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A b s t r a c t

Nickel–titanium (NiTi) instruments have become the backbone of endodontics due to their exceptional properties, superelasticity, 
and shape memory. However, challenges such as unexpected breakage, poor cutting efficiency, and corrosion have prompted 
researchers to explore innovative surface modifications to enhance their performance. This comprehensive review discusses 
the latest advancements in NiTi metallurgy and their impact on rotary NiTi file systems. Various surface treatment techniques, 
including ion implantation, cryogenic treatment (CT), thermal nitridation, electropolishing, and physical or chemical vapor 
deposition, have been investigated to minimize defects, boost surface hardness, and improve cyclic fatigue resistance. Ion 
implantation has shown promise by increasing wear resistance and cutting efficiency through nitrogen ion incorporation. 
Thermal nitridation has successfully formed titanium nitride (TiN) coatings, resulting in improved corrosion resistance and 
cutting efficiency. CT has demonstrated increased cutting efficiency and overall strength by creating a martensite transformation 
and finer carbide particles. Electropolishing has yielded mixed results, providing smoother surfaces but varying impacts on 
fatigue resistance. Physical or chemical vapor deposition has proven effective in forming TiN coatings, enhancing hardness 
and wear resistance. Furthermore, the concept of surface functionalization with silver ions for antibacterial properties has been 
explored. These advancements present an exciting future for endodontic procedures, offering the potential for enhanced NiTi 
instruments with improved performance, durability, and patient outcomes.
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INTRODUCTION

Nickel–titanium (NiTi) alloy has extensively been utilized as 
the primary material for producing endodontic instruments. 
Over time, the demand for NiTi instruments did not drop 
but, rather, experienced a resurgence. This rebound interest 
stems from applying contemporary research methods and 
tools from diverse fields, turning it into an interdisciplinary 
field of study. In 1988, Walia et al. first introduced NiTi files 
to the field of endodontics.[1] Initially, Civjan et al.[2] proposed 

the application of NiTi alloy for crafting rotary and hand 
files. NiTi rotary files gained popularity due to their ability 
to shape and debride the canals with greater precision 
and lesser procedural errors than stainless steel (SS) hand 
instruments.[3] Although, these files are susceptible to 
unexpected breakage. Flexural and torsional fractures are 
two separate fracture modes for NiTi files. Flexural fractures 
develop due to the files in curved canals experiencing cyclic 
fatigue. When NiTi files are loaded and unloaded repeatedly 
during instrumentation, a recurrent phase transition occurs 
that finally causes torsional fracture once the instrument 
has passed the point of irreversible plastic deformation.[4]

To enhance their performance, there is a demand for 
new materials and manufacturing techniques for NiTi 
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rotary instruments. The development of novel rotary 
endodontic instruments with superior mechanical qualities 
has been popular in recent years due to the realization 
that the microstructural changes brought about by 
thermomechanical treatments can regulate the phase 
transformations happening in equiatomic NiTi alloys. NiTi 
instruments have intrinsic flaws that occur during the 
manufacturing process;[5] hence, efforts have been made to 
improve their surface properties. Different surface changes 
have been used to lower or eliminate flaws, boost surface 
hardness or flexibility, enhance cycle fatigue resistance, 
and improve cutting effectiveness. Various techniques 
discussed in this review have been used to give NiTi 
alloys beneficial properties for the best performance as an 
endodontic file.

To address material-related concerns with NiTi alloy and 
the manufacturing of instruments, such as poor cutting 
efficiency and failure due to fatigue caused by defects, 
surface changes have been investigated and modified. 
This review focuses on the latest advancements in NiTi 
metallurgy and its effect on rotary NiTi files, aiming to pave 
the way for even more effective and reliable endodontic 
procedures.

