are considered our primarily source of stored energy. Fat enters into the body through food
and breaks down into triglycerides, and then into fatty acids and glycerol. Mitochondria
provide the main source of energy, and, therefore, the dysfunction of the two metabolic
pathways of β-oxidation of fatty acids (FAO) and oxidative phosphorylation (OXPHOS)
can lead to mitochondrial remodeling and the manifestation of heart failure, arrhythmias,
and ventricular hypertrophy [52,53].

Acute arrhythmic events associated with a ketogenic diet and calorie-restricted diets
can include QT prolongation, leading to sudden cardiac death, and these phenomena
have been described in children, adolescents, and adults [54–56]. A ketogenic diet is
characterized by very low carbohydrate intake, with 75% of calories derived from fat. This
carbohydrate (CHO) restriction helps to reduce blood glucose and insulin [57]. However, it
is known that, among several complications related to a ketogenic diet, there is selenium
deficiency, QT prolongation, and SCD [58–60]. A case report described a Torsades de Point
(TdP) event in a patient with a dual-chamber implantable cardioverter-defibrillator (ICD)
affected by LQT2 triggered by an uncommon factor: the ketogenic diet. Specifically, while
the patient was following a ketogenic diet, she experienced four episodes of ventricular
fibrillation, due to TdP, over the course of only three weeks. Selenium, ketone bodies, and
alcohol levels were all within normal limits. One month later, she stopped the ketogenic
diet, and the ICD showed no further arrhythmic episodes [17].

The majority of SCD cases of pediatrics patients are associated with QT interval pro-
longation and ketosis. In a report about two cases of death in two children on a ketogenic
diet for seizure control, both patients experienced QT prolongation and suffered from
selenium deficiency [58]. However, another case described a correlation between a QT
interval prolongation and ketogenic diets in the absence of electrolyte imbalance in chil-
dren [60]. Specifically, a direct correlation was observed between QT interval prolongation
and β-hydroxybutyrate concentrations, and between QT interval prolongation and sys-
temic acidosis [60]. Interestingly, in a study of 70 children with drug-resistance epilepsy,
receiving a ketogenic diet for a 12-month period, no deleterious effects on corrected QT in-
terval, QT dispersion, and Tp-e interval were reported [61]. Finally, another case described
a five-year-old boy who developed selenium deficiency, acute reversible cardiomyopathy
and ventricular tachycardia with prolonged QT interval after following a ketogenic diet to
treat refractory epilepsy. Then, his clinical status improved and got back to normal after
selenium supplementation [62].

In conclusion, the extended association between QT interval prolongation and/or
SCD and ketosis conditions/ketogenic diet has been described, and it raises the question
of whether ketosis may directly affect cardiac repolarization.

