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Machine learning identifies
two autophagy-related genes
as markers of recurrence in
colorectal cancer
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Abstract

Objective: Colorectal cancer (CRC) is the most common cancer worldwide. Patient outcomes

following recurrence of CRC are very poor. Therefore, identifying the risk of CRC recurrence at

an early stage would improve patient care. Accumulating evidence shows that autophagy plays an

active role in tumorigenesis, recurrence, and metastasis.

Methods: We used machine learning algorithms and two regression models, univariable Cox

proportion and least absolute shrinkage and selection operator (LASSO), to identify 26

autophagy-related genes (ARGs) related to CRC recurrence.

Results: By functional annotation, these ARGs were shown to be enriched in necroptosis and

apoptosis pathways. Protein–protein interactions identified SQSTM1, CASP8, HSP80AB1, FADD,

and MAPK9 as core genes in CRC autophagy. Of 26 ARGs, BAX and PARP1 were regarded as

having the most significant predictive ability of CRC recurrence, with prediction accuracy of

71.1%.

Conclusion: These results shed light on prediction of CRC recurrence by ARGs. Stratification

of patients into recurrence risk groups by testing ARGs would be a valuable tool for early

detection of CRC recurrence.
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Introduction

Colorectal cancer (CRC) is one of the most
common cancers and the third leading
cause of cancer-related deaths worldwide.1

The 5-year survival rate of CRC varies from
14% to 90%, based on the stage of CRC;
patients diagnosed with localized cancers
(stage I or II) usually have more favorable
outcomes than patients with late-stage
CRC.2 Surgical resection of the tumor is
the standard treatment for localized CRC
but it cannot prevent recurrence after sev-
eral years.3 Because recurrence is prevent-
able, research is needed to better predict the
risk of CRC recurrence and stratify CRC
patients into subgroups according to recur-
rence risk. A few studies in which CRC
patients benefited from stratification into
different adjuvant treatment groups accord-
ing to molecular biomarkers have demon-
strated the clinical utility of, and urgency to
identify, molecular biomarkers in CRC.4–6

High-throughput screening and
advanced bioinformatics analysis along
with machine learning characterize the
clinical utility of biomarkers in CRC. Two
commercial assays (Epi proColon,
Epigenomics AG, Berlin, Germany; and
Cologuard, Exact Sciences, Madison, WI,
USA) that are based on DNA methylation
levels have been approved by the US Food
and Drug Administration for CRC diagno-
sis and screening. However, most reported
biomarkers in CRC are used for early
cancer screening and therapeutic stratifica-
tion.7–9 There is a need to develop a predic-
tive biomarker for CRC recurrence at
all stages.

Autophagy is the process of transporting
damaged, denatured, or aged proteins and
organelles into lysosomes for digestion and
degradation. On the one hand, autophagy
prevents accumulation of toxic or carcino-
genic proteins and organelles and inhibits
cell carcinogenesis.10–13 On the other
hand, autophagy can be harmful because

the autophagy cells provide more nutrients
and promote tumor growth when tumor
cells form.14–17 Because autophagy can reg-
ulate tumor formation, spread, metastasis,
and energy metabolism, antitumor drugs
based on the regulation of autophagy activ-
ity have the potential for clinical treat-
ment.18–20

Depending on the way a lysosome
accepts a substance to be degraded, autoph-
agy can be classified into macroautophagy,
microautophagy, and chaperone-mediated
autophagy. Macroautophagy is the most
common form of autophagy and is charac-
terized by the formation of a cup-shaped
bilayer membrane structure around the
cytoplasmic component and the formation
of an autophagosome.21–24 The outer mem-
brane and enzymatic fusion of autophago-
somes form a monolayer membrane
structure of autophagosomes, while the
contents of the inner membrane and auto-
phagosomes are digested.21–24 This process
is mediated by autophagy-related genes
(ARGs).25–31 These ARGs have been iden-
tified as direct or indirect participants in the
autophagy process. Therefore, analysis of
ARGs provides a comprehensive overview
of the changes in autophagy in CRC.
A number of studies have shown that
these ARGs have important clinical impli-
cations for various types of cancer, includ-
ing glioma, liver cancer, melanoma, and
thyroid cancer.29,30,32,33 In this study, we
used two public datasets of CRC that
included recurrent cases to explore the clin-
ical utility of ARGs to predict CRC
recurrence.

