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INTRODUCTION 
 
Glucuronic acid is a key metabolite of glucose involved 
in the detoxification of xenobiotic compounds [1–6]. 
Many of these exogenous compounds, which include 
pollutants and drug metabolites, undergo hepatic 
glucuronidation, in which they are conjugated to 
glucuronic acid via the enzymatic action of UDP-
glucuronosyltransferases [7, 8]. This chemical 
modification increases solubility in bile, facilitates 
urinary excretion, and is a key step in the phase II 
metabolism of these compounds required for their 
effective clearance from the body [9]. However, 
enzymes known as β-glucuronidases cleave these 
conjugates, thereby counteracting this detoxification 
process [10], as well as steroid hormone conjugates, 
thereby altering steroid metabolism [11]. Around a 
quarter of resident bacterial species in the human gut  

 

produce β-glucuronidase [12–14], which has been 
directly linked to increased xenobiotic-induced toxicity 
rescuable by inhibition of the enzyme [15–17]. Another 
vital role of glucuronic acid is as a constituent of 
proteoglycans, a diverse class of glycosylated proteins 
known primarily as components of the mammalian 
extracellular matrix [18, 19], where glucuronic acid 
may confer increased rigidity [20]. These proteoglycans 
are degraded as a part of tissue remodeling by 
endogenous lysosomal β-glucuronidase, which, like its 
bacterial analogue, cleaves glucuronic acid moieties 
through hydrolysis [21]. 
 
The factors influencing circulating levels of glucuronic 
acid are poorly characterized. However, orally ingested 
glucuronic acid has been shown to raise serum 
glucuronic acid levels within an hour, suggesting that it 
is readily absorbed into the bloodstream [22].  
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ABSTRACT 
 
Glucuronic acid is a metabolite of glucose that is involved in the detoxification of xenobiotic compounds and 
the structure/remodeling of the extracellular matrix. We report for the first time that circulating glucuronic acid 
is a robust biomarker of mortality that is conserved across species. We find that glucuronic acid levels are 
significant predictors of all-cause mortality in three population-based cohorts from different countries with 4-
20 years of follow-up (HR=1.44, p=2.9×10-6 in the discovery cohort; HR=1.13, p=0.032 and HR=1.25, p=0.017, 
respectively in the replication cohorts), as well as in a longitudinal study of genetically heterogenous mice 
(HR=1.29, p=0.018). Additionally, we find that glucuronic acid levels increase with age and predict future 
healthspan-related outcomes. Together, these results demonstrate glucuronic acid as a robust biomarker of 
longevity and healthspan. 
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The ingestion of glucuronide conjugates also increases 
glucuronic acid levels, likely through the absorption of 
glucuronic acid liberated in the gastrointestinal tract by 
β-glucuronidases [23]. Elevated serum levels of 
glucuronic acid have been reported in human studies of 
diabetes, hepatocellular carcinoma, hepatitis, cirrhosis, 
and obstructive jaundice [24–28]. These findings are not 
unambiguous, as subsequent work reported 
contradictory associations with hyperglycemia and 
hepatitis [25, 29, 30]. Finally, a recent metabolomic 
study of patients with cirrhosis identified glucuronic 
acid as a biomarker of disease severity and future 
mortality [31]. 
 
In the present study, we performed untargeted profiling 
of circulating metabolites in a large, population-based 
prospective human cohort study, followed by validation 
in two further prospective cohorts and one longitudinal 
mouse study. We report the novel discovery that 
circulating glucuronic acid is a robust, cross-cohort and 
cross-species predictor of all-cause mortality in healthy 
individuals, as well as a predictor in humans of chrono-
logical age and healthspan-related outcomes. 
 
RESULTS 
 
Circulating glucuronic acid levels predict all-cause 
mortality in humans 
 
We performed untargeted metabolomics on the Estonian 
Biobank cohort and found 69 of 569 identified 
metabolites to be predictive at FDR < 0.05 of all-cause 
mortality by Cox regression corrected for clinical 
covariates. Glucuronic acid ranked 9th by p-value and 
was highly significant after correcting for multiple 
hypothesis testing (HR=1.44, p=2.9×10-6, FDR=5.0×10-

4), with higher levels leading to shorter lives on average. 
A Kaplan-Meier survival curve comparing the top and 
bottom quartiles of glucuronic acid levels in the 
Estonian Biobank cohort is shown in Figure 1A and 
demonstrated a significant difference in survival 
between the curves (p=1.7×10-6).  
 