7. The Mechanisms behind Ketosis as a Trigger for the Manifestation of
QT Prolongation

The relationship behind the manifestation of ventricular arrhythmias and high-fat
and low-carbohydrate diet is still unclear. However, it is known that the heart uses fatty
acids as a main substrate for source energy, but it can also use ketone bodies. Ketone
bodies are produced by breaking down fatty acids and ketogenic amino acids in a process
called ketogenesis, previously reviewed elsewhere [63]. Briefly, ketogenesis involves the
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anabolic hormone insulin, and the catabolic hormones glucagon, cortisol, catecholamines,
and growth hormone, of which insulin and glucagon are considered the most crucial for
this pathway [64,65] (Figure 2). Ketone body concentration is lowered by insulin, which
promotes glucose uptake and oxidation. The reduction of circulating insulin levels is the
principal triggering event for accelerating ketogenesis [63]. Insulin acts on the adipose
tissue, liver, and the periphery; specifically, the low amount of insulin and a high amount of
glucagon in our blood stream trigger the augmentation of free fatty acids (FFAs), increase
uptake of FFAs into the mitochondria, and increase production of ketones in the liver, by
activating the acyltransferase system through the inhibition on malonyl-CoA synthesis.
Indeed, the ketogenesis pathway occurs primarily in the mitochondria of hepatocytes. FFAs
are converted into fatty acyl CoA (Acyl CoA), which enters into the hepatic mitochondria
through CPT1-mediated transport. Then Acyl CoA undergoes β-oxidation to produce
Acetyl CoA, which is only employed to generate ATP if there is enough oxaloacetate. When
carbohydrate intake is limited, such as in the ketogenic diet, the liver uses the majority of
oxaloacetate to produce glucose through gluconeogenesis; therefore, the liver diverts the
acetyl CoA to form ketone bodies. Thiolase enzyme (acetyl coenzyme A acetyltransferase
(ACAT)) catalyzes the reversible reaction where two molecules of acetyl CoA are combined
to generate acetoacetyl CoA. At this point, mitochondrial β-Hydroxy β-methylglutaryl-
CoA (HMG-CoA) synthase catalyzes a condensation reaction by adding an extra acetyl CoA
molecule onto the acetoacetyl CoA. Then, the enzyme HMG-CoA lyase cleaves the HMG-
CoA, which releases CoA and forms acetoacetate, the metabolized ketone body. Within the
mitochondrial matrix, 3-hydroxybutyrate dehydrogenase can reduce the acetoacetate into
two other ketone bodies: acetone and β-hydroxybutyrate (β-HB), through non-enzymatic
decarboxylation or by beta-hydroxybutyrate dehydrogenase, respectively. Moreover, the
ratio of NADH/NAD+ helps to maintain an equilibrium between acetoacetate and β-HB
within the mitochondria matrix. Both acetoacetate and β-HB are considered fuel molecules
normally found in the heart and renal cortex. Acetone cannot be metabolized. At this
point, due to the fact that the liver does not have enzyme beta ketoacyl-CoA transferase,
and it cannot utilize ketone bodies [66], acetoacetate and β-HB reach the extrahepatic
tissues. β-HB is converted into acetoacetate, which is then converted back to acetyl-CoA.
Acetyl-CoA goes through the TCA and produces 22 ATP by oxidative phosphorylation.
Therefore, due to the acid nature of ketone bodies, this causes an anion gap metabolic
acidosis. This condition usually results in electrolyte imbalances, especially a reduction in
K+, Mg2+, and P.
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acetone, β-HB) in the liver is then increased.
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A metabolomic study on individuals with arrhythmogenic cardiomyopathy (AC)
identified as a possible biomarker β-HB, due to its elevated amount in the plasma and
hearts [67]. Specifically, the β-HB produced by cardiomyocytes of AC patients is released
into the blood, and its levels are significantly higher compared to controls [67]. Therefore,
it was demonstrated that cardiac ketogenesis occurs in CA, and β-HB may be used as a
potential metabolic marker to predict CA.

8. Oxidative Stress

Oxidative stress is usually considered a state in which the production of ROS and
antioxidant defenses are not balanced [68]. ROS are derivatives of molecular oxygen, such
as superoxide (O2

−), hydrogen peroxide (H2O2), peroxynitrite (ONOO–), and hydroxyl
radicals (OH) [69]. ROS are mainly produced by mitochondria, and their homeostasis is
maintained by the enzyme glutathione peroxidase (GSH-Px). In damaged mitochondria,
the calcium ions are overloaded and drive the augmentation of ROS concentration, which
leads to excitotoxicity damage [70]. Indeed, excessive generation of ROS, impaired calcium
homeostasis, and diminished ATP production directly impact mitochondrial function [71].

Repetitive or prolonged oxidative stress can damage proteins and lipids within the cell,
and it might result in a contractile dysfunction, a downregulation of gene expression, and
also a disrupted energy transfer, which could induce cardiomyocyte apoptosis, followed by
heart failure [72]. There have been limited studies into the mechanisms linking oxidative
stress and arrhythmias, but it has been shown that cardiac conditions with increased
arrhythmic risks are associated with an unbalanced production of ROS [73]. ROS, in
addition to their role as a messenger in cell signal transduction and the cell cycle, regulate
both cellular metabolism and ion homeostasis in excitable cells. An elevated presence of
ROS within the cells can be highly toxic, and they can lead to arrhythmogenic triggers, such
as alterations of ion channels (Na, Ca2+, and K+), dysfunction of the mitochondria, and gap
junction remodeling [74]. Therefore, an excessive production of ROS and ineffective ROS
scavenging can culminate in cell death [52].