Because disease biomarkers demonstrate
utility in disease diagnosis, prediction of ther-
apeutic response, and monitoring of residual
disease, machine learning has become a
useful tool for biomarker discovery.34–36

More importantly, machine learning is a
powerful way to identify phenotypic features
compared with conventional analysis of
differentially expressed genes in cancers.
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By using machine learning, we identified two
ARGs with potential predictive ability for

CRC recurrence; these genes were significant-

ly associated with progression-free survival.
Our results highlight the biological function

of ARGs in CRC.

Methods

Ethical approval

This was a retrospective study using public-
ly available datasets; ethical approval was

deemed unnecessary.

Data source and processing

Two microarray datasets (GSE64857 and
GSE28722) were downloaded from the

Gene Expression Omnibus (GEO) database
(http://ncbi.blm.nih.gov/geo/). GSE64857

contained 81 samples of CRC patients

with follow-up or recurrence information,
which we used to identify ARG signatures.

GSE28722 contained 129 samples of CRC

patients with survival information, which
we used to validate the prognostic capacity

of ARG signatures in this cohort.37,38 The
annotation files of these microarrays were

downloaded from the GEO website.
We acquired a list of ARGs from the

human autophagy database (HADb;

http://autophagy.lu), the first human
autophagy database. As a public reposito-

ry, it provides updated annotations of

human genes that are reported to be related
to autophagy. Information on 232 ARGs

was obtained from this website.
After detecting the variance between sam-

ples by box-and-whisker plots, we used

quantile normalization to remove unexpect-
ed variance within samples. After normaliza-

tion, we conducted a principal component

analysis (PCA) to explore genomic differen-
ces between samples with the top 1000 vari-

ant probes using the package “limma”39 in
R (https://www.r-project.org/).

Cox proportion and LASSO regressions

To generate CRC recurrence-related ARG

signatures, we performed two regressions

on our datasets: univariable Cox propor-

tion and least absolute shrinkage and selec-

tion operator (LASSO). Univariable Cox

proportion regression was first conducted

to filter out CRC recurrence

survival-related ARGs. Once we obtained

the shortlist of ARGs from the univariable

proportion regression, we then performed

the LASSO regression on these genes to

test their association with CRC recurrence

using the “glmnet” package in R.40 The

LASSO regression analysis identified

eligible ARG signatures for the CRC recur-

rence risk score. We generated the CRC

recurrence risk score using the ARG signa-

tures and their corresponding coefficients

discovered by the LASSO model. The

risk score was calculated as follows: Risk

score¼RniARGi� bi, where ni was the

numbers of ARG signatures, i was each

ARG signature, and b was the correspond-

ing coefficient. After the risk score was

determined, we categorized CRC samples

from GSE64857 into two groups (predicted

recurrence or predicted non-recurrence)

according to their risk score. The perfor-

mance of this risk score was evaluated by

receiver-operator characteristic (ROC)

curve using “survival receiver‑operator
characteristic (ROCR)” package.41 The

area under the curve (AUC) was calculated

to assess the predictive accuracy.

Gene pathway analysis

To identify the biological pathways of ARG

signatures, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes

(KEGG) databases were used for functional

enrichment analysis by the R package

“clusterProfiler”.42 The significance of a

pathway was determined by a false discovery

rate (FDR)< 0.05. The Search Tool for the
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Retrieval of Interacting Genes/Proteins
(STRING) database (https://string‑db.org/;
version 10.0) was used to explore the pro-
tein–protein interactions (PPI) of the
recurrence-associated ARGs.

Survival analysis

For overall survival (OS) and progression-
free survival (PFS) analysis, we used
Kaplan–Meier plots to analyze the prog-
nostic capacity of ARG signatures in
CRC. We stratified all samples of
GSE28722 into three groups (low, interme-
diate, high) based on their relative expres-
sion of ARG signatures. The log-rank
test was performed to determine statistical
significance, and a p-value< 0.05 was con-
sidered significant. All survival analyses
were conducted using the R packages
“survival” and “survminer”.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was
performed to investigate the pathways
affected by the ARG signatures. We catego-
rized samples of GSE64857 into two groups
according to their risk score. GSEA was
conducted using GSEA software provided
by the Broad Institute (http://software.

broadinstitute.org/gsea/index.jsp).43 The
hallmarks of genes were calculated if the
signatures were enriched for CRC with a
high or low risk score. Hallmark gene
signatures with normalized enrichment
score> 1 and FDR< 0.05 were considered
significant.