We evaluated this association in two replication cohorts, 
the Framingham Offspring cohort and TwinsUK study 
cohort, by Cox regression corrected for clinical 
covariates. Demographic characteristics of these cohorts 
are shown in Table 1A. As in the Estonian cohort, we 
found that glucuronic acid levels predicted all-cause 
mortality in both the Framingham Offspring (N=1,479; 
HR=1.13, p=0.032; Kaplan-Meier curve in Figure 1B) 
and in the TwinsUK (N=1,761; HR=1.25, p=0.017) 
cohorts. 
 
We investigated whether the predictive ability of 
glucuronic acid for mortality would be attenuated by 

including other known mortality biomarkers in the 
regression model. The Framingham Offspring cohort 
allowed us to correct for seven of the most commonly 
studied biomarkers of mortality, including fasting glucose, 
HDL cholesterol, LDL cholesterol, triglycerides, creati-
nine, HbA1c, and albumin. In a multivariate Cox 
regression model adding these to our baseline clinical 
covariates, glucuronic acid levels remained a significant 
predictor of mortality (HR=1.12, p=0.044). 
 
Circulating glucuronic acid levels predict mortality 
across species 
 
To further validate the observed relationship between 
glucuronic acid levels and mortality, we performed 
metabolomic profiling on the sera of 196 27-month-old 
female mice from a genetically heterogenous back-
ground followed from birth through 33 months of age. 
In this murine cohort, glucuronic acid levels were also a 
significant predictor of all-cause mortality (HR=1.29, 
p=0.018), and a weakly significant difference in 
survival was observed between the top and bottom 
quartiles of glucuronic acid levels in this cohort (p=0.1, 
Figure 1C). 
 
Circulating glucuronic acid levels increase with age 
 
We found a significant positive correlation between 
glucuronic acid levels and age in the secondary 
Estonian Biobank cohort (N=100; r=0.41, p=2.7×10-5, 
Figure 2A), which was selected to span a wide range of 
ages. This relationship also validated in the main 
Estonian Biobank cohort (Pearson r=0.12, p=3.7×10-3, 
Figure 2B) and the Framingham Offspring cohort 
(r=0.16, p=1.3×10-9, Figure 2C). Multivariate models 
adjusted for standard clinical covariates also identified 
age as a significant correlate of glucuronic acid levels in 
all three cohorts (p=4.3×10-3, 2.0×10-8, and 2.2×10-5, 
respectively).  
 
Circulating glucuronic acid levels predict 
healthspan-related outcomes 
 
We sought to further elucidate the predictive ability of 
glucuronic acid for age-related decline in health. In the 
Framingham Offspring metabolomics cohort, elevated 
levels of glucuronic acid were associated with poorer 
healthspan-related outcomes measured more than a 
decade in the future, including reduced overall self-
rated health (p=0.11), reduced grip strength (p=0.027), 
reduced self-rated ability to perform heavy housework 
(p=0.023), higher measured times on tests of normal 
walking speed (p=0.018) and quick walking speed 
(p=9.4×10-4), as well as reduced pulmonary forced 
expiratory volume in one second (FEV1;  p=0.046), a 
measure of lung function (Table 2). In general, an 
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increase of glucuronic acid levels by one standard 
deviation corresponded to approximately the same 
functional decline and mortality risk expected from an 
additional year of age.  
 