It is well known that ketone bodies are always present in the blood, and their con-
centration increases during prolonged exercise and fasting. In vitro studies demonstrated
that KBs stimulate insulin release [75,76], cause lipid peroxidation, and generate oxygen
radicals [77]. It is also known that KBs are able to reduce oxidative stress, due to the
activation of multiple protective antioxidant pathways. However, we hypothesize that
patients affected by inherited channelopathies could have a potential dysfunction of these
pathways, and they are not able to reduce the levels of ROS. To sustain our hypothesis,
there are some studies suggesting that exposure to high concentrations of KBs could pro-
voke oxidative stress. A study conducted on calf hepatocytes suggested that both β-HB
and acetoacetic acid decrease the activity of antioxidant enzymes superoxide dismutase
(SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and increase malondialde-
hyde (MDA) and nitric oxide (NO), which are markers of oxidative stress [78,79]. Another
study attributed acetoacetate treatment to the activation of mitogen-activated protein ki-
nase (MAPK) pathway, which is known to be activated by oxidative stress in rat hepatocyte
cells [80]. Therefore, even if there are several studies associating KBs with the inhibition
of oxidative stress and ROS production, there are still some studies showing a correlation
between KBs and the induction of oxidative stress.

It is known that a nutrient overload helps to release free fatty acids and can also
induce damages to the mitochondria [81]. Therefore, free fatty acids might be related to
the excess production of oxidative stress. Indeed, there is a lot of evidence suggesting
that conditions of high levels of glucose, lipids, or their combination can interfere with
mitochondria metabolism, and they may modulate mitochondrial ATP synthesis capacity
and increase ROS production [71]. Moreover, in patients with inherited channelopathies,
malignant ventricular arrhythmias and SCD occur before overt structural changes of the
heart. To prevent the arrhythmogenic substrate progression, more studies to understand
the electrical instability of cardiomyocytes are needed. At present, a lot of studies are
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focused on the connection between metabolic disease and the manifestation of arrhythmic
events. Specifically, the attention is focused on the mitochondrial dysfunction, which can
drive the manifestation of arrhythmic events by interfering with the electrical activity of
the cardiomyocytes. The role of mitochondrial dysfunction in inherited channelopathies is
still unclear and will be the subject of future studies.

9. Vitamin D

Vitamin D, also known as calciferol or hydroxyvitamin D (25-OHD), is a fat-soluble
vitamin that is naturally found in a few foods and is also produced endogenously by the
exposure of the skin to sunlight ultraviolet rays [82]. Vitamin D is responsible to increase
the intestinal absorption of calcium and to maintain the serum calcium and phosphate
concentration [82]. Vitamin D is also involved in the reduction of inflammation, cell growth,
neuromuscular, immune function, and glucose metabolism [83–85].

Vitamin D deficiency has been related to different cardiovascular disorders, including
SCD [86]. Moreover, a decreased level of 25-OHD has been linked to structural and ionic
channel remodeling, which may increase arrhythmic events [87]. Indeed, prolonged QTc
is commonly induced by hypocalcemia, which can be caused by vitamin D inadequacy
or resistance.

In a case of a patient with severe vitamin D deficiency, hypocalcemia and prolonged
QTc resulted in TdP and cardiac arrest. After the administration of vitamin D and calcium
supplements, the QTc interval became normal, and the patient did not experience addi-
tional arrhythmic events [88]. A hypocalcemic teenage girl affected by hypoparathyroidism
experienced a few episodes of syncope during exercise, and the ECG on admission showed
prolonged QTc. After the treatment with alphacalcidol, which is an analog of vitamin D,
and calcium supplements, the QTs of the patient became normal [89]. Moreover, in a case
of a 40-year-old woman, who followed a vegan diet, she was affected by hypocalcemia,
due to severe deficiency of vitamin D. The patient manifested symptoms of palpitations,
presyncope, and a long QT (556 ms). Therefore, she was first treated with calcium glu-
conate, then by vitamin D and calcium oral supplementation. After the treatment, the QTc
normalized, and the symptoms disappeared [90].