Results

Download and cleaning of datasets for
ARG signature identification

To generate the datasets for ARG signa-
tures, we downloaded two datasets
(GSE64857 and GSE28722) from the
public domain (GEO). Dataset GSE64857
contained 81 samples with clinical informa-
tion; 75 of these had clinical follow-up
information, and 6 were excluded because
they lacked recurrence information. Before
conducting the bioinformatic analysis, we
checked the variance within samples by per-
forming quantile normalization for these
two datasets. The boxplots of each sample
from both datasets demonstrated that nor-
malization removed the unwanted variance
within samples (Figure 1). After normaliza-
tion, we performed PCA to explore the
variance of samples in terms of gene

Figure 1. Quantile normalization was used to remove the batch effect of data in two public datasets
(GSE64857 and GSE28722) from the Gene Expression Omnibus.
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expression. Although the PCA plot of the

top 1000 variable genes could not differen-

tiate recurrent CRC from non-recurrent

CRC, we observed separation within sam-

ples when we used the shortlist of ARGs

(Figure 2). This result suggested that

ARGs were potential biomarkers for CRC

recurrence.

Univariable Cox proportion regression

identified ARGs for CRC recurrence

To identify ARGs directly associated with

CRC recurrence-free survival, we used uni-

variable Cox proportion regression to filter

all 232 ARGs from HADb (http://autoph

agy.lu). As the dataset GSE28722 used the

Rosetta custom human 23K array, we

included 283 probes targeting all 232

ARGs in the downstream analysis.

Univariable Cox proportion regression

showed that 26 ARGs were significantly

associated with CRC recurrence-free sur-

vival (Table 1). Therefore, we used these

26 significant ARGs for molecular function

annotation and LASSO analysis.

Molecular function of ARG signatures

To investigate the molecular function of

these ARG signatures, we explored the

associated enriched pathways in Gene

Ontology (GO) terms (biological pathway,

cellular component, and molecular func-

tion) and KEGG pathways. We used the

ClusterProfiler package to identify the GO

terms and KEGG pathways that ARG sig-

natures enriched. For biological pathways

of GO, the top three terms were “positive

regulation of proteolysis,” “extrinsic apo-

ptotic signaling pathway,” and “regulation

of apoptotic signaling pathway.” The top

three cellular component GO terms were

“membrane raft,” “membrane micro-

domain,” and “membrane region.” The

top three molecular function GO terms

were “ubiquitin protein ligase binding,”

“ubiquitin-like protein ligase binding,”

and “heat shock protein binding.” The top

three KEGG pathways enriched by the

ARG signatures were “necroptosis,”

“apoptosis,” and “hepatitis C” (Figure 3).

The PPI network analysis demonstrated

Figure 2. Overview of biomarker discovery using two public datasets (GSE64857 and GSE28722) from the
Gene Expression Omnibus. The two PCA plots on the left show the differences in samples for recurrent and
non-recurrent colorectal cancer for the top 1000 variable genes. The right-hand panel shows the PCA plot
indicating differences in samples by autophagy-related genes. PCA, principal component analysis.
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interactions in these ARG signatures. Of
these, SQSTM1, CASP8, HSP80AB1,
FADD, and MAPK9 were the interaction
center nodes, suggesting that these genes
had broader interactions than other ARG
signature genes. To further display ARG
signature interactions, we performed a PPI
analysis of the 26 ARGs using the STRING
database. SQSTM1, HSP90AB1, and
CASP8 were identified as nodes in the PPI
network of ARG signatures.

Risk score stratification

To further test prediction of CRC recur-
rence by ARG signatures, we constructed
a risk score prediction model by LASSO
regression analysis. The 26 ARG signatures

shortlisted from the univariable Cox pro-

portion analysis were subjected to LASSO

regression analysis (Table 1). No genes

retained a significant statistical association

using the optimal lambda score in LASSO

regression; therefore, we chose the mini-

mum lambda score for LASSO regression.

We identified two genes (BAX and PARP1)

that were significantly associated with CRC

recurrence (Figure 4) using the minimum

lambda score in LASSO regression.

Interestingly, the regression coefficients of

these two genes were negative, suggesting

that they had a protective effect on CRC

recurrence. A CRC recurrence risk score

was calculated for each patient by multiply-

ing the regression coefficient by the

Table 1. Univariable Cox proportion regression identified 26 ARGs associated with CRC recurrence.