SURFACE CHARACTERISTICS OF 
NICKEL–TITANIUM ALLOY

The surface of NiTi instruments primarily comprises titanium 
oxides (TiO2), carbon, and oxygen, with less quantities of 
nickel oxides (NiO and Ni2O3) and metallic nickel (Ni).[6] The 
thickness of the oxide layer can vary between 2 and 20 nm, 
and the surface chemistry and the amount of Ni may 
differ widely depending on the preparation method.[7] Ni 
disintegrates more readily as compared to titanium (Ti) due 
to the less stable nature of its oxide. The superficial layers 
of NiTi wires exhibit uneven features represented as long 
island-like formations, suggesting selective dissolution 
of Ni.[8]

Shabalovskaya[9] observed that the Ti:Ni ratio on the wire 
surface was 5.5 after mechanical polishing, indicating the 
presence of five more times Ti on the surface than Ni. 
However, after boiling or autoclaving the wire in water, the 
Ti: Ni ratio scaled to 23.4–33.1, and the Ni content was 
reduced. Similar results were obtained by Hanawa et al.,[6] 
who found that after immersion in neutral electrolyte 
solution for 30 days, the Ti: Ni ratio in the polished samples 
rose from 5.8 to 91. Although the titanium–aluminum–
vanadium alloy (Ti6Al4V) in their investigation only had 6% 
aluminum compared to 50% Ni in NiTi, the surface of the 
alloy had aluminum levels similar to those in NiTi. However, 
some chromium and iron were discovered on the exterior 
of SS, which was devoid of Ni.

Due to the presence of a persistent TiO2 layer, pure Ti and 
specific Ti alloys are regarded as extremely biocompatible 
materials.[7] The oxide layer that forms on a Ti implant 
during implantation expands and takes up minerals and 
other substances from tissue fluids, resulting in surface 
remodeling. Hanawa et al.[6] discovered that the calcium 
phosphate and Ti dioxide layers make up the oxide layer 
on implants. On an inert oxide layer, calcium phosphate 
is specifically produced. This layer had a Ca:P ratio that 
was similar to hydroxyapatite and was denser on pure 
Ti than Ti alloys (including NiTi). However, the calcium 
phosphates generated on NiTi or Ti6Al4V were less akin to 
hydroxyapatite. This is probably because Ni is present on 
the exterior of NiTi alloy, and aluminum is present on the 
surface of Ti6Al4V, which may have impacted these results. 
Similar calcium phosphate layers also exist in SS, although 
they form more slowly and differently than they do in 
NiTi.[6,10,11]

SURFACE MODIFICATIONS OF 
NICKEL–TITANIUM ALLOYS

Numerous strategies have been employed to improve 
the surface properties of NiTi instruments, aiming to 
reduce their inherent flaws, enhance surface hardness 
and flexibility, and improve resistance to cyclic fatigue 
and cutting efficiency in endodontic procedures.[12] As 
summarized in Table 1, some of them are:
A. Ion implantation

a) Implantation of nitrogen (N2), argon (Ar), and 
boron (B) ions

b) Plasma immersion ion implantation (PIII).

B. Thermal nitridation
a) Surface coating with titanium nitride (TiN) 

layer
b) Powder immersion reaction-assisted coating 

(PIRAC).

C. Cryogenic therapy
D. Electropolishing
E. Vapor deposition

a) Physical vapor deposition (PVD)
  i.    Arc evaporation
  ii.   Magnetron sputtering
  iii.  Ion plating.

b) Chemical vapor deposition.

F. Surface functionalization
a) Silver ion coating.

Ion implantation
Several efforts have been made to minimize the liberation 
of Ni from NiTi while preserving the mechanical features 
of the bulk material. Ion implantation is one such coating 
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Table 1: Studies included in the review and their results obtained
Surface modification Author Year Method Result

Ion implantation Gavini et al.[13] 2010 Nitrogen ion implantation Increases the number of CTF
Wolle et al.[14] 2009 Argon and nitrogen ion 

implantation
Argon ion implanted file showed double the number of 
CTF than nitrogen ion implanted file

Rapisarda et al.[15] 2001 Nitrogen ion implantation Increased wear resistance
Conrad et al.[16]

Tendys et al.[17]

1987
1988

PIII of TiN Increased wear resistance

Thermal nitridation Rapisarda et al.[18] 2000 TiN coating Improved cutting ability
Lin et al.[19] 2007 TiN coating Greater corrosion resistance when exposed to 5.25% NaOCl
Li et al.[20] 2006 TiN coating Increased cutting efficiency and corrosion resistance

Cryogenic therapy Kim et al.[21] 2005 Cryogenic therapy Higher microhardness, increased austenitic phase, 
increased cutting efficiency

