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Working speed as a latent variable reflects a respondent’s efficiency to apply a
specific skill, or a piece of knowledge to solve a problem. In this study, the common
assumption of many response time models is relaxed in which respondents work with
a constant speed across all test items. It is more likely that respondents work with
different speed levels across items, in specific when these items measure different
dimensions of ability in a multidimensional test. Multiple speed factors are used to
model the speed process by allowing speed to vary across different domains of ability.
A joint model for multidimensional abilities and multifactor speed is proposed. Real
response time data are analyzed with an exploratory factor analysis as an example
to uncover the complex structure of working speed. The feasibility of the proposed
model is examined using simulation data. An empirical example with responses
and response times is presented to illustrate the proposed model’s applicability
and rationality.

Keywords: response times, joint model, variable speed, multidimensional item response theory, hierarchical
modeling framework

INTRODUCTION

With the popularity of computer-based tests, the collection of item response times (RTs) has become
a routine activity in large- and small-scale educational assessments. For example, the Programme
for International Student Assessment (PISA) started using computer-based tests and recorded RTs
data since 2012. RTs provide information about the working speed of respondents but also could be
utilized to improve measurement accuracy because RTs are considered to convey a more synoptic
depiction of the respondents’ performance beyond what is obtainable based on correct responses
alone (van der Linden et al., 2010; Bolsinova and Tijmstra, 2018).

Before making inferences by employing RTs, it is necessary to create an appropriate statistical
model for RTs. Over the past few decades, various RT models have been presented based on
cognitive/psychological theories and experimental research (for a review, see De Boeck and Jeon,
2019). Currently, the Bayesian hierarchical modeling framework (van der Linden, 2007) is one
of the most flexible tools to explain the relationship between latent ability and working speed.
This framework is gaining more recognition and is sufficiently generalized to integrate available
measurement models for item response accuracy (RA) and RTs. Typically, in the hierarchical
modeling of RTs and RA, the RT measurement model assumes that a respondent works at a constant
speed throughout a test. Meanwhile, the RA measurement model assumes that a respondent puts
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his or her best effort forward to solve a set of items correctly
by using the required knowledge. Thus, the association between
latent ability and working speed is assumed to be changeless
for each respondent working on a test. In other words, each
respondent is assumed to work at a constant pace given his or
her invariant ability at that time (Fox and Marianti, 2016).

Currently, most joint models for RA and RTs only use
unidimensional measurement models to capture the relationship
between latent ability and working speed within a unidimensional
test scenario (e.g., Klein Entink et al., 2009a,b; Wang et al.,
2013; Fox et al., 2014; Molenaar et al., 2015, 2016; Wang and
Xu, 2015; Fox and Marianti, 2016). In reality, however, multiple
latent abilities are involved to correctly answer an item, especially
in multidimensional tests (e.g., Tatsuoka, 1983; Reckase, 2009).
Compared to unidimensional tests, one significant characteristic
of multidimensional tests is that different test items may measure
distinguish latent ability dimensions.

In educational and psychological measurements, working
speed as a latent variable reflects a respondent’s efficiency to
apply a specific skill or a piece of knowledge to solve a problem.
Therefore, latent speed should be discussed by considering the
linkage to a particular dimension of latent ability. It is reasonable
to assume that respondents could vary their working speeds
across items that measure different dimensions of ability. In
other words, the multidimensional structure for latent ability
could be used to model the process of speed change, where the
working speed is allowed to vary across dimensions of ability. For
example, in a math test, the working speed on items that measure
algebra problem-solving ability may differ from those measuring
geometry problem-solving ability.

With the development of psychometrics, multidimensional
measurement models for RA [e.g., multidimensional item
response theory (MIRT) models and diagnostic classification
models (DCMs)] have been well developed and widely used (see
Reckase, 2009; Rupp et al., 2010). Recently, based on hierarchical
modeling, a few studies have attempted to use MIRT models
or DCMs for RA to capture the multidimensional structure of
the latent trait when multidimensional tests are involved. But
still, a unidimensional or single-factor RT (SRT) model is used
to measure latent speed (Zhan et al., 2018; Man et al., 2019;
Wang et al., 2019). Thus, in these studies, the relationships
between multiple latent abilities and one single latent speed are
assumed to be constant for each respondent working with a
constant speed on different items. However, assuming identical
working speeds across different dimensions of ability may be
too restrictive to describe intricate data and thus may lead to
ambiguous conclusions. It is desirable to release this limitation
to allow each dimension of ability to be associated with a specific
speed factor. As current joint models may be inappropriate for
multidimensional tests, it is critical to develop a joint model that
allows working speed to vary across dimensions of ability.

To model varying working speeds within different domains of
ability, it is possible to use multiple-speed factors/dimensions to
describe the speed process. Each speed factor corresponds to a
specific dimension of latent ability. An individual speed process
is assumed, describing the changes in speed across dimensions.
Thus, respondents can work at different levels of speed on items

within different dimensions of ability during multidimensional
tests. Each individual speed process will be defined using a
confirmatory multifactor structure, which in turn is defined
by the dimensions of ability measured by items, according to
the testing blueprint. Furthermore, it will be shown that the
multifactor working speed model can be integrated with a MIRT
model for latent ability. Under this new joint model, it is assumed
that each respondent works at a unique speed corresponding to
the dimension represented by an item.

We first extend the most popular single-factor lognormal RT
(SLRT) model (van der Linden, 2006) to a multifactor working
speed model that considers changing speed across dimensions.
This is called the multifactor lognormal RT (MLRT) model.
Second, a joint model of multidimensional latent ability and
multifactor working speed will be proposed. Our paper starts
with a brief review of the SLRT model, followed by presenting
the proposed MLRT model. The proposed joint model is then
presented. Next, a motivating example will be provided to
demonstrate the multifactor structure of working speed and
its compatibility with the multidimensional structure of latent
ability. Moreover, two simulation studies will be conducted to
evaluate the psychometric properties of the proposed joint model.
An empirical example will also be analyzed to illustrate the
application of the proposed joint model. Finally, we summarize
our findings and discuss directions for future research.

