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Abstract

Background: Formation of nucleosomes along eukaryotic DNA has an impact on transcription. Major
transcriptional changes occur in response to low external phosphate (Pi) in plants, but the involvement of
chromatin-level mechanisms in Pi starvation responses have not been investigated.

Results: We mapped nucleosomes along with transcriptional changes after 24-h of Pi starvation in rice (Oryza sativa)
by deep sequencing of micrococcal nuclease digested chromatin and ribosome-depleted RNA. We demonstrated that
nucleosome patterns at rice genes were affected by both cis- and trans-determinants, including GC content and
transcription. Also, categorizing rice genes by nucleosome patterns across the transcription start site (TSS) revealed
nucleosome patterns that correlated with distinct functional categories of genes. We further demonstrated that Pi
starvation resulted in numerous dynamic nucleosomes, which were enhanced at genes differentially expressed in

response to Pi starvation.

Conclusions: We demonstrate that rice nucleosome patterns are suggestive of gene functions, and reveal a link
between chromatin remodeling and transcriptional changes in response to deficiency of a major macronutrient. Our
findings help to enhance the understanding towards eukaryotic gene regulation at the chromatin level.
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Background

Eukaryotic DNA must be condensed to fit into a small
space within the nucleus. Studies on primary chromatin
structure reveal that 146 bp of DNA wrap around a his-
tone octamer consisting of each of two copies of H2A,
H2B, H3 and H4 to comprise a nucleosome [1]. The for-
mation of nucleosomes along DNA facilitates DNA com-
paction, however it makes the DNA inaccessible for
important cellular processes including DNA replication,
recombination, repair and transcription [2-5]. Hence, nu-
cleosome distribution is not static but rather is modified
in accordance with these processes. Studies in a variety of
eukaryotes have identified two types of determinants of
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nucleosome occupancy: DNA sequence features, consid-
ered cis-determinants, such as GC content, and trans-de-
terminants, including transcription factors and chromatin
remodelers that modulate nucleosome placement, histone
variant deposition, and histone post-translational modifi-
cations [6—13]. Previous studies have also demonstrated
the presence of well-positioned nucleosomes adjacent to
transcriptional start sites (TSS) of eukaryotic genes [6-8,
12-15]. In contrast, much less is understood regarding
the dynamics of nucleosome patterns (i.e. positioning and
occupancy) and their connections to transcriptional
regulation.

In order to survive, organisms must respond rapidly
and vigorously to environmental stress, such as low
availability of nutrients. Phosphorus (P) is an essential
nutrient as it is a structural component of nucleic acids
and phospholipids, and is involved in the regulation of
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biological processes. Consequently, prolonged P starva-
tion can lead to arrest of both growth and cell division
[16]. To ensure coordination between growth and ex-
ternal P availability, organisms have evolved sophisti-
cated sensing and signaling pathways. In budding yeast
(Saccharomyces cerevisiae), a combination of transcrip-
tional regulators and downstream targets comprising the
PHO regulon modulate adaptive responses to deficiency
of inorganic phosphate (Pi), a primary source of P [16].
Early studies examining the role of chromatin structure
in transcriptional regulation showed that nucleosome re-
modeling also plays a role in modulating PHO regulon
genes. Specifically, nucleosomes are evicted to expose the
promoter region of the yeast PHOS secreted acid phos-
phatase gene in response to low-Pi conditions [17, 18].
More recent genome-wide studies on the remodeling of
primary chromatin structure in response to environmental
perturbation in yeast have shown a connection between
global nucleosome dynamics and transcription activities
[19, 20].

As sessile organisms, plants constantly encounter en-
vironmental challenges and must shape themselves for
adaptation. Pi is one of the most limiting nutrients for
plants due to its low solubility in soil and poor uptake
efficiency [21]. Pi fertilizers are applied to maintain crop
growth, but are mined from non-renewable sources, and
over-fertilization of Pi can cause environmental prob-
lems, including eutrophication of waterways and hypoxia
[22-25]. Understanding how plants respond to Pi limita-
tion, and increasing Pi-use efficiency will aid in enhan-
cing agriculture sustainability. Many studies have been
carried out to investigate Pi starvation responses (PSRs)
in plants. These studies have identified morphological
and physiological responses aimed at enhancing Pi ac-
quisition and recycling, as well as key regulators of these
responses [26—29]. Transcript profiling studies have
shown that transcriptional regulation plays an important
role in modulating PSRs [30-33], and emerging data
from our laboratory and others are indicating that
chromatin-level mechanisms are also involved in regu-
lating PSRs [34-36].