Vitamin D deficiency can not only induce the prolongation of the QTc, but it can also
promote inflammatory reactions. It is known that cardiac contraction is affected by an
overload of Ca2+ ions in myocardial cells. Studies have hypothesized that lack of vitamin
D could interfere with the function of Ca2+ in myocardial cells; specifically, it can induce
hypertrophy [91], increase anti-inflammatory cytokines [92], increase fibrosis [93], and
impact the production of ROS in the atria [94].

The correlation between atrial fibrillation and vitamin D is poorly understood. Some
studies suggest a direct correlation between atrial fibrillation and vitamin D deficiency [95–97].
However, other studies did not find a connection between vitamin D levels and the incidence
of atrial fibrillation [98–100]. It would be important to better understand the link between
vitamin D and calcium, because it is known that calcium overload causes myocytes apoptosis
and cardiac failure [101,102]. Oxidative stress associated with cardiovascular risks factors is
real, and, therefore, further studies are needed to investigate this aspect.

In conclusion, vitamin D deficiency appears to play an important role in CVD, and it
is important to investigate the possible role of vitamin D deficiency in the development of
arrhythmic events.

10. Omega-3 Fatty Acids

Omega-3 fatty acids, also calledω-3 (n-3) fatty acids, are polyunsaturated fatty acids
(PUFAs), and they are essential nutrients involved in lipid metabolism. It has been demon-
strated that n-3 PUFAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid
(DHA), and α-linolenic acid (ALA), play an important role in the human diet and cellular
physiology, and they may have beneficial effects against CVD and risks factors, including
arrhythmias, probably by the modulation of cardiac ion channels [103]. DHA and EPA fatty
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acids are mostly found in seafood, seaweed, and algae, while ALA is in nuts and seeds.
ALA might improve cardiac function by inhibiting apoptosis through anti-inflammatory
and anti-oxidative stress effects in diabetic, but not normal, rats [104].

An investigation into whether a diet enriched with fish and PUFAs could be associated
with changes in QT duration on a resting ECG showed that long-term consumption of fish
could positively influence the duration of QTc by lowering it; therefore, fish intake may
be considered an antiarrhythmic protection [105]. A retrospective study of men affected
by BrS evaluated the correlation between the serum levels of EPA and DHA and the risks
factors for SCD. A multivariate logistic regression analysis showed that low levels of EPA
and DHA were linked to the incidence of syncope in patients affected by BrS. This same
study suggested that all levels of omega-3 PUFAs may play an important role in preventing
ventricular fibrillation in BrS [106]. Furthermore, a study on 123 Langendorff-perfused
rabbit hearts, used to mimic LQT2 and LQT3 syndrome, showed that PUFAs were able to
prevent TdP by reverting the AP prolongation. This effect was stronger in LQT2 than in
LQT3 syndrome, and the antitorsadogenic effect was more distinctive with DHA and EPA
compared with ALA [107].

A recent review demonstrated that n-3 PUFAs have no significant effect on mortality or
cardiovascular health [108]. For example, in a study investigating the correlation between
n-3 PUFAs from fish and risks of CVD, including SCD, PUFAs were inversely related to
QTc and JTc intervals. However, QTc and JTc did not reduced the inverse relationship
between n-3 PUFAs and SCD risks, suggesting that this association cannot explain the
prevention of prolonged ventricular repolarization [109]. Moreover, in a study investigating
the association between mercury (Hg), EPA, and DHA, and large seafood consumption
and heart rate variability (HRV) and QT interval duration, the authors found a possible
association between specific seafood types and arrhythmias, such as tuna steak with QTc
and anchovies with HRV [110]. Finally, data from four trials suggested that a high dose
(4.0 g/d) of n-3 PUFAs could increase the risk of atrial fibrillation development [111].