Vinoth Kumar et al.[22] 2007 Deep CT Improved cutting efficiency, no effect on wear resistance
George et al.[23] 2011 Deep CT Increased cyclic fatigue resistance

Electropolishing Anderson et al.[24]

Tripi et al.[25]

da Silva et al.[26]

Lopes et al.[27]

Condorelli et al.[28]

Praisarnti et al.[29]

2007
2006
2013
2010

Electropolishing Increased cyclic fatigue resistance

Herold et al.[30] 2007 Electropolishing Does not prevent microfractures
Bui et al.[31] 2008 Electropolishing Electropolished files less resistant to cyclic fatigue
Kaul et al.[32] 2014 Electropolishing Eliminated manufacturing flaws but produced a weak 

surface highly vulnerable to fresh crack development
Vapor deposition Schäfer[33] 2002 PVD to NiTi K‑files 26.2% increase in cutting efficiency

Chi et al.[34] 2017 Titanium–zirconium‑boron 
surface layer via PVD

Highly smooth file geometry with greater cyclic fatigue 
resistance

Bonaccorso et al.[35] 2008 PVD and immersion in 
sodium chloride

Enhanced corrosion resistance, and better pitting resistance

Qaed et al.[36] 2018 PVD Electropolished files performed better than physical 
vapor‑deposited files

Surface 
functionalization

Cora et al.[37] 2020 2% silver ion  
dip‑coating

Increased efficiency against Enterococcus faecalis 
without influencing cutting efficiency

CT: Cryogenic treatment, TiN: Titanium nitride, PIII: Plasma immersion ion implantation, CTF: Cycles to fracture, PVD: Physical vapor deposition, NiTi: Nickel–titanium

Figure 1: Illustration of various surface treatments. (a) Ion implantation, (b) plasma immersion ion implantation, (c) thermal 
nitridation, (d) surface morphology of NiTi file before and after surface treatment. NiTi: Nickel–titanium
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technique. As shown in Figure 1a, this involves bombarding 
gaseous atoms that have been voltage-accelerated into 
ions such that they get buried beneath the surface of the 
substrate. The accelerating voltage affects the depth to 
which they are buried. The end result produces a series 
of dislocations that increase the material’s durability.[14] 
Various ions that can be implanted on endodontic files are 
N2, Ar, and B.

With the implantation of N2 ion, the hardness of endodontic 
files is decreased, while resistance to wear, cutting efficiency, 
and cyclic fatigue resistance is increased.[13,15,18,38] Gavini et al.[13] 
demonstrated that compared to nonimplanted (381 cycles) 
and annealed files (428 cycles), N2 ion-implanted 
instruments had a considerably greater number of cycles 
to fracture (CTF) (510 cycles). Wolle et al.[14] examined the 
impact produced on file morphology by Ar and N2 ion 
implantation. The studies demonstrated the potential 
growth and spread of cracks and their resistance to cycle 
fatigue. While endodontic files ingrained with N2 performed 
inferiorly in the fatigue test, merely attaining approximately 
half the mean CTF, authors found files ingrained with Ar have 
higher CTF than endodontic files without any alterations. 
Contrary to findings from Rapisarda et al.,[15] who showed 
a rise in files’ wear resistance ingrained with N2 ions, this 
investigation did not discover any significant development 
or propagation of cracks.

This might result from N2’s higher atomic mass, which 
restricts the generation of point defects within the 
crystalline structure. Additionally, N2 forms an exceptionally 
hard material called TiN when combined with Ti in the file, 
preventing microfractures.[15] Clinically, a surge in wear 
resistance may extend the instrument’s life while retaining 
its accuracy and blade shape after usage and lowering the 
danger of instrument fracture.

To successfully increase the surface hardness of NiTi alloys, 
Lee et al. inserted B ions into them using a nonequilibrium 
technique.[39] N2 was substituted with B because Ti-B has 
greater mechanical strength than Ti-N. The therapeutic 
applicability of the findings is constrained using a flatter 
polycrystalline substrate of NiTi alloy in this investigation 
rather than an endodontic file.