Gene symbol Beta HR (95% CI for HR) Wald test p-value

SQSTM1 2.9 19 (3.3–110) 11 0.00097

FOXO3 1.7 5.7 (2–16) 11 0.0012

FADD 2.2 9.4 (2.2–40) 9 0.0027

MAPK9 �2.3 0.098 (0.02–0.47) 8.4 0.0038

IFNG �0.76 0.47 (0.27–0.81) 7.5 0.0062

EDEM1 �1.9 0.16 (0.04–0.61) 7.1 0.0076

PARP1 �1.9 0.16 (0.039–0.64) 6.7 0.0097

CASP8 �1.4 0.25 (0.081–0.76) 5.9 0.015

LAMP2 1.5 4.5 (1.3–15) 6 0.015

FKBP1A 1.4 4.2 (1.3–14) 5.7 0.017

CHMP2B �1.5 0.22 (0.061–0.79) 5.4 0.02

ATG4D �2.6 0.075 (0.008–0.71) 5.1 0.024

ITGA6 �1.1 0.33 (0.13–0.88) 5 0.026

DNAJB9 �1.5 0.22 (0.057–0.85) 4.9 0.027

BAX 2.6 13 (1.3–140) 4.8 0.028

KIAA0226 �2.1 0.12 (0.018–0.8) 4.8 0.028

RB1 �1.2 0.31 (0.11–0.9) 4.6 0.031

BAK1 �1.2 0.31 (0.1–0.92) 4.4 0.035

BNIP1 �2.1 0.12 (0.017–0.86) 4.4 0.035

C17orf88 2.5 12 (1.2–120) 4.4 0.036

EEF2 1.7 5.4 (1.1–26) 4.4 0.036

CASP4 �1.3 0.28 (0.084–0.93) 4.3 0.038

CASP4.1 �1.3 0.28 (0.084–0.93) 4.3 0.038

HSP90AB1 1.8 6.2 (1–37) 4 0.046

PRKAR1A �1.4 0.25 (0.065–0.98) 4 0.046

FAS �0.69 0.5 (0.26–0.99) 3.9 0.047

ARG, autophagy-associated gene; CRC, colorectal cancer; HR, hazard ratio; CI, confidence interval.
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expression value of each gene. The CRC

recurrence risk score¼ (208478_s_at,

BAX)��1.3329þ (211833_s_at, BAX)�
�0.2936þ (208644_at, PARP1)��2.2957,

where 208478_s_at, 211833_s_at, and

208644_at are the ARG gene probes

for BAX and PARP1, respectively. To

investigate the predictive accuracy of CRC

recurrence risk score, we analyzed the ROC

curve. The AUC of the CRC recurrence risk

score ROC curve was 0.711 (Figure 5),

suggesting that a CRC recurrence risk

score based on ARG signatures was a

potential predictive biomarker.
To evaluate the prognostic ability of the

CRC recurrence risk score, we performed a

log-rank test on Kaplan–Meier curves of

CRC survival. We categorized patients

into three groups (high, low, and interme-

diate) based on BAX and PARP1 gene

expression. Patients with high or low

expression of both BAX and PARP1 were

Figure 3. The enriched pathways of ARGs in CRC recurrence. The significance of annotated pathways is
denoted by color and the number of genes enriched is indicated by the size of dots. (A) Top 10 biological
processes enriched by ARGs; (B) top 10 cellular components of ARGs; (C) top 10 molecular functions of
ARGs; and (D) top 10 KEGG pathways of ARGs. ARG, autophagy-related gene; CRC, colorectal cancer;
GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto
Encyclopedia of Genes and Genomes.
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assigned to the high or low group, respec-
tively, whereas the rest of the patients were
stratified into the intermediate group.
Although CRC patients did not benefit
from high expression of BAX and PARP1
in overall survival, patients with high
expression of BAX and PARP1 had a
significantly favorable outcome in
recurrence-free survival (Figure 6). These
results suggested that BAX and PARP1
are potential prognostic biomarkers for
CRC recurrence. Taken together, our
results showed that BAX and PARP1

from ARG signatures could be utilized for

CRC recurrence risk stratification.

Hallmarks of ARG signatures

To validate the enriched pathways associat-

ed with ARG signatures, we performed

GSEA for the prognostic markers BAX

and PARP1. GSEA demonstrated six hall-

mark pathways: “estrogen response early,”

“p53 pathway,” “Kras signaling DN,”

“apical junction,” “epithelial–mesenchymal

transition,” and “UV response DN,” that

Figure 4. The protein–protein interaction network showing the core genes in ARG signatures. Each node
represents the gene signature, and the length of the lines indicates the degree of correlation between genes.
ARG, autophagy-related gene.

Figure 5. Diagnostic and prognostic capacity of ARG signatures in CRC. (A) Coefficient of variance plot of
LASSO regression. (B) Coefficient plot of LASSO regression results. (C) ROC curves showing the diagnostic
capacity of ARG signatures for CRC recurrence; the area under the curve is 0.711. (D) Kaplan–Meier curves
of CRC stratified by ARG signature using the log-rank test.
LASSO, least absolute shrinkage and selection operator; ARG, autophagy-related gene; CRC, colorectal
cancer; ROC, receiver-operator characteristic; AUC, area under the curve.
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were significantly associated with CRC

patients having high expression of BAX

and PARP1 (Figure 7).