In conclusion, data on the effects of omega-3 are still inconsistent, requiring further
studies to assess their beneficial effects on preventing arrhythmic events.

11. Arrhythmogenic Ingredients

Several factors can increase the risk of the development of arrhythmias in BrS and
LQTS. Although not well studied in these two specific syndromes, one of the factors that
could result in arrhythmias is the consumption of specific foods, which are considered to
be arrhythmogenic [112,113], as described in Table 1, which lists both arrhythmogenic and
anti-arrhythmogenic dietary factors.

Several case reports have described patients experiencing arrhythmic events and
cardiac arrests after the consumption of energy drinks [114–117]. Taurine has been shown
to modulate ion channel activity by suppressing the activity of sodium, calcium, and potas-
sium channels [118]. Moreover, it shortens the action potential duration and decelerates the
rate of terminal repolarization of the cardiac action potential, inducing atrial and ventricu-
lar arrhythmias or cardiac arrest [116]. Furthermore, atrial and ventricular arrhythmias can
also be induced by caffeine, which is able to interfere with calcium homeostasis [115,119]
by increasing intracellular calcium concentration [115]. Indeed, it was demonstrated that
caffeine is able to stimulate calcium release from the sarcoplasmic reticulum [120], and
calcium imbalances, particularly sarcoplasmic reticulum calcium stores, may be altered in
BrS [121–123]. A 24-year-old male developed arrhythmias and collapsed after the ingestion,
for the first time, of a small quantity of an energy drink combined with alcohol; specifically,
the drink contained 80 mg of caffeine and 1000 mg of taurine, plus Vodka. He was then
diagnosed with BrS [116]. Another case report showed that energy drinks could have
triggered an abnormal QT response in a 13-year-old female affected by LQTS1. Moreover,
a 22-year-old female affected by LQTS1 experienced cardiac arrest after the consumption
of an elevated quantity of energy drink [124].
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Grapefruit has been identified as an inhibitor of drug-induced TdP and QTc prolon-
gation, thus enhancing their pharmacokinetics [113]. Specifically, naringenin, which is a
flavonoid found in grapefruit, is able to block the hERG channel and induce TdP and/or
QTc prolongation [113,125]. These hERG channels are known receptors of the drug ajma-
line, which is used to provoke the diagnostic type-1 BrS ECG pattern [126]. Therefore, other
ingredients could be suspected to be arrhythmogenic, because they contain flavonoids:
citrus fruit, parsley, onions, berries, bananas, red wine, chocolate, grains, nuts, tea, coffee,
and various other fruits and vegetables [127–129], including spinach, cauliflower, broccoli,
black beans, and chickpeas [130–134]. Moreover, additional ingredients like lemon, lime,
clementine, oranges, and bergamot oil could be considered a risk, due to the same organic
compounds of grapefruit: furanocoumarins [129]. However, other studies have suggested
that flavonoids could actually be beneficial for cardiovascular health by reducing inflam-
mation. Flavonoids, polyphenolic compound derivatives, reduce inflammation and risk of
cardiovascular disease by reducing NFκB and its resulting transcription factors involved in
the inflammatory pathway [128]. Many other natural products, which have polyphenols as
their major compound, have been shown to have anti-inflammatory effects, such as mush-
rooms, honey, plant extracts, plant juices, plant powders, and essential oils [128,135,136].
Thus, further studies are needed to understand these foods and the resulting effects, in
order to better advise the patients about dietary supplements or restraints.

Table 1. Arrhythmogenic and anti-arrhythmogenic dietary factors.