MULTIFACTOR LOGNORMAL
RESPONSE TIME MODEL

Let Tni be the observed RT of person n (n = 1,..., N) to item i
(i = 1,..., I). In the SLRT model, the logarithmic function is used
to transform the positively skewed distribution of RT to a more
symmetric shape and is assumed to be dominated by item i’s time-
intensity parameter ξ i and person n’s latent speed parameter τn as
follows:

logTni = ξi − τn + εni, εni ∼ N(0, ω−2
i ), (1)

or equivalently,

logTni ∼ N(ξi − τn, ω−2
i ). (2)

where ξi represents the time needed to complete item i, τn is the
single-factor working speed of person n, and εni is the normally
distributed residual error term, with mean zero and varianceω−2

i ,
where ωi is the time-precision parameter.

In recent years, the SLRT model has been extended in some
studies. For instance, Klein Entink et al. (2009a) included a
time-discrimination parameter as a slope parameter for latent
speed. Klein Entink et al. (2009b) proposed the Box-Cox
transformation for RT modeling. Wang et al. (2013) proposed
a linear transformation model for RTs. Furthermore, Fox and
Marianti (2016) proposed a variable working speed model, which
allows the respondents to adjust their working speed along
the sequence of items throughout the test. Although Fox and
Marianti’s (2016) model relaxed the assumption of constant speed
in the SLRT model, their variable speed was different from that
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focused on in this study. One is to change speed as the item
response progresses, and the other is to change speed as the
dimension of ability examined by the item changes.

As mentioned previously, the kernel hypothesis of this
study is that respondents can work with different levels of
speed on items requiring different dimensions of ability during
multidimensional tests. In other words, working speed has a
multifactor structure, which is defined by the multidimensional
structure of ability. In the multidimensional test, assuming
there are K sub-dimensions of latent ability. In the current
study, only the between-item multidimensionality (Adams
et al., 1997) is considered, where each item measures a single
dimension but different items measure different dimensions, so
the multidimensionality occurs between items. To model variable
speed across dimensions, we first relaxed the assumption of the
SLRT model that each respondent works at a constant speed
on all items throughout the test and allowed the instantaneous
speed to be different on different items, that is, τn→τ̃ni. Then,
a confirmatory multifactor structure was given to model the
instantaneous speed at item i of person n, as

τ̃ni =

K∑
k=1

τnkqik, (3)

where τ̃ni is the instantaneous speed at item i of person n,
and τnk is the working speed factor of person n corresponding
to kth-dimension (k = 1, 2,..., K) of ability. The Q-matrix
(Tatsuoka, 1983) is an I-by-K confirmatory matrix with element
qik indicating whether kth-dimension of ability is required to
answer item i correctly: qik = 1 if the dimension is required, and
qik = 0 otherwise. For between-item multidimensionality, only
one dimension is measured by an item, namely, only one element
in qi equals to 1. In such cases, the MLRT model can be expressed
as

logTni = ξi − τ̃ni + εni = ξi −

K∑
k=1

τnkqik + εni, εni ∼ N(0,ω−2
i )

(4)
or equivalently,

logTni ∼ N(ξi − τ̃ni, ω−2
i ). (5)

If only one dimension of ability is assumed to be measured by all
items, the MLRT model reduces to the SLRT model.

JOINT MODEL FOR RESPONSE
ACCURACY AND RESPONSE TIMES

Model Construction
Since both RA and RTs contain information about items and
persons, it is advantageous to analyze them simultaneously. To
this end, based on hierarchical modeling, we propose a new
joint model called the multidimensional-multifactor joint (MMJ)
model. For illustration purposes, in the MMJ model in this study,
the MLRT model is used as the measurement model for RTs, and

according to the 2012 PISA mathematics assessment framework
(OECD, 2013), the multidimensional Rasch (MR) model (Adams
et al., 1997) is employed as the measurement model for RA.

Besides observing RTs, let Yni be the observed RA for person n
to item i. The MR model can be expressed as

logit(P(Yni = 1)) =
K∑

k=1

θnkqik + di, (6)

where logit(x) = log(x/(1–x)), P(Yni = 1) is the probability of a
correct response by person n to item i, θnk is the latent ability of
person n on dimension k, di is the intercept or easiness of item i,
and qik is the element of Q-matrix.

The multivariate normal distribution was used to describe the
relationships among the multidimensional ability and multifactor
speed: (

θn
τn

)
∼N

((
µθ

µτ

)
,
∑

Person

)
,

∑
Person

=



σ2
θ1
...

. . .

σθ1θK · · · σ2
θK

σθ1τ1 · · · σθKτ1 σ2
τ1

... · · ·
...

...
. . .

σθ1τK · · · σθKτK στ1τK · · · σ
2
τK


, (7)

where θn = (θn1,..., θnk,..., θnK)’ is the multidimensional latent
ability vector; τn = (τn1,...,τnk,...,τnK)’ is the multifactor working
speed vector; µθ and µτ are the population mean vector of
multidimensional ability and the population mean vector of
multifactor working speed, respectively; and6person is a variance-
covariance matrix of person parameters, where σ2

θk
is the variance

of θk, σ2
τk

is the variance of τk, σθkθk′ is the covariance of θk and θk ′ ,
στkτk′ is the covariance of τk and τk ′ , and στkτk′ is the covariance of
θk and τk.