Studies of nucleosome occupancy and positioning in
plants are limited compared to those in model animal spe-
cies. Recent genome-wide studies in Arabidopsis [7, 37]
and rice [13, 15] have shown nucleosome patterns in genic
regions that are generally similar to other eukaryotes. Also
similar to other species is that transcription is an import-
ant trans-determinant of nucleosome occupancy in plants
[7, 8, 15, 38]. However, many questions remain regarding
the particular determinants of nucleosome occupancy in
plants and how they compare to other eukaryotes, as well
as how environmental perturbation impacts nucleosome
dynamics and the extent to which nucleosome remodeling
is linked to changes in gene expression in plants or other
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systems. Herein, we report global nucleosome positioning
and occupancy in rice (Oryza sativa), a staple crop that
feeds billions world-wide, via deep sequencing of micrococ-
cal nuclease-digested chromatin (MNase-seq), and demon-
strate the impact of Pi starvation on nucleosome patterns.
We also examined transcription activities by deep sequen-
cing of ribosomal RNA-depleted RNA followed by quantifi-
cation of intronic transcript abundance. By integrating
information obtained from these assays, we reveal relation-
ships among gene structure, gene function, nucleosome
patterns, and transcription activities, including a significant
correlation between nucleosome dynamics and changes in
gene expression in response to limitation of a major essen-
tial nutrient.

Results

Nucleosome positioning and occupancy of rice genes

The goals of this study were to generate a high-resolution
map of nucleosome patterns in rice, define the impact of
environmental perturbation (via Pi starvation) on these
patterns, and establish whether nucleosome dynamics in
response to Pi starvation correlate with differential gene
expression. Because a recent transcript profiling study in
rice demonstrated that major changes in transcript abun-
dance were detected beginning after 24 h of Pi starvation
[30], and chromatin remodeling can happen within hours
of environmental stress [19], we were interested in observ-
ing the changes in the organization of primary chromatin
structure and exploring the correlations at this relatively
early time point.

We generated a total of four MNase-seq libraries in-
cluding two biological replicates from shoots (green tis-
sue from the seedling) of plants grown in full nutrient
hydroponic solution for 5 weeks with an additional 24-h
of growth in either full nutrient hydroponic solution
(control replicate 1 and 2, C1 and C2) or nutrient solu-
tion lacking phosphate (-Pi replicate 1 and 2, P1 and
P2). Sequencing reads were mapped to the Michigan
State University rice genome annotation release 7
(MSU7) [39]. We obtained on average 63 million
uniquely mapped single-end reads with an average of
15x coverage of the rice genome for each library. To
examine the reproducibility of the mapped reads, we cal-
culated the Spearman’s correlation coefficient (SCC) of
sequencing read abundance at each genomic position
between C1 and C2 (SCC =0.95) and P1 and P2 (SCC =
0.96) (Additional file 1: Fig. S1A). Considering the high
reproducibility of mapped MNase-seq reads for each
treatment, we generated profiles based on the average of
two replicates for the ease of data presentation but kept
replicates separated for data analyses.

To determine nucleosome patterns of rice genes, we
first separated all annotated genes into four categories ac-
cording to the MSU7 genome annotation [39]: protein-
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coding genes (PCQG), transposable elements (TE), trans-
posable element-related genes (TEG), and ‘pseudogenes’
(PSG, i.e. annotated genes that are neither expressed nor
transposable elements). Using representative gene models,
the genes in each category were combined to generate nu-
cleosome profiles for each group. For PCG, we observed
several distinct nucleosome pattern features: First, evenly-
spaced nucleosome arrays were observed downstream of
the transcription start site (TSS; Fig. la); Second, a
nucleosome-depleted region (NDR) was found immedi-
ately upstream of the TSS (Fig. 1a, Additional file 2: Fig.
S2B); Third, higher nucleosome occupancy was found im-
mediately downstream of the TSS and upstream of the
transcription termination site (TTS) as compared to the
remainder of the gene body (GB; Fig. 1a, Additional file 2:
Fig. S2A and B). In contrast to PCG, neither evenly-spaced
nucleosome arrays downstream of the TSS nor NDRs up-
stream of the TSS were found in the remaining three gene
categories, indicating these features are signatures of rice
genes poised for transcription (Fig. 1A, Additional file 2:
Fig. S2A and B).