DISCUSSION 
 
We have demonstrated that glucuronic acid levels are 
robust predictors of all-cause mortality and correlate 
with future healthspan-related outcomes. The effect size 
of the relationship with mortality (hazard ratios between 
1.1 and 1.4 in our cohorts) is comparable to that of 
existing, clinically-important biomarkers of mortality 
such as cholesterol (HR=1.12 per mmol/L increase) and 
systolic blood pressure (HR=1.13 per 10 mm Hg 
increase) [32, 33]. Importantly, the predictive utility of 
glucuronic acid persists after adjustment for standard 
clinical covariates and other accepted predictors of 
mortality, including factors such as demographics, BMI, 
smoking status, blood lipids, HbA1c, creatinine, and 
albumin, indicating that the predictive ability of 
glucuronic acid for mortality is independent of these 
existing markers and their related biological 
mechanisms [34]. Moreover, we have demonstrated 

novel associations between glucuronic acid levels and 
future healthspan-related outcomes, including physical 
abilities, functional capabilities, and self-rated health, 
suggesting that the risk of mortality associated with 
elevated glucuronic acid levels is accompanied by a 
general decline in healthspan. Finally, we found 
glucuronic acid to be strongly positively correlated with 
age in three human cohorts with mean age ranging from 
40 to 70 years (Table 1), an association that remained 
statistically significant following adjustment for clinical 
covariates. Notably, the simultaneous association of 
glucuronic acid levels with age, lifespan (as determined 
by all-cause mortality), and healthspan-related out-
comes strongly argues that glucuronic acid is a 
biomarker of biological aging. Depending on the 
specific biology that underlies this relationship, 
glucuronic acid may also relate to the pathogenesis of 
these outcomes, and hence also of biological aging.  
 
There are multiple mechanisms that might link levels of 
circulating glucuronic acid to age, mortality, and 
healthspan. One of the most compelling and best-
understood possibilities relates to the cleavage of 
glucuronic acid from glucuronidated xenobiotics and

 

 
 

Figure 1. Survival in the highest and lowest quartiles of glucuronic acid level. Kaplan-Meier survival curves for the top vs. bottom 
quartiles of glucuronic acid level are plotted for (A) the Estonian Biobank discovery cohort, (B) the Framingham Offspring cohort, and (C) the 
longitudinal murine cohort. 
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Table 1. Demographic and clinical characteristics by cohort. 

Characteristic Estonian Biobank 
(discovery) 

Framingham 
Offspring TwinsUK Estonian Biobank 

(secondary) 
Sample size 579 1,479 1,761 100 
Deaths  189 306 47 0 

Median time to death (years) 5.9 ± 3.8  18.3 ± 2.7 2.64 ± 2.1 n/a 
Median follow-up time (years) 7.1 ± 2.7  21.5 ± 2.0 3.41 ± 2.39 n/a 

Women (%) 69.8 53.0 100.0 50% 

Age (years) 73.3 ± 2.7 53.7 ± 9.2 64.9 ± 8.4 41.7 ± 12.2 

Body mass index 27.3 ± 4.3 22.5 ± 4.9 26.4 ± 4.9 26.2 ± 3.7 

Systolic blood pressure (mm Hg) 140.1 ± 17.2 125.4 ± 18.7 131.3 ± 23.3 123.4 ± 13.1 

Diastolic blood pressure (mm Hg) 81.0 ± 9.0 75.0 ± 10.4 77.0 ± 19.9 78.6 ± 11.0 

Current smokers (%) 6.3 18.2 2.1 25.0 

Preexisting diabetes (%) 0.0 4.5 10.2 0.0 
Preexisting heart disease (%) 0.0 5.9 0.8 2.0 
Preexisting cancer (%) 0.0 7.1 13.7 2.0 

Demographic and clinical characteristics of the cohorts used in the present study are presented. Values are numbers of 
patients, percentages (%), mean ± standard deviation, or median ± median absolute deviation, as appropriate.  
 

 

 

Figure 2. Variation of glucuronic acid levels with age. The relationship between chronological age and glucuronic acid levels in (A) the 
Estonian Biobank secondary cohort, (B) the Estonian Biobank primary (discovery) cohort, and (C) the Framingham Offspring cohort. In each 
case, the best-fit regression line through the data is shown, with the 95% confidence interval for this line shaded in grey. Glucuronic acid 
concentrations are represented as standard deviations of normalized concentrations within each dataset. 
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Table 2. Regression results relating glucuronic acid concentration to future healthspan-related outcomes. 