Possible Dietary Triggers Involved in Cardiac Arrhythmia

Pro-Arrhythmic Anti-Arrhythmic

Alcohol [22–24,137] Vitamin D, E, C [138]

Heavy Meals [21,27,139] Carotenoids [138]

Energy Drinks [114–117] Resveratrol [140]

Flavonoids (found in grapefruit [125], citrus fruit
[113,125,129], parsley [129], onions, berries [129],

bananas, red wine [129], chocolate [129], grains, nuts,
tea, coffee, spinach, cauliflower, and broccoli)

Electrolytes [141]

Licorice [142] Omega–3 [103,105,106]

Honey [113,135] § Honey [127,128,135,136] §

Mushrooms [113] § Mushrooms [136] §

§ Honey and mushrooms have been described as both arrhythmogenic and anti-arrhythmogenic, depending on
the study.

12. Ingredients That Suppress Cardiac Arrhythmogenesis

An interesting review showed that 18 active ingredients such as alkaloids, flavonoids,
saponins, quinones, and terpenes, Wenxin-Keli, and Shensongyangxin could have antiar-
rhythmic effects [143]. In particular, the Chinese herb extract, Wenxin-Keli (WK), has been
reported as an effective treatment of atrial and ventricular fibrillation by inhibiting the
transient K+ outward current (Ito) [144]. The experiments were conducted in a canine exper-
imental model of BrS, and the authors observed an inhibition of Ito and indirect adrenergic
sympathomimetic effects using WK in combination with quinidine [144]. However, the
18 ingredients described in the review, with the exception of omega 3, have been tested
in vitro or in animal models as natural drugs or in combination with other antiarrhythmic
treatments, and not as ingredients for regular meals. Therefore, further studies are needed.

Another ingredient with the potential to prevent antiarrhythmic events, in moderate
doses, is resveratrol, a stilbenoid polyphenol found in grapes. It has been described as a
potential inhibitor of intracellular calcium release able to eliminate calcium overload in
AF, and, therefore, able to preserve the cardiomyocyte contractile function [140]. Finally,
based on an interesting review on antioxidant therapies for atrial fibrillation [138], it would
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be interesting to further study the role of vitamin C, vitamin E, and carotenoids, found in
fruits and vegetables, and their role as suppressors of ROS, and, therefore, their role as
anti-arrhythmic nutrients.

13. Electrolytes

Food is the main source of electrolytes, essential minerals for life. Electrolytes are
required for maintaining osmotic pressure in cells and generating action potentials in
nerves and muscles. In particular, sodium, calcium, potassium, and magnesium play an
important role in the heart. Indeed, it has been demonstrated that electrolyte imbalance
can have detrimental effects on the heart, such as triggering cardiac arrhythmias or cardiac
arrest [141], including what has been coined “BrS phenocopies” [145], which may provide
important insights into the mechanisms involved in BrS [11]. It is important to understand
better the connection between food intake, electrolyte imbalance, and BrS or LQTS.

14. Vagal Tone Activity and Arrhythmic Events

The heart rhythm is regulated by cardiac parasympathetic (vagal) nerves, the sympa-
thetic nerves, and the pacemaker cells [121]. Autonomic activity can influence the elevation
of the ST-segment [146–148]. Indeed, late in the 1990s, it was shown that the nocturnal
vagal activity may be involved in the cardiac arrhythmic events of BrS [149]. Moreover,
the high vagal activity could lead to the manifestation of ventricular tachyarrhythmias in
patients with BrS or LQTS [150,151].

The relationship between the autonomic modulation and arrhythmic events is very
complex and still unclear. However, based on the studies presented in this review, the
association between the vagal activity and the consumption of large meals may contribute
to the manifestation of arrhythmic events.

15. Conclusions

We describe herein the effects of dietary factors in patients affected by cardiac arrhyth-
mias, specifically BrS and LQTS. To date, the importance of understanding the relationship
between diet and inherited channelopathies has been underrated. It is evident that dietary
factors can influence the risk of the development of arrhythmic events. Therefore, we
recommend eating and drinking small portions throughout the day and to try to limit
certain types of ingredients in order to prevent arrhythmic events. Modifying the diet
might not be enough to fully prevent arrhythmias, but it can help lower the risk.
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