The nucleosome pattern for rice PCG that we ob-
served is similar to findings from other studies, but
highlights an apparent distinction among species—for
example, evenly-spaced nucleosome arrays were found
upstream of the TSS in genome-wide studies of human
[12] and yeast [6], but not in rice [13, 15, and this study],
Arabidopsis [7, 8], or Tetrahymena thermophila [40].
This may result from differences in either MNase-
digestion strength [41], lengths of NDR regions and as-
sociated DNase I hypersensitivity sites [13], or sample
complexity due to combined cell types. We hypothesized
that diverse nucleosome patterns from subsets of genes
were masking defined nucleosome arrays upstream of
the TSS when combined in the single PCG nucleosome
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profile (Fig. 1a). Therefore, we analyzed nucleosome oc-
cupancy and positioning of all PCG separately to search
for evenly-spaced nucleosome arrays. Interestingly, we
identified two major subsets of PCG that each had nu-
cleosome arrays not only downstream of the TSS but
also upstream (Fig. 1b). These gene subsets had a well-
defined -1 nucleosome (the first nucleosome upstream
of the TSS) at either —-140 bp (n =7270) or -250 bp
(n =7170) relative to the TSS, with phased nucleosome
arrays further upstream. The nucleosome arrays of these
two groups of genes are out of phase with each other
and thus mimic “destructive wave interference” when
combined into a profile of all genes, masking the nucleo-
some peaks in the region upstream of the TSS (Fig. 1).
Gene ontology (GO) term enrichment analysis [42] of
the two subsets of genes did not yield any significantly
enriched GO terms (false discovery rate (FDR) <0.05).
This indicated no obvious functional link among the
genes in each group, but rather the contribution of other
determinants to the distinct nucleosome patterns.

Rice nucleosome occupancy is affected by both cis- and
trans-determinants

To search for factors that contribute to nucleosome pro-
files of rice genes, we investigated GC content and tran-
scription, which are known cis- and trans-determinants
of nucleosome occupancy. It is widely reported that GC-
and AT-rich sequences favor and disfavor nucleosome
formation, respectively [9, 11, 12, 14, 15, 40]. However, a
negative correlation between GC content and nucleo-
some occupancy was shown in Arabidopsis and rice
when examining random fragments of genomic DNA
[8], and few studies have examined the correlation be-
tween GC content and nucleosome occupancy across
the TSS. To investigate GC content as a potential
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Fig. 1 Nucleosome patterns across the transcription start site of rice genes. Regions 1000 bp upstream and downstream of the transcription start
site (+ 1000 bp TSS, or 5" boundary of the element), were used to plot MNase-seq density under control conditions. (@) MNase-seq density for all
rice genes across the transcription start site (TSS) under control conditions. PCG, protein-coding genes; TEG, transposable element related genes;
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determinant of nucleosome occupancy in rice, we first
plotted the GC content distribution of all PCG across
the TSS, which broadly showed a pattern similar to nu-
cleosome occupancy with a narrow trough immediately
upstream of the TSS and a wide peak downstream of the
TSS (Fig. 2a). Secondly, we plotted the GC content distri-
bution of the —140 and -250 gene subsets separately and
observed opposing oscillations of GC content upstream of
the TSS, such that the GC content correlated with the
position of the -1 nucleosome (the first nucleosome peak
upstream of the TSS) of each subset (-140 and —250 rela-
tive to the TSS; Fig. 2a). Both of the above analyses
showed a positive correlation between GC content and
nucleosome occupancy across the TSS. Next we sorted all
PCG based on their GC content across the TSS, divided
them into five quintiles (1st with the lowest GC content
and 5th with the highest), and plotted the corresponding
MNase-seq densities (Fig. 2b). Interestingly, this analysis
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revealed a negative correlation between GC content and
nucleosome occupancy across the TSS. To uncouple the
contribution of GC content from the TSS upstream and
downstream regions, we generated another two sets of
quintiles sorted based on their GC content either 1000 bp
upstream or downstream of the TSS. Both analyses yielded
a similar negative correlation: genes with high GC content
either upstream or downstream of the TSS had lower nu-
cleosome occupancy in the corresponding region (Fig. 2c
and d). In addition, gene quintiles with an average of 48%
(2nd quintile) to 53% (3rd quintile) GC content down-
stream of the TSS have the best nucleosome phasing (Fig.
2d). This may reflect stronger periodicity of SS (G/C) and
WW (A/T) dinucleotides within the region, which would
favor well-positioned nucleosomes [15] and would yield
roughly equal GC and AT content overall. Together these
results reveal that the correlation between GC content and
nucleosome occupancy in rice is complex, possibly due to
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GC content acting as a cis-determinant, and also reflecting
the involvement of other determinants, such as gene
expression.