Furthermore, for the item parameters, a bivariate normal
distribution was used to describe the relationship between item
easiness and item time-intensity,

(
di
ξi

)
∼ N

((
µd
µξ

)
,
∑

item

)
,
∑

item
=

(
σ2
d

σdξ σ2
ξ

)
, (8)

where µd and µξ are the mean of item easiness and the mean
of item time-intensity, respectively; and 6item is a variance-
covariance matrix of item parameters, where σ2

d and σ2
ξ are the

variance of item easiness and the variance of item time-intensity,
respectively; σdξ is the covariance of item easiness and item time-
intensity.. The residual error variance, ω−2

i , is assumed to be
independently distributed.

For the MMJ model, the latent scales of multidimensional
ability and mutlifactor speed need to be identified. This can be
accomplished by restricting the population mean of the ability
and speed as µθ = µτ = 0.
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Parameter Estimation
Parameters in the MMJ model can be estimated via the
full Bayesian approach with the Markov Chain Monte Carlo
(MCMC) method. In Bayesian estimation, prior distributions of
model parameters and observed data likelihood produce a joint
posterior distribution for the model parameters. In this study, the
Just Another Gibbs Sampler (JAGS) software (Plummer, 2015)
was used to estimate parameters. JAGS uses a default option of
the Gibbs sampler (Gelfand and Smith, 1990), whose code for the
proposed joint model is provided in the online Supplementary
Appendix.

Under the assumption of local independence, Yni and logTni
are independently distributed as

Yni ∼ Bernoulli(P(Yni = 1))and logTni ∼ N(ξi − τ̃ni, ω− 2
i ).

Weakly but not non-informative priors are preferentially used
in this study to increase the generalizability of our codes by
imposing vague prior beliefs on estimating parameters. The
setting of priors refers to that used by Zhan et al. (2018) and Man
et al. (2019).

The priors of the person parameters are set as(
θn
τn

)
∼ N

((
0
0

)
,
∑

person

)
,

with a hyper prior∑
person

∼ InvWishart(Rperson, K*),

where Rperson is a K*-dimensional identity matrix, and K*
indicates the degree of freedom, which in this case is equal to the
dimension of the Rperson.

In addition, the priors of item parameters are set as(
di
ξi

)
∼ N

((
µd
µξ

)
,
∑
item

)
,ω−2

i ∼ InvGamma(1, 1)

.
Furthermore, the hyper priors are specified as

µd ∼ Normal(0, 2),µξ ∼ Normal(4.3, 2),

∑
item

∼ InvWishart(Ritem, 2),

where Ritem is a two-dimensional identity matrix. Finally,
the posterior mean is treated as the estimated value for
model parameters.

A MOTIVATING EXAMPLE

To explore the multifactor structure of working speed, and to
explore whether this structure matches the multidimensional
structure of latent ability, a motivating example with the
exploratory factor analysis (EFA) of RTs was presented first.

Data Description
The PISA 2012 computer-based mathematics RT data were
analyzed. This data set was originally used by Zhan et al. (2018).
In this study, there are N = 1,581 respondents and I = 9 items.
The logarithm of RTs was computed before the analysis, and all
zero RTs were treated as missing data. A Q-matrix (see Table 1)
was specified based on the PISA 2012 mathematics assessment
framework (OECD, 2013). Three dimensions that belong to the
mathematical content knowledge were chosen, namely, change
and relationships (θ1), space and shape (θ2), and uncertainty and
data (θ3). However, it should be noted that this Q-matrix was
originally used to link items and latent abilities or to present the
multidimensional structure of latent ability. In other words, this
Q-matrix does not specify the latent structure of working speed
unless the structure explored by the EFA of RTs matches it.

Exploratory Analysis and Results
The Mplus (version 8.1) (Muthén and Muthén, 2019) was
used here. The EFA within a confirmatory factor analysis
framework method was used by default in Mplus. In this study,
the number of factors to retain was set as 1 to 5, which
means 1- to 5-factor CFA models were all employed to fit
RT data. Then, Akaike Information Criterion (AIC; Akaike,
1974) and Bayesian Information Criterion (BIC; Schwarz, 1978)
were used as model-data fit indexes to help judge the number
of factors/dimensions. Theoretically, correlations should exist
among multiple dimensions; thus, oblique rotation was used.
Other settings followed the default (e.g., the maximum likelihood
was used as an extraction method).

Table 2 presents the model-data fit indexes of the EFA.
According to previous studies, TLI > 0.95, CFI > 0.95,
SRMR≤ 0.08, and RMSEA< 0.05 mean good model-data fit (Hu
and Bentler, 1999; Steiger, 1990). The AIC preferred the 4-factor
model, and the BIC preferred the 3-factor model after taking into
account the penalty weighting of sample size. On the whole, the
3-factor model seems to fit the data better than the other models.

Table 3 presents the rotated factor loading matrix for the
3-factor model. Compared to the theoretically constructed
Q-matrix for latent ability, there is only a difference in
CM038Q03T. The rotated factor loading of CM038Q03T on
Factor 3 is 0.300 (p < 0.05), which also supports the

TABLE 1 | Q-Matrix for PISA 2012 released computer-based mathematics items.

Items θ1 θ2 θ3

CM015Q02D 1

CM015Q03D 1

CM020Q01 1

CM020Q02 1

CM020Q03 1

CM020Q04 1

CM038Q03T 1

CM038Q05 1

CM038Q06 1

Blank means zero.
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TABLE 2 | Exploratory factor analysis model-data fit indexes for RT data.