Phenotype Regression model Regression coefficient Units P-value 
Self-rated health Ordinal -0.0837 Points / 1 SD 0.0106 * 
Grip strength Linear -0.397 Kg / 1 SD 0.0271 * 
Walk time Linear 0.0539 Min / 1 SD 0.0184 * 
Quick walk time Linear 0.0576 Min / 1 SD 0.000943 *** 
FEV1 Linear 0.0291 L / 1 SD 0.0463 * 
Housework capability Logistic -0.175 Good vs. Poor 0.0233 * 

Linear, logistic, or ordinal regression models were fit to determine the predictive association of glucuronic acid with each 
phenotype. Analyses were corrected for standard clinical covariates. Self-rated health was measured on 5-point scale; grip 
strength was measured in kilograms; walk time and quick walk time were measured in minutes; FEV1 (forced expiratory 
volume in 1 second) was measured in liters; housework capability was measured as a binary outcome. Units for the 
regression coefficient are given to the right of the regression coefficient values, and correspond to the above test-specific 
units per 1 standard-deviation change in concentration of glucuronic acid. 
 

steroid hormones by intestinal bacteria, a process that 
releases glucuronic acid as well as the toxin or steroid, 
making both available for reabsorption into the 
bloodstream in a process called enterohepatic re-
circulation [10]. Since activity of the responsible 
enzyme, β-glucuronidase, varies greatly among 
microbial species [12, 35], the composition of a 
person’s intestinal microbiome has a direct influence on 
this process. A microbiome that rapidly cleaves 
glucuronide conjugates may thus produce elevated 
glucuronic acid and also interfere with xenobiotic 
elimination and steroid metabolism. The substrates of 
glucuronide conjugation include xenobiotics such as 
environmental toxins and drug metabolites with pro-
inflammatory and immunosuppressive effects [36–38] 
as well as endogenous steroids with tumorigenic effects 
at high concentrations [39, 40], and impairment of 
glucuronidation by intestinal β-glucuronidase can cause 
organ toxicity, inflammatory disorders, and 
carcinogenesis [16, 41–44]. Consequently, changes in 
microbiome composition could easily underlie the 
observed correlation between higher glucuronic acid 
levels, age, healthspan-related outcomes, and mortality 
[45].  
 
This hypothesis is supported by other evidence from the 
literature. Among older people, bacterial β-glucuronidase 
activity levels are increased relative to young people 
(Mroczyńska and Libudzisz, 2010), and microbiome 
differences can distinguish healthy, independent older 
people from those who tend to be frail, sick, and require 
long-term residential care [46, 47]. Microbiome 
composition has also been linked to the onset of 
numerous age-related diseases, including atherosclerosis 
[48], type 2 diabetes [49], Alzheimer’s disease [50], 
chronic kidney disease [51], and nonalcoholic 
steatohepatitis [52], all of which contribute to reduced 
healthspan and increased mortality. Furthermore, 
bacterial β-glucuronidase activity changes in the 

appropriate direction with dietary modifications. For 
example, red meat consumption alters the gut 
microbiome [53, 54], elevates fecal β-glucuronidase 
activity [55], and correlates with increased future 
diabetes, cardiovascular disease, and mortality [56]. In 
contrast, dietary fiber consumption increases microbial 
diversity [57], reduces fecal β-glucuronidase activity 
[58–60], and correlates with lower all-cause and cause-
specific mortality [61–63].  
 