Discussion

To accurately predict the prognosis of CRC,

many cohorts have been studied to establish

gene expression characteristics.44,45 A meta-

analysis has been performed to assess the

clinical utility of several published prognos-

tic gene expression profiles in CRC.46

Although most published signatures show a

statistically significant association with prog-

nosis, their accuracy in classifying indepen-

dent tumor samples into high- and low-risk

groups remains limited. Therefore, more

robust and accurate gene expression profiles

are needed to predict prognosis. Here, we

established CRC recurrence gene signatures

by applying two supervised machine learning

approaches. These recurrence signatures

based on ARGs could predict CRC recur-

rence with moderate accuracy.
The role of autophagy in tumors is well

known, and the role of autophagy in the

development and treatment of CRC has

been reported previously.47,48 However,

the clinical significance of ARGs, especially

their prognostic effects in CRC, has not

been extensively investigated. Moreover,

there is no comprehensive analysis of

the prognostic significance of ARGs.

Therefore, in this study, we first analyzed

the expression levels of ARGs and subse-

quently examined their prognostic value.

Finally, we established a model using prog-

nostic ARGs. Given the clinical significance

of these prognostic ARGs in CRC, they

may provide new directions for clinical

Figure 6. Validation of ARG signatures in an independent cohort. (A) Boxplots showing the differential
expression of BAX and PARP1 between recurrent and non-recurrent CRC. (B) ROC curves showing the
accuracy of the two ARG signatures.
ARG, autophagy-related gene; CRC, colorectal cancer; ROC, receiver-operator characteristic; AUC, area
under the curve.
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CRC treatment if a CRC recurrence score
can be calculated for each patient.

We evaluated the prognostic value of all
232 ARGs in CRC. By performing a uni-
variate Cox analysis, we identified 26
recurrence-associated ARGs, suggesting
that autophagy plays a crucial role in the
development of CRC and may affect the
prognosis of CRC patients. Because
ARGs may have multiple functions in addi-
tion to autophagy, we also performed GO
and KEGG pathway analysis and showed

that most enrichment pathways were
autophagy-related pathways. These results
revealed that autophagy is a key factor in
CRC recurrence.

To more accurately assess prognosis of
CRC patients, LASSO regression was
used to analyze the prognostic significance
of ARGs. As a result of LASSO regression,
the number of ARGs was reduced to two
genes, including three probes (208478_s_at,
211833_s_at, and 208644_at). These ARGs
were combined into one prognostic

Figure 7. GSEA showing six hallmark pathways (apical junction, UV response DN, p53 pathway, Kras
signaling DN, estrogen response early, and epithelial–mesenchymal transition) that were enriched in the high
score ARG signature group.
GSEA, gene set enrichment analysis; ARG, autophagy-related gene.
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assessment model. From the ROC curve, we
found that the prognostic model had an
AUC >0.7, indicating moderate efficacy in
evaluating the prognosis and recurrence in

patients with CRC. This moderate accuracy
suggested there might be other confounding
factors participating in CRC recurrence. The
establishment of these prognostic bio-
markers confirms the role of autophagy in

the development of CRC and patient prog-
nosis. Although BAX and PARP1 are
widely recognized as key mediators in cell
death and apoptosis, their roles in autoph-
agy remain unclear for cancer development.
Activation of PARP1 promotes expression

of other autophagic pathway genes.49

Increased ARG expression is caused by
PARP1-mediated poly ADP-ribosylation
that restrains FoxO3a in nuclei. In CRC,
BAX is recognized as a negative regulator

in autophagy; a few autophagy genes were
inversely correlated with BAX.50

This proof-of-concept study has some lim-

itations. The ARG signatures and
recurrence-predicting genes identified in this
bioinformatics study need to be validated in
external cohorts. Additionally, we did not
compare the accuracy of our ARG signatures

with other existing biomarkers (genes, DNA
methylation, or metabolites). Combined with
other protein biomarkers, our ARG signa-
tures might better predict recurrence. A
duplex PCR-based assay targeting these two

ARGs signatures is under development and
will be tested for clinical utility soon.

In conclusion, we established an ARG

signature that could predict CRC recur-
rence with moderate accuracy. The risk
score based on ARG signature is a potential
prognostic biomarker for CRC recurrence,
but it requires clinical validation through

further studies.
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