To elucidate the relationship between nucleosome pat-
terns and gene expression in rice we carried out RNA
sequencing (RNA-seq) analysis of the same tissues used
for the MNase-seq experiments. Four RNA-seq libraries
were generated consisting of two biological replicates for
control (C1 and C2) and -Pi (P1 and P2). We obtained
on average 97 million uniquely mapped reads for each li-
brary. To assess the reproducibility of mapped RNA-seq
reads, we calculated Pearson’s correlation coefficient
(PCC) of sequencing read abundance at each genomic
position between C1 and C2 (PCC=0.91) and P1 and
P2 (PCC=0.97) (Additional file 1: Fig. S1B). Biological
replicates from RNA sequencing were kept separated for
data analysis. Using the control samples, PCG were sep-
arated into five groups according to their expression
levels (1st quintile highest and 5th quintile lowest) as de-
termined by their FPKM values [43]. The MNase-seq
densities of genes grouped by their expression were plot-
ted at the window of +1000 bp TSS (Additional file 3:
Fig. S3A and B). We found that highly expressed genes
had wider NDRs upstream of the TSS and had relatively
lower nucleosome occupancy across the TSS than lower
expressed genes. Moreover, evenly-spaced nucleosome
arrays were more evident in highly expressed genes.
These observations are consistent with previous studies
on rice and Arabidopsis [7, 8, 13], and demonstrate that
transcription is a strong determinant of nucleosome pat-
terning in rice.

Rice nucleosome patterns are linked to gene function

Experiments described above indicate a contribution of
both cis- and trans-determinants to nucleosome pattern-
ing in rice. To further explore distinct nucleosome pat-
terns across the TSS and their possible correlation with
gene function, we performed k-means clustering of
MNase-seq profiles +500 bp TSS of PCG. Six clusters (A
through F) of genes with distinct nucleosome patterns
across the TSS were evident (Fig. 3A). GO term enrich-
ment analysis [42] revealed that each of the six clusters
had enriched GO terms (Additional file 4: Dataset 1).
Interestingly, the clusters fell into two contrasting
groups based on shared similar GO terms. Genes of
clusters A, B, and C (type L, n = 15,400) were enriched in
GO terms related to key biological processes, whereas
clusters D, E, and F (type II, n =20,700) were enriched
in stress-related GO terms (Additional file 5: Fig. S4 and
Additional file 4: Data S1). Hence, we termed type I genes
“housekeeping” and type II genes “stress-responsive”.
Consistent with a housekeeping role, type I genes had on
average significantly higher expression levels than type II
genes under control conditions (type I average FPKM =
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2247, type II average FPKM=1271, p <22x107",
Mann-Whitney U test). In addition, comparison of our
type I housekeeping gene group with a housekeeping gene
list identified by a previous study [44] based on consistent
expression in multiple cell or tissue types, found that
approximately 80% (3279/4243) of these previously re-
ported housekeeping genes were included in our type I
gene group.

Because studies have shown that the TATA box in the
promoter region is associated with stress-responsive
genes in yeast [45], we tested whether our type II stress-
responsive gene group was enriched with genes contain-
ing a TATA box. We searched promoters of rice genes
for the TATA consensus sequence (CTATAWAWA) pre-
viously reported [46]. Indeed, we found that type II
genes were more likely to contain a TATA box within
50 bp upstream of the TSS than type I genes (2.6 folds,
p =6.90 x 1073, Fisher’s exact test). Moreover, an aver-
age profile on type II genes across the TSS showed an
evident -1 nucleosome where an NDR was found in
type I genes (Fig. 3b), and genes with a TATA box within
50 bp upstream of the TSS (» =1093) had a - 1 nucleo-
some at the same region (Fig. 6a). Together these results
indicate that nucleosome patterns across the TSS are
suggestive of gene function.