While this hypothesis is compelling, many other 
possibilities exist. For example, bacterial β-
glucuronidase activity may be affected by gastro-
intestinal pH [64, 65] and hepatic glucuronidation may 
be impaired by chronic renal failure [66], both of which 
are independent of microbiome composition. Another 
potential mechanism linking glucuronic acid levels to 
disease states involves endogenous human β-
glucuronidase, which localizes primarily to the lyso-
some and degrades glycosaminoglycans during normal 
and pathologic remodeling of the extracellular matrix 
(ECM) via hydrolytic liberation of glucuronic acid [21]. 
ECM remodeling is increased in aging and age-related 
diseases [67–69], with ECM degradation fragments in 
serum even being employed as disease biomarkers in 
some cases [70–72]. Moreover, lysosomal membrane 
permeabilization, an observation to inflammation and 
cell death [73–79] can cause the release of endogenous 
β-glucuronidase into the bloodstream [80], where it 
cleaves glucuronidated conjugates and may contribute 
to circulating glucuronic acid levels [81, 82]. In these 
scenarios, elevated glucuronic acid levels could be a 
result of ECM remodeling, inflammation, or cell death 
caused by concurrent disease. This seems less likely in 
our discovery cohort, where participants were free of 
major diseases at sample collection, but could still be 
consistent with subclinical disease. Finally, in addition 
to the above mechanisms related to glucuronidation, 
glucuronic acid may directly elicit an inflammatory 
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response through an interaction with toll-like receptor 4 
(TLR4) [83], which has been implicated in the 
pathophysiology of age-related diseases [84–86]. Of 
course, substantial further research is warranted to 
distinguish the relative contributions of these various 
hypotheses to the link between circulating glucuronic 
acid levels and aging, healthspan, and mortality. 
 
The present study has a number of limitations. First, it is 
observational and retrospective in nature; however, it 
derives strength from the persistence of association 
across three high-quality, prospective human cohort 
studies in different countries, as well as in a lifespan 
study of genetically heterogenous mice. Second, despite 
the geographic diversity of our cohorts (Estonia, USA, 
and the United Kingdom), study participants were still 
predominantly of European descent, and the 
generalizability of these results to other demographic 
groups is uncertain, although the positive cross-species 
replication is encouraging. Third, the human cohorts 
were under-powered to evaluate relationships of 
glucuronic acid with the incidence of most individual 
diseases.  
 
In summary, circulating glucuronic acid levels predict 
mortality in humans and mice, and in humans also 
associate with chronological age and predict healthspan-
related outcomes. These simultaneous associations with 
age and with factors defining both lifespan and 
healthspan provide strong evidence that glucuronic acid 
is a biomarker of longevity and healthspan, as well as 
underlying biological age.  
 
MATERIALS AND METHODS 
 
Sample cohorts 
 
Estonian Biobank cohorts 
Our discovery cohort was drawn from the Estonian 
Biobank at the University of Tartu [87]. Participants 
were selected to be elderly (between the ages of 70 and 
79) and healthy at the time of sample collection, i.e. to 
have no preexisting history of hypertensive heart 
disease, diabetes, coronary artery disease, cancer, 
chronic obstructive pulmonary disease, stroke, or 
Alzheimer’s disease. The resulting 579 participants 
have 8 to 14 years of clinical follow-up for mortality 
(187 deaths observed). A secondary cohort of 100 
members was independently selected from the Estonian 
Biobank to span a wide range of ages (20-60 years) at 
the time of sample collection. 
 
Framingham cohort 
The Framingham Offspring cohort includes children of 
the original Framingham Heart Study participants, 
recruited in 1971 [88]. Of the entire cohort, 1,479 

participants in the fifth examination cycle (between 
1991 and 1995) consented to both metabolomic 
profiling and broad research use of their samples. These 
form the Framingham Offspring metabolomic cohort 
used in this study [89], with an age range of 30 to 79 
years at blood draw and 30-40 years of clinical follow-
up (232 deaths observed).  
 
TwinsUK cohort 
The TwinsUK cohort used in this study comprises the 
1,761 individuals for whom glucuronic acid level 
measurements and matching covariate measurements 
were available [90], with a mean age of 64.9 ± 8.4 years 
at blood draw and approximately 5 years of clinical 
follow-up (47 deaths observed).  
 
BIOAGE mouse study 
300 female mice were bred by Vium (San Mateo, CA, 
USA) as a four-way cross among DBA/2J, C3H/HeJ, 
BALB/cJ, and C57BL/6J mice purchased from Jackson 
Laboratories (Sacramento, CA, USA). The mice were 
housed with Vium from birth onwards and allowed to 
age naturally without interventions other than regular 
weighing, blood collection, and humane euthanasia. For 
metabolite profiling, approximately 150 uL of whole 
blood was collected via submental (primary) or sub-
mandibular (secondary) technique from each of the 196 
mice still surviving at 27 months of age. Collected 
blood was allowed to clot without additive and 
centrifuged, and serum was subsequently extracted. 
Mice continued to be monitored through 33 months of 
age, with 106 recorded deaths occurring after the blood 
draw. 
 