Model χ2 df TLI CFI AIC BIC SRMR RMSEA (90% CI)

1-factor 462.79** 27 0.896 0.922 24592.15 24737.03 0.045 0.101 (0.093, 0.109)

2-factor 225.49** 19 0.930 0.963 24370.85 24558.65 0.032 0.083 (0.073, 0.093)

3-factor 32.66** 12 0.989 0.996 24192.02 24417.38 0.010 0.033 (0.020, 0.047)

4-factor 5.56 6 1.000 1.000 24176.92 24434.48 0.004 0.000 (0.000, 0.031)

5-factor 0.09 1 1.006 1.000 24181.44 24465.83 0.000 0.000 (0.000, 0.045)

**p < 0.01; χ2 = chi-square; df = degrees of freedom; TLI = Tucker-Lewis index; CFI = comparative fit index; AIC = Akaike information criterion; BIC = Bayesian information
criterion; SRMR = standardized root mean square residual; RMSEA = root mean square error of approximation; CI = confidence interval.

theoretical structure to a certain extent. The results indicate
that the latent structure of working speed might be a 3-
factor structure, which is also consistent with the theoretical
multidimensional structure of latent ability (i.e., the Q-matrix in
Table 1).

Overall, the results of the EFA support the kernel hypothesis
of this study. However, due to the limitations of the EFA,
the estimation of parameters such as individual working speed
cannot be realized. Therefore, further exploration and utilization
of the proposed MMJ model are necessary.

SIMULATION STUDIES

Two simulation studies were conducted to evaluate the
performance of the MMJ model under various conditions. The
primary purpose of simulation study 1 was to examine whether
the model parameters could be recovered accurately using the
proposed Bayesian estimation algorithm, in which data were
simulated from the MMJ model and analyzed with itself.

Man et al. (2019) has shown that, in multidimensional
tests, the joint model that involves multidimensional ability
and single-factor speed (denoted as MSJ model in this
study) performs better than the joint model that involves
unidimensional ability and single-factor speed (e.g., van der
Linden, 2007). In this study, we focus on the comparison between
the MMJ model and the MSJ model. Specifically, simulation
study 2 was conducted to evaluate: (a) the consequences
of ignoring the multifactor structure of working speed, in
which the data were simulated from the MMJ model but

TABLE 3 | Rotated factor loading matrix for the 3-factor model for
response times data.

Item Factor 1 Factor 2 Factor 3

CM015Q02D 0.695*

CM015Q03D 0.609*

CM020Q01 0.565*

CM020Q02 0.801*

CM020Q03 0.642*

CM020Q04 0.943*

CM038Q03T 0.502*

CM038Q05 0.985*

CM038Q06 0.621*

*p < 0.05; absolute value of factor loading below 0.4 was omitted.

analyzed with the MSJ model; and (b) the consequences of
misspecifying a multifactor structure of working speed, in
which the data were simulated from the MSJ model but
analyzed with the MMJ model. Note that the results of
simulation study 2 were omitted for brevity but can be found
in the online Supplementary Appendix (see Supplementary
section S1).

Design and Data Generation
In simulation study 1, four factors were manipulated including
(a) sample size: N = 500 and 1,000, (b) test length: I = 15
and 30, (c) the correlation coefficient between latent ability
and its corresponding working speed factor: ρθτ = –0.7
and –0.4, and (d) the number of dimensions of ability:
K = 3 and 5. Q-matrices are presented in Figure 1. In
addition, the true values of other parameters were generated
according to the results of a data analysis using real data
(Zhan et al., 2018). For item parameters, item easiness,
di, and item time intensity, ξ i, were generated from a
bivariate normal distribution with mean vector (0, 4) and
covariance matrix of [1, –0.2; –0.2, 0.25]. In such a setting,
ρdξ = –0.4. The reciprocal of the standard deviation of the error
term, ω, is set to 2 for all items. Person parameters were generated
from(θn, τn)

′
∼ N((0, 0)′,

∑
Person), where

∑
Person

=



σ2
θ1
...

. . .

σθ1θK · · · σ2
θK

σθ1τ1 · · · σθKτ1 σ2
τ1

... · · ·
...

...
. . .

σθ1τK · · · σθKτK στ1τK · · · σ
2
τK



=



1
...

. . .

0.8 · · · 1
0.5ρθτ · · · 0.5ρθτ 0.25
...

. . .
...

...
. . .

0.5ρθτ · · · 0.5ρθτ 0.15 · · · 0.25


.

In such a case, the covariance of two latent abilities is σθθ ′ = 0.8
(i.e., correlation coefficient ρθθ ′ = 0.8) and the covariance of
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FIGURE 1 | K-by-I Q’ matrix in the simulation study 1. D = dimension of latent ability; items with * are used for I = 15 conditions.

TABLE 4 | Recovery of item parameters in simulation study 1.