In the late 1980s, Conrad et al.[16] and Tendys et al.[17] first 
developed PIII. In this procedure, as shown in Figure 1b, 
the specimen is placed in a chamber surrounded by plasma 
ions. A powerful negative pulsating voltage is then used to 
suck the ions from the plasma, accelerate them, and batter 
them onto the object’s surface. This method only alters 
surface features by adding a coating of TiN, which gives 
items a golden appearance. As a result, wear resistance 
is increased without sacrificing the material’s natural 
flexibility or microstructure.[40,41]

Thermal nitridation
Thermal nitridation is another method for producing a hard 
surface layer that increases wear resistance and surface 
hardness, as shown in Figure 1c. The sample is heated 
up thermally in an N2 atmosphere, typically between 200 
and 500°C,[18,19] which coats the NiTi files with a layer of 
TiN, as shown in Figure 1d. Ion implantation and thermal 
nitridation, two alternative TiN surface treatments, were 
contrasted by Rapisarda et al.[18] Compared to unaltered 
files, both procedures demonstrated a higher TiN presence, 
while ion implantation demonstrated a higher N2-to-Ti ratio. 
Ion implantation showcased a higher cutting efficiency than 
thermal nitridation, but both techniques had improved 
cutting ability compared to no surface treatment.[18]

Shenhar et al.[42] and Huang et al.[43] demonstrated that 
the presence of a TiN coating significantly enhanced the 
resistance to corrosion of Ti and Ti alloys when exposed to 
a corrosive environment. When exposed to 5.25% sodium 
hypochlorite, Lin et al.[19] showed that including TiN on 
NiTi endodontic files considerably boosted corrosion 
resistance. The highest corrosion resistance was achieved 
at 300°C nitriding temperatures, although following 
treatment, NiTi’s superelastic characteristics were lost. As 
a result, nitriding at a temperature of 250°C was advised 
for usage in clinical settings.[19] Li et al.’s[20] investigation of 
thermal nitridation at various temperatures revealed that 
the presence of TiN increased cutting effectiveness and 
corrosion resistance.

PIRAC is another technique for creating a layer of TiN. 
Substrates are annealed in enclosed steel foil vessels at 
less pressure and high temperatures (800°C–1100°C).[44,45] 
An N2-rich layer with a thin outer layer of TiN and a thicker 
layer of Ti2Ni is formed on the surface of the sample due 
to the diffusion of highly reactive monatomic N2.[46] It is 
noticeable that PIRAC layers have good adherence to the 
substrate and are comparable to oxide layers on NiTi alloys. 
Although this method has been applied to biomedical 
NiTi alloys, it has not been explicitly researched on NiTi 
endodontic files.

Cryogenic therapy of nickel-titanium alloys
As shown in Figure 2a, cryogenic treatment (CT) is a 
manufacturing process recommended to enhance the 
surface hardness and thermal stability of metals.[47] The 
optimal temperature range for this therapy is typically 
between − 60°C and − 80°C, which may vary according to 
the material and specific quenching parameters present.[47] 
Over the past three decades, reports have shown significant 
advantages of exposing metals used for industrial purposes 
to CT.[47-49]

CT is a relatively newer cooling approach involving immersing 
the metal in a super-cooled bath of liquid N2 at extremely 
low  temperatures  of  around  −  196°C  (−320°F).[47,48] 
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The metal is then allowed to gradually warm to room 
temperature.[49,50] Compared to traditional cold treatment, 
CT offers more favorable effects.[51] The advantages include 
increased cutting efficiency and strength of the alloy.[47,49] 
Additionally, CT is a cost-effective therapy that influences 
the whole cross-section of the alloy, unlike surface 
treatments such as vapor deposition and ion implantation, 
which only impact the surface.[48]

During CT, two mechanisms can change the metal 
properties. The first mechanism follows CT and entails a 
more thorough martensite transition from the austenite 
phase.[50] The next mechanism is the precipitation of 
smaller carbide particles inside the crystalline structure.[49] 
However, there is some debate about which mechanism 
plays the primary role in these changes.