Metabolite profiling 
 
For the Estonian Biobank cohorts, non-fasting plasma 
samples were collected from each participant at 
enrollment and stored in liquid nitrogen, then shipped to 
the Broad Institute (Cambridge, MA, USA) for 
metabolomic profiling via liquid chromatography-mass 
spectrometry (LC-MS) as previously described [91]. 
Briefly, metabolites were extracted from plasma samples 
with four methods: (1) amines and polar metabolites were 
extracted with a mixture of acetonitrile and methanol and 
separated with a HILIC column under acidic mobile 
phase conditions; (2) central metabolites and negatively 
ionizing polar metabolites were extracted using 80% 
methanol and separated with a HILIC column under 
basic conditions; (3) free fatty acids, bile acids, and 
metabolites of intermediate polarity were extracted using 
100% methanol and separated with reverse phase 
chromatography on a T3 ULPC column; lastly, (4) lipids 
were extracted using 100% isopropanol and separated 
with reverse phase chromatography on a C4 column. For 
the Framingham Offspring metabolomics cohort, fasting 
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plasma samples were collected from participants during 
the fifth examination cycle and stored at -80°C until 
metabolite profiling as previously described (Wang et al., 
2011; dbGap ID phs000007.v30.p11), comprising of the 
targeted identification and quantification of 217 
metabolites with liquid chromatography-tandem mass 
spectrometry. For the TwinsUK metabolomics cohort, 
fasting serum samples were collected from participants 
and stored at -80°C until analysis using ultra-high 
performance liquid chromatography-tandem mass 
spectrometry by Metabolon, Inc. (Research Triangle 
Park, NC, USA) as previously described [92]. For the 
murine cohort, whole blood samples were drawn at day 
800 of the study; serum was prepared as described above 
and sent to the West Coast Metabolomics Center (Davis, 
CA, USA) for untargeted metabolomics profiling via 
GC-TOF MS/MS. 
 
Statistical analyses 
 
Raw metabolite intensity values were corrected for 
instrumental drift and underwent rank inverse normal 
transformation [93]. Missing covariate data were 
imputed as the dataset mean, and final study results 
underwent sensitivity analysis to demonstrate that the 
imputation did not cause substantive changes. Hazard 
ratios and p-values for all-cause mortality were 
determined by fitting a Cox proportional hazards model 
with each metabolite (e.g. glucuronic acid) as the main 
predictor and including as clinical covariates age, sex, 
smoking status, body mass index, systolic blood 
pressure, and diastolic blood pressure [94]. Kaplan-
Meier survival curves for the upper and lower quartiles 
of glucuronic acid level were plotted and the log-rank 
test was used to test for differences between the curves. 
In the TwinsUK cohort, analysis also took into account 
family relatedness. Validation analyses for mortality in 
the Framingham Offspring and TwinsUK cohorts were 
performed using one-sided statistical tests; all other 
comparisons used two-sided tests.  
 
Correlations between glucuronic acid levels and age 
were calculated using Pearson’s r. Multivariate linear 
regression was used to calculate the association, 
corrected for clinical covariates, of glucuronic acid 
levels with age, grip strength, walking speed, and forced 
expiratory volume in 1 second (FEV1), respectively. 
Multivariate logistic regression was used to calculate 
the association of glucuronic acid levels with 
housework capability, corrected for clinical covariates. 
Multivariate ordinal regression via a cumulative link 
model was used to calculate the association of 
glucuronic acid levels with subjective overall health, 
corrected for clinical covariates [95]. In all cases, 
clinical covariates were selected as in the mortality 
analyses. The healthspan-related phenotypes above 

were measured in the eighth examination cycle for the 
Framingham Offspring cohort. All statistical analyses 
and generation of graphics were performed with R 
version 3.3.3 [96].  
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