Mean Bias Mean RMSE Cor

I N ρθτ K d ξ ω d ξ ω d ξ ω

15 500 −0.4 3 0.000 0.001 −0.013 0.106 0.021 0.075 0.995 0.999 NA

5 0.011 –0.001 −0.024 0.110 0.023 0.077 0.995 0.999 NA

−0.7 3 −0.006 0.000 −0.016 0.098 0.024 0.073 0.996 0.999 NA

5 0.009 0.001 −0.017 0.114 0.022 0.085 0.994 0.999 NA

1000 −0.4 3 −0.001 −0.001 −0.009 0.076 0.016 0.051 0.997 1.000 NA

5 0.001 0.001 −0.012 0.074 0.015 0.056 0.998 1.000 NA

−0.7 3 –0.002 0.000 −0.011 0.077 0.015 0.052 0.997 1.000 NA

5 0.002 0.000 −0.014 0.077 0.016 0.053 0.997 1.000 NA

30 500 −0.4 3 –0.006 0.000 −0.015 0.110 0.022 0.070 0.994 0.999 NA

5 0.003 0.000 −0.018 0.106 0.022 0.073 0.995 0.999 NA

−0.7 3 −0.001 –0.001 −0.017 0.103 0.022 0.067 0.995 0.999 NA

5 −0.003 0.000 −0.019 0.106 0.023 0.074 0.995 0.999 NA

1000 −0.4 3 0.001 –0.001 −0.007 0.075 0.016 0.047 0.997 1.000 NA

5 −0.003 0.000 −0.007 0.076 0.015 0.051 0.997 1.000 NA

−0.7 3 0.000 0.000 −0.008 0.077 0.016 0.050 0.997 0.999 NA

5 −0.002 0.000 −0.010 0.076 0.016 0.051 0.997 1.000 NA

I = test length; N = sample size; ρθτ = correlation coefficient between ability and speed; K = number of dimensions of ability; d = item easiness; ξ = item time-intensity;
ω = item time-discrimination; Mean Bias = mean bias across all items; Mean RMSE = mean root mean square error across all items; Cor = correlation between estimated
and true values. Cor of ω is NA because of the variance of true ω is zero.

two latent speeds is στ τ ′ = 0.15 (i.e., correlation coefficient
ρτ τ ′ = 0.6). Thirty data sets were generated.

Analysis
In simulation study 1, the MMJ model was fitted to each of
the 30 replications. In each replication, two Markov chains
with random starting points were used, and each chain ran
10,000 iterations with the first 5,000 iterations in each chain as
burn-in. Finally, the remaining 10,000 iterations were used for
the model parameter inferences. The potential scale reduction
factor (PSRF; Brooks and Gelman, 1998) was computed to
assess the convergence of each parameter. A PSRF with values
smaller than 1.2 indicates convergence. Our studies indicated
that the PSRF was smaller than 1.1 for all parameters, suggesting
good convergence.

To evaluate parameter recovery, the bias and the root mean
square error (RMSE) was computed as: (υ̂) =

∑R
r=1

υ̂−υ
R and

RMSE(υ̂) =
√∑R

r=1
(υ̂−υ)2

R , where υ̂r is the estimated value of
the model parameter in rth replication and υ is the true value of
the corresponding model parameter, respectively; R is the total
number of replications. The correlation between estimated and
true values (Cor) was also computed.

Results
Table 4 presents the recovery of item parameters. All item
parameters were well recovered. The recovery of time-
intensity was the best, followed by time-discrimination,
and then item easiness. An increasing sample size
yielded a better recovery of item parameters. It seems
that test length, the correlation coefficient between
latent ability and latent speed, and the number of
dimensions have a limited impact on the recovery of
item parameters.
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Tables 5, 6 present the recovery of ability and speed,
respectively. First, the recovery of multiple speed factors was
better than that of abilities. Increasing test length yielded a
better recovery of person parameters; by contrast, increasing
the number of dimensions yielded a worse recovery of person
parameters. In addition, the higher the correlation coefficient
between ability and speed, the better the recovery of latent
abilities becomes; however, the correlation coefficient had little
effect on the recovery of latent speeds.

Table 7 presents the recovery of the item mean vector
and item variance-covariance. Increasing test length
and sample size yielded a better recovery. However, the
correlation coefficient between ability and speed and the
number of dimensions had a limited effect on the recovery.
Additionally, the recovery of covariances (omitted, due
to space limitations) was better than that of variances of
item parameters.

Tables 8, 9 present the recovery of variances of person
parameters. Similar to the pattern of the recovery of ability and
speed, the recovery of variances of multiple speed factors was
better than that of abilities. Increasing test length, sample size,
and the correlation coefficient between ability and speed yielded
a better parameter recovery. By contrast, more dimensions led to
a worse recovery of variances of person parameters. Additionally,
the recovery of covariances (omitted, due to space limitations)
was better than that of variances of person parameters.

In general, the recovery of time-related parameters (e.g., item
intensity, the covariance of item easiness and time-intensity,
speed factors, and covariance of ability and speed) was better
than that of time-unrelated parameters (e.g., item easiness and
latent abilities). Overall, simulation study 1 indicated that model
parameters of the MMJ could be recovered very well via the
proposed full Bayesian MCMC estimation algorithm.

AN EMPIRICAL EXAMPLE

Data Description and Analysis
In this section, the PISA 2012 computer-based mathematics RA
and RT data were analyzed by using the MMJ model and the MSJ
model to explore whether the former fits the data better than
the latter when the test structure is multidimensional. Details
about this data set were mentioned previously in the motivating
example. The Q-matrix in Table 1 was used. For each model,
in each replication, the numbers of chains, burn-in iterations,
and post-burn-in iterations were the same as those set in the
simulation study. Convergence was well achieved according to
the PSRF< 1.1.

Posterior predictive model checking (PPMC; Gelman et al.,
2014) was used to evaluate model-data fit. A posterior predictive
probability (ppp) value near 0.5 indicates that there are no
systematic differences between the realized and predictive values,
and thus an adequate fit of the model. In PPMC, the sum of the
squared Pearson residuals for person n and item i (Yan et al.,
2003) was used as a discrepancy measure to evaluate the overall
fit of the RA model, which is written as

D(Yni; θnk, di, qik) =
N∑

n=1

I∑
i=1

(
Yni − P(Yni = 1)

√
P(Yni = 1)(1− P(Yni = 1))

)2
,

where P(Yni = 1) has the same definition as that in Equation (6).
The sum of the standardized error function of logTni for person
n and item i was employed as a discrepancy measure of the RT
model:

D(logTni; ξi, τ̃ni,ωi) =

N∑
n=1

I∑
i=1

(
ωi(logTni − (ξi − τ̃ni))

)2
.

TABLE 5 | Recovery of multidimensional ability in simulation study 1.