Regarding NiTi rotary instruments, there have been 
relatively few studies on CT. Kim et al.[21] assessed the 
impact of cryogenic therapy on the cutting efficiency, 
composition, and microhardness of NiTi files. Their 
results revealed that cryogenically modified files exhibited 
considerably higher microhardness than controls. The 
composition of the test and control groups was 56% Ni (by 
weight), 44% Ti (by weight), and no N, with the bulk of the 
material in the austenite phase. The deep dry CT greatly 
improved the cutting effectiveness of NiTi instruments but 
had no appreciable impact on wear resistance, according 
to a different study by Vinothkumar et al.[22] A deep CT 
considerably increased the cyclic fatigue resistance of NiTi 
rotary files, according to George et al.’s[23] research.

Electropolishing
As shown in Figure 2b, electropolishing is an electrochemical 
process that removes surface imperfections.[52] A 
direct current is passed through the solution while the 
file (anode) is submerged in an electrolytic bath with a 
cathode that is kept at a specific temperature.[53] As a 
protective layer, a surface oxide layer is created, which 
improves corrosion resistance and cyclic fatigue resistance, 
and there is a reduction in surface residual stress.[5,12,24,54,55] 
It is debatable if electropolishing actually increases the 
resistance to corrosion and fatigue life of NiTi instruments. 
There is general agreement that electropolishing 
improves the endodontic file’s surface texture, making it 
smoother.[25,30,32,35,56,57]

Compared to nonelectropolished files, electropolished 
instruments need a larger potential to form pitting, 
indicating greater corrosion resistance.[35] While the 
existence of a corrosion pit was linked to the onset of 
cracks, other studies revealed that electropolishing did 
not increase corrosion resistance.[56,57] Various studies by 
Anderson et al.,[24] Tripi et al.,[25] da Silva et al.,[26] Lopes 
et al.,[27] Condorelli et al.,[28] and Praisarnti et al.[29] have shown 
that electropolishing increases cycle fatigue resistance. 
Larger groove flaws lead to fewer cycles till fracture,[58] 
whereas surface irregularities would act as places of stress 
concentration and lead to crack initiation.[24] In contrast, 
Herold et al.[30] discovered that when compared to regular, 
untreated ProFiles, electropolishing (EndoSequence) does 
not prevent microfractures. Bui et al.[31] discovered, on the 
other hand, that in simulated canals made of plastic blocks, 
electropolished profiles were considerably less resistant 

Figure 2: Illustration of various surface modifications. (a) Cryogenic therapy, (b) electropolishing, (c) physical vapor deposition. 
NiTi: Nickel–titanium
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to cycle fatigue than conventional ProFiles. When utilizing 
electropolished files, greater maximum torque values 
were needed,[59] suggesting that electropolishing may level 
and dull the cutting edges, necessitating a larger torque 
to obtain the same amount of preparation. Examination 
revealed that the crack lines were occasionally inconsistent 
with the machined grooves.[60]

While electropolishing eliminated all manufacturing flaws, 
Kaul et al.[32] discovered a weak surface and highly vulnerable 
to developing fresh cracks. Altogether, many other 
investigations indicated that electropolished instruments 
had not shown higher resilience to cyclic fatigue than any 
other instrument.[61] Electropolishing had a minimal impact 
on cutting effectiveness and torsional resistance.[24,26,31] 
In conclusion, electropolishing gives endodontic files a 
smoother finish; however, the evidence for the advantages 
of this surface treatment is inconsistent.

Physical or chemical vapor deposition
Since the late 1980s, medical devices have been coated 
using the PVD technique to increase wear resistance.[62] 
PVD has three main types: arc evaporation, magnetron 
sputtering, and ion plating.[33] PVD produces a dense, 
homogeneous layer that is highly resistant to corrosion, has 
enhanced surface hardness, and is biocompatible.[33] The 
cathodic arc evaporation process is frequently utilized for 
the best coating to metal adherence. As a result, TiN forms 
a hard coating over the surface, as shown in Figure 2c.