Mean Bias Mean RMSE Cor

I N ρθτ K θ1 θ2 θ3 θ4 θ5 θ1 θ2 θ3 θ4 θ5 θ1 θ2 θ3 θ4 θ5

15 500 −0.4 3 0.000 0.000 0.000 0.599 0.599 0.598 0.798 0.800 0.800

5 0.000 0.000 0.000 0.000 0.000 0.623 0.627 0.624 0.625 0.623 0.780 0.779 0.782 0.781 0.781

−0.7 3 0.000 0.000 0.000 0.520 0.518 0.519 0.854 0.854 0.854

5 0.001 0.000 0.000 0.000 0.000 0.522 0.529 0.526 0.523 0.524 0.853 0.849 0.851 0.853 0.850

1000 −0.4 3 0.000 0.000 0.000 0.592 0.592 0.594 0.803 0.803 0.802

5 0.000 0.000 0.000 0.000 0.000 0.615 0.617 0.619 0.618 0.617 0.786 0.785 0.783 0.783 0.785

−0.7 3 0.000 0.000 0.000 0.515 0.514 0.514 0.856 0.856 0.856

5 0.000 0.000 0.000 0.000 0.000 0.519 0.522 0.522 0.524 0.519 0.854 0.852 0.851 0.850 0.854

30 500 −0.4 3 0.000 0.000 0.000 0.497 0.495 0.497 0.866 0.867 0.866

5 0.000 0.000 0.000 0.000 0.000 0.540 0.536 0.536 0.534 0.526 0.840 0.842 0.843 0.844 0.849

−0.7 3 0.000 0.000 0.000 0.448 0.450 0.449 0.893 0.892 0.892

5 0.000 0.000 0.000 0.000 0.000 0.474 0.474 0.470 0.473 0.470 0.879 0.880 0.881 0.880 0.881

1000 −0.4 3 0.000 0.000 0.000 0.491 0.489 0.490 0.869 0.870 0.869

5 0.000 0.000 0.000 0.000 0.000 0.528 0.528 0.526 0.529 0.529 0.846 0.847 0.848 0.847 0.846

−0.7 3 0.000 0.000 0.000 0.447 0.450 0.448 0.892 0.892 0.892

5 0.000 0.000 0.000 0.000 0.000 0.469 0.468 0.473 0.470 0.470 0.882 0.883 0.880 0.882 0.881

I = test length; N = sample size; ρθτ = correlation coefficient between ability and speed; K = number of dimensions of ability; θ = latent ability; Mean Bias = mean bias
across all persons; Mean RMSE = mean root mean square error across all persons; Cor = correlation between estimated and true values.
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TABLE 6 | Recovery of multifactor speed in simulation study 1.

Mean Bias Mean RMSE Cor

I N ρθτ K τ 1 τ 2 τ 3 τ 4 τ 5 τ 1 τ 2 τ 3 τ 4 τ 5 τ 1 τ 2 τ 3 τ 4 τ 5

15 500 −0.4 3 0.000 0.000 0.000 0.191 0.194 0.194 0.922 0.920 0.920

5 0.000 0.000 0.000 0.000 0.000 0.225 0.225 0.227 0.227 0.226 0.891 0.888 0.890 0.889 0.890

−0.7 3 0.000 0.000 0.000 0.191 0.190 0.188 0.922 0.924 0.925

5 0.000 0.000 0.000 0.000 0.000 0.221 0.221 0.221 0.224 0.224 0.895 0.895 0.895 0.892 0.893

1000 −0.4 3 0.000 0.000 0.000 0.193 0.191 0.193 0.921 0.923 0.921

5 0.000 0.000 0.000 0.000 0.000 0.226 0.226 0.224 0.227 0.224 0.890 0.891 0.892 0.889 0.892

−0.7 3 0.000 0.000 0.000 0.189 0.189 0.189 0.925 0.925 0.925

5 0.000 0.000 0.000 0.000 0.000 0.221 0.221 0.221 0.223 0.223 0.895 0.894 0.895 0.894 0.894

30 500 −0.4 3 0.000 0.000 0.000 0.144 0.145 0.146 0.957 0.956 0.956

5 0.000 0.000 0.000 0.000 0.001 0.177 0.177 0.177 0.176 0.177 0.934 0.935 0.934 0.935 0.934

−0.7 3 0.000 0.000 0.000 0.143 0.144 0.144 0.957 0.957 0.957

5 0.000 0.000 0.000 0.000 0.000 0.175 0.175 0.176 0.173 0.175 0.935 0.936 0.935 0.937 0.936

1000 −0.4 3 0.000 0.000 0.000 0.144 0.144 0.146 0.957 0.957 0.956

5 0.000 0.000 0.000 0.000 0.000 0.175 0.175 0.176 0.177 0.176 0.936 0.935 0.935 0.934 0.935

−0.7 3 0.000 0.000 0.000 0.142 0.143 0.144 0.958 0.958 0.957

5 0.000 0.000 0.000 0.000 0.000 0.174 0.174 0.173 0.174 0.174 0.936 0.936 0.937 0.937 0.936

I = test length; N = sample size; ρθτ = correlation coefficient between ability and speed; K = number of dimensions of ability; τ = speed factor; Mean Bias = mean bias
across all persons; Mean RMSE = mean root mean square error across all persons; Cor = correlation between estimated and true values.

TABLE 7 | Recovery of item mean vector and item variance-covariance in simulation study 1.