Using this method, a thin layer of fine-grained TiN film is 
formed at low temperatures over the surface of files. This 
TiN layer can increase wear resistance, surface hardness, 
and cutting efficiency.[15,18] The surface hardness can reach 
2200 VHD when the coating thickness ranges between 
1 and 7 microns. Surface imperfections, fissures, and 
potential residual stresses are eliminated by forming a 
continuous amorphous coating over the file’s surface, 
extending the life of the endodontic instrument.[63] When 
Schafer initially applied PVD to NiTi K-files, he discovered 
a 26.2% rise in cutting efficiency compared to files without 
coating.[33] Chi et al. added a unique Ti-zirconium-B (TiZB) 
surface layer via PVD, resulting in a TiZB film with a highly 
smooth file geometry and greater cyclic fatigue resistance 
than untreated files.[34] In PVD instruments, Bonaccorso 
et al.[35] showed enhanced corrosion resistance. The 
study discovered that when PVD files were submerged in 
sodium chloride solution for 1.5 h, they had better pitting 
resistance than electropolished or nonelectropolished 
files. Since sodium chloride solutions are not usually 
employed in endodontic treatments, the findings of this 
study cannot be easily applied to clinical settings. However, 
electropolished files outperformed PVD files, according to 
Qaed et al.[36]

At high temperatures of 300°C, chemical vapor 
deposition (CVD) also forms a superficial layer made up of 
TiN.[64,65] Early research proved metal-organic CVD as the 
elected technique as it can enhance the Ni: Ti ratio on the 
substrate’s surface by up to twofold.[65] While both CVD 
and PVD may provide a tough surface layer to NiTi devices, 
PVD deposits films with clearly defined grains, whereas 
CVD produces uninterrupted coatings of amorphous 
materials having weak crystalline structures.[64] Notably, 
the superficial layers may become exposed as the file’s 
cutting edges deteriorate,[33] and the fragments may end 
up trapped within the canal space. Toxic effects may arise 
from the liberation of these nanoparticles or metal ions.[66]

Surface functionalization of nickel-titanium 
endodontic files
The objective of surface functionalization is to either block 
a potentially harmful reaction or to elicit a desired response. 
To reinforce the NiTi wire, several coatings have been used.[67] 
Early Teflon and polyethylene coatings have been shown 
to increase corrosion resistance.[68] Rhodium coatings with 
low reflectivity and epoxy resin have been used as surface 
coatings. Compared to uncoated NiTi wires, these coatings 
can minimize surface roughness.[69] Damage to the surface 
morphology, however, could be harmful in an endodontic 
situation because it could cause fractured particles from the 
surface coating to get dislodged inside the root canal space 
or move into the periapical area, potentially causing a foreign 
body response.[70] Most endodontic studies on surface 
modifications have mainly concentrated on the geometry 
and shape created by these files, such as conicity, taper, and 
centering ability, as well as their mechanical features, such as 
metallurgy, flexibility, cyclic fatigue, torsional fatigue, cutting 
efficiencies, and so on.

A single study has probed into the idea of giving 
endodontic instruments a new use beyond their current 
capacity of shaping the root canal and clearing away the 
debris. Cora et al.[37] coated the surface of NiTi rotary 
files with silver ions and examined their antibacterial 
properties. They used the dip-coating process at 25 or 
50 mm/min for coating the ProTaper Universal NiTi files 
with a silane-based, silver-complex solution (2% silver ion 
coating).[37] Enterococcus faecalis was used as a test subject 
for its antibacterial activity. Cultures were taken from the 
sample and incubated; then, the bacterial colony count was 
recorded. The debris lost in clear resin blocks after creating 
an artificial root canal was used to compare the cutting 
effectiveness of coated and uncoated files.[37] Additionally, 
they examined the files using scanning electron microscopy 
and observed that the silver ion surface coating did not 
influence the cutting efficacy of rotary NiTi endodontic file, 
while it was effective against E. faecalis. This encapsulates 
the conceptual framework and potential for functionalizing 
NiTi rotary files in the future.
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CONCLUSION

NiTi instruments have seen a resurgence in endodontics, 
driven by cutting-edge research and interdisciplinary 
approaches. Exciting surface modifications, such as N2 ion 
implantation for wear and fatigue resistance and PIII for 
a durable TiN layer, are elevating performance. Thermal 
nitridation creates a corrosion-resistant TiN coating, 
while CT at super-cooled temps enhances strength. 
Electropolishing offers smoother surfaces, but the impact 
on fatigue varies. Physical or chemical vapor deposition 
provides tough TiN coatings. Surface functionalization with 
silver ions shows potential for antibacterial properties. 
These innovations promise a bright future for enhanced 
endodontic procedures.
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