Bias RMSE

I N ρθτ K σd
2 σdξ σξ

2 µd µξ σd
2 σdξ σξ

2 µd µξ

15 500 −0.4 3 0.155 0.021 0.095 0.020 0.006 0.169 0.027 0.096 0.027 0.007

5 0.135 0.013 0.097 0.023 0.005 0.162 0.016 0.097 0.029 0.007

−0.7 3 0.151 0.016 0.095 0.024 0.006 0.164 0.020 0.095 0.029 0.007

5 0.142 0.021 0.094 0.026 0.005 0.163 0.026 0.094 0.032 0.007

1000 −0.4 3 0.158 0.015 0.096 0.013 0.005 0.164 0.018 0.096 0.016 0.006

5 0.124 0.015 0.095 0.015 0.004 0.136 0.020 0.095 0.018 0.006

−0.7 3 0.150 0.018 0.096 0.016 0.005 0.159 0.022 0.096 0.019 0.006

5 0.132 0.016 0.096 0.018 0.004 0.144 0.019 0.096 0.021 0.004

30 500 −0.4 3 0.070 0.012 0.046 0.024 0.004 0.083 0.016 0.046 0.027 0.005

5 0.060 0.012 0.044 0.018 0.003 0.068 0.014 0.045 0.023 0.004

−0.7 3 0.078 0.010 0.046 0.013 0.004 0.090 0.012 0.046 0.016 0.005

5 0.056 0.012 0.043 0.019 0.003 0.066 0.014 0.043 0.023 0.004

1000 −0.4 3 0.062 0.006 0.044 0.013 0.003 0.069 0.008 0.044 0.016 0.004

5 0.053 0.008 0.045 0.013 0.002 0.060 0.010 0.045 0.017 0.003

−0.7 3 0.068 0.010 0.046 0.009 0.003 0.079 0.012 0.046 0.012 0.004

5 0.044 0.007 0.046 0.012 0.002 0.052 0.009 0.046 0.015 0.003

I = test length; N = sample size; ρθτ = correlation coefficient between ability and speed; K = number of dimensions of ability; σd
2 = variance of item easiness; σξ

2 = variance
of item time-intensity; σdξ = covariance of item easiness and item time-intensity; RMSE = mean root mean square error.

Additionally, two information criteria that suitable for
Bayesian estimation, the deviance information criterion
(DIC) and widely available information criterion (WAIC)
(Gelman et al., 2014, Chapter 7), were computed for model
selection. A smaller value of these two criteria indicates a
better model-data fit.

Results
The DIC and WAIC both identified that the MMJ model fit
the data better than the MSJ model, as shown in Table 10.
In the MMJ model, the ppp values of the RA model and the

RT model were 0.736 and 0.578, respectively, which indicates
an adequate model-data fit. The results indicate that it is more
appropriate to simultaneously consider the multidimensionality
of latent ability and the multifactor structure of working speed
for the multidimensional test.

Note that the parameter estimates of the MMJ model
in the empirical example were omitted for brevity but
can be found in the online Supplementary Appendix
(see Supplementary section S2), mainly because this
part of the content is not the main concern of the
empirical study.
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TABLE 8 | Recovery of the variance of ability in simulation study 1.

Bias RMSE

I N ρθτ K σθ1
2 σθ2

2 σθ3
2 σθ4

2 σθ5
2 σθ1

2 σθ2
2 σθ3

2 σθ4
2 σθ5

2

15 500 −0.4 3 0.002 −0.047 −0.026 0.152 0.154 0.142

5 −0.047 −0.088 −0.055 −0.056 −0.062 0.139 0.193 0.195 0.184 0.168

−0.7 3 −0.007 0.000 0.010 0.140 0.121 0.142

5 −0.036 −0.066 −0.004 −0.016 −0.061 0.157 0.164 0.148 0.166 0.135

1000 −0.4 3 −0.058 −0.033 −0.042 0.101 0.100 0.104

5 −0.072 −0.077 −0.023 −0.095 −0.092 0.123 0.147 0.116 0.139 0.140

−0.7 3 −0.034 −0.018 −0.015 0.106 0.105 0.099

5 −0.071 −0.088 −0.067 −0.056 −0.045 0.148 0.139 0.117 0.131 0.118

30 500 −0.4 3 0.007 –0.035 0.010 0.090 0.099 0.078

5 −0.068 −0.085 −0.086 −0.054 −0.055 0.127 0.123 0.136 0.111 0.112

−0.7 3 −0.014 −0.019 −0.017 0.082 0.097 0.080

5 −0.030 –0.075 −0.034 –0.070 −0.056 0.100 0.131 0.099 0.110 0.117

1000 −0.4 3 −0.009 0.003 –0.040 0.060 0.057 0.063

5 −0.070 −0.033 −0.070 –0.084 –0.042 0.099 0.097 0.101 0.107 0.084

−0.7 3 0.011 −0.032 −0.006 0.045 0.087 0.056

5 −0.050 −0.060 −0.069 −0.069 −0.072 0.100 0.091 0.110 0.113 0.101

I = test length; N = sample size; ρθτ = correlation coefficient between ability and speed; K = number of dimensions of ability; σθ
2 = variance of ability; RMSE = mean root

mean square error.

TABLE 9 | Recovery of the variance of speed factor in simulation study 1.

Bias RMSE

I N ρθτ K στ1
2 στ2

2 στ3
2 στ4

2 στ5
2 στ1

2 στ2
2 στ3

2 στ4
2 στ5

2

15 500 −0.4 3 0.002 0.001 0.004 0.010 0.010 0.010

5 0.004 –0.003 0.003 0.001 −0.001 0.012 0.016 0.017 0.013 0.013

−0.7 3 0.001 0.002 0.002 0.011 0.009 0.010

5 0.007 0.002 0.002 0.003 0.001 0.015 0.014 0.013 0.012 0.015

1000 −0.4 3 0.000 0.003 0.000 0.006 0.008 0.008

5 –0.003 0.005 0.000 −0.001 −0.001 0.009 0.013 0.011 0.011 0.008

−0.7 3 0.002 0.001 0.001 0.009 0.007 0.008

5 0.001 –0.002 0.002 −0.002 0.003 0.010 0.010 0.009 0.011 0.009

30 500 −0.4 3 0.004 0.002 0.003 0.008 0.008 0.008

5 0.002 0.003 0.001 0.002 −0.001 0.009 0.008 0.009 0.009 0.009

−0.7 3 0.003 0.002 0.005 0.007 0.008 0.011

5 0.003 0.001 0.004 0.002 0.001 0.010 0.009 0.010 0.010 0.010

1000 –0.4 3 0.003 0.002 0.000 0.006 0.005 0.005

5 0.000 0.002 0.003 0.001 0.000 0.006 0.008 0.009 0.008 0.006

−0.7 3 0.001 0.002 0.002 0.005 0.007 0.006

5 0.000 0.000 0.002 0.001 −0.001 0.008 0.006 0.006 0.007 0.006

I = test length; N = sample size; ρθτ = correlation coefficient between ability and speed; K = number of dimensions of ability; στ
2 = variance of speed factor; RMSE = mean

root mean square error.

TABLE 10 | Model fit for the PISA 2012 computer-based mathematics data.

Analysis Model DIC WAIC ppp_RA ppp_RT

MMJ 34853 34433 0.736 0.578

MSJ 35910 35669 0.608 0.569

MMJ, multidimensional-multifactor joint model; MSJ, multidimensional-single-
factor joint model; DIC, deviance information criterion; WAIC, widely available
information criterion; ppp, posterior predictive probability value; RA, item response
accuracy; RT, item response times. Relatively smaller values are indicated in bold.

DISCUSSION

The kernel hypothesis of this study is that respondents can work
with different levels of speed on items that require different
dimensions of ability for a multidimensional test. To model the
varying speed across dimensions of ability, this study relaxed
the assumption of many RT models in which it is assumed that
respondents work with a constant rate throughout the test. As a
result, a multifactor working speed model and a joint model for
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multidimensional ability and multifactor speed were proposed.
First, a motivating example with the EFA of PISA

2012 computer-based mathematics RTs was presented.
The results indicate that working speed has a multifactor
structure, which is also consistent with the multidimensional
structure of ability. Then, two simulation studies were used
to evaluate the psychometric properties of the proposed
joint model. The results indicate that (1) parameters of
the proposed joint model could be well recovered using
the proposed Bayesian MCMC approach, (2) misspecifying
a multifactor structure of speed has limited effect on
the recovery of model parameters, and (3) ignoring the
multifactor structure of speed could lead to biased and
imprecise estimation, especially for time-related parameters.
The PISA 2012 computer-based mathematics RA and RT
data were analyzed as well to illustrate the implications
and applications of the proposed models. The results show
that it is appropriate to consider the multidimensionality
of latent ability and the multifactor structure of working
speed, simultaneously, in multidimensional tests. Overall,
considering the results of EFA, the simulation studies,
and the empirical example, there are reasons to believe
that the kernel hypothesis of this study is valid and the
proposed model can reasonably jointly analyze RA and RTs in
multidimensional tests.

The work presented in this article is only a first attempt
to deal with the variable speed across dimensions of
ability. Despite promising results, further exploration
is encouraged. First, the proposed MLRT model is an
extension of the classical lognormal RT model (van der
Linden, 2006). Thus, there are some limitations of the
current model. For instance, it assumes that RA and RTs
are conditionally independent given all person parameters
(Meng et al., 2015; Bolsinova and Maris, 2016); that after
log-transformation, the log RTs follow a normal distribution
(Klein Entink et al., 2009b); and that all respondents apply
the same problem-solving strategy throughout the whole test
(Wang and Xu, 2015).

Second, although the proposed model takes into
account the differences in working speed across different
dimensions of ability, it still assumes that the working
speed of a respondent is constant on items within the
same dimension. In future studies, this hypothesis can
be further relaxed; that is, each respondent could be
allowed to change his or her working speed in different
dimensions, and could also be allowed to adjust his or her
working speed within the same dimension according to
the order of items.

Third, in the proposed joint model, a multivariate
normal distribution was used to describe the relationships
among multidimensional ability and multifactor speed.
So, the number of total dimensions is twice as many as
the number of dimensions that are measured by the test,
which may increase the complexity of the model and
the computational burden. If the ability and speed can
each have a second-order (or bi-factor) structure, not
only can the parameter estimation challenge be largely

reduced, but the structures of ability and speed can be
posited and tested.

Fourth, in this study, only the MR model and
the MLRT model were used as measurement models
for illustration. Given the “plug-and-play” nature
of the hierarchical modeling, various MIRT models
and multifactor working speed models can be
adopted in the future.

Fifth, applications of the proposed model, such as detecting
aberrant responses (e.g., rapid-guessing and cheating) in
multidimensional tests, need further investigation.

Moreover, in Bayesian estimation, the prior distribution
reflects the data analyst’s beliefs and the known information
about the data. In practice, we recommend that the
data analyst select appropriate prior distributions based
on the actual test scenario rather than copy those
given in this study.

Last but not least, only the between-item multidimensional
test was considered in this study. For the between-item
multidimensional test, it is clear that working speed can
vary across items when the items are related to different
dimensions. However, the within-item multidimensional
test is still possible in reality. For example, when
respondents, especially non-native English speakers, take
part in the GRE R© Subject Test (e.g., Mathematics), at
least two abilities are needed: one for understanding
the questions (e.g., English reading ability), and one for
solving the questions (e.g., the subject ability). Meanwhile,
the corresponding two latent speed factors work; one
reflects the working speed of reading, and the other
one reflects the working speed of problem-solving. The
introduction of within-item multidimensionality is bound
to increase the complexity of the model and the difficulty
of constructing the Q-matrix. Thus, the rationality and
necessity of the within-item multifactor working speed
model is still an open-ended question needed to be
studied in the future.
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