Pi starvation induces large-scale nucleosome dynamics
To assess the impact of environmental perturbation on
nucleosome patterns, we compared the nucleosome pro-
files identified in control shoot tissues with those in
shoots harvested from plants subjected to a 24-h Pi star-
vation treatment. We measured total phosphorus and in-
organic phosphate concentrations in rice seedlings from
control and —Pi treatments prior to nucleosome and
transcription profiling. Shoot P concentration signifi-
cantly decreased (p <0.01, t-test) while the root P
concentration remained similar to that of the control
(p >0.05, t-test) after 24 h of Pi starvation (Additional
file 6: Fig. S6A and B). In contrast, Pi concentration in
shoots was unchanged (p > 0.05, ¢-test) while the root Pi
concentration decreased (p < 0.05, ¢-test) after 24 h of Pi
starvation (Additional file 6: Fig. S6C and D). These
changes in Pi concentrations after 24 h of Pi starvation
agree with a previous study which reflects the initiation
of Pi starvation in rice seedlings [30].

To investigate the impact of Pi starvation on genome-
wide nucleosome patterns, we compared MNase-seq re-
sults from control and —Pi samples. We first examined
nucleosome patterns across the TSS of genes. We found
that nucleosome phasing remained largely the same be-
tween the control and —Pi samples, whereas —Pi samples
had higher nucleosome occupancy 1000 bp upstream of
the TSS (p <2.2 x 107", Wilcoxon signed-rank test) but
lower nucleosome occupancy 1000 bp downstream of
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the TSS (p <22 x107'%, Wilcoxon signed-rank test) as
compared to control samples (Fig. 4A, Additional file 2:
Fig. S2D). This raised the question of whether Pi starva-
tion decreased nucleosome occupancy in coding regions
but increased nucleosome occupancy in non-coding re-
gions. To address this, we examined nucleosome occu-
pancy changes in exons of genes under Pi starvation.
Since longer exons allow the occupancy of more nucleo-
somes, we separated exons according to length: 170—

240 bp, 315-350 bp, 480-550 bp, and 645-715 bp,
which allows for the occupancy of one, two, three or
four nucleosomes, respectively [37]. Both the control and
—Pi samples showed strong nucleosome peaks and NDRs
that marked intron-exon and exon-intron junctions (Add-
itional file 7: Fig. S5). However, nucleosome occupancy was
lower in exons and greater in introns of —Pi samples rela-
tive to the control samples (Additional file 7: Fig. S5), fur-
ther supporting a major “redistribution” of nucleosomes
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J

from coding regions to non-coding regions in response to 200 bp downstream of the TTS), and a large number of
Pi starvation. A notable exception was at the TTS of PCG, dynamic nucleosomes were mapped within 200 bp up-
at which the —Pi samples contained greater nucleosome oc-  stream of the TSS, 5-UTR and exons (Fig. 4c).
cupancy relative to the controls (Additional file 2: Fig. S2C).

To better illustrate nucleosome dynamics in response  Nucleosome dynamics induced by Pi-starvation are
to Pi starvation, we employed DANPOS, which defines enriched at differentially expressed genes
accurate nucleosome maps and detects dynamic nucleo- ~ Our RNA sequencing libraries were prepared from total
somes between samples [47]. This analysis revealed a RNA depleted of ribosomal RNA, and quantification and
substantial impact of Pi starvation on nucleosome occu-  comparison of intronic reads enabled us to more accur-
pancy and positioning. Using the nucleosome profile ately capture changes in transcriptional activities than
from control samples as a baseline, DANPOS identified  steady-state transcript levels inferred from conventional
313,769 dynamic nucleosomes with either a position RNA-seq. We employed the iRNA-seq pipeline, which was
shift (range: 50-95 bp), occupancy change (FDR <0.05), demonstrated to perform at comparable qualities as global
or fuzziness change (FDR < 0.05) associated with Pi star- run-on (GRO)-seq and RNA polymerase II (RNAP II)
vation from two biological replicates (Fig. 4a). We ana-  ChIP-seq in determining genome-wide changes in tran-
lyzed the locations of the dynamic nucleosomes in the  scriptional activities [48]. Using RNA-seq libraries from two
rice genome and found they were widely distributed in  biological replicates of control and —Pi samples, the iRNA-
gene-related regions (1000 bp upstream of the TSS to  seq pipeline identified 134 up-regulated and 691 down-
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regulated genes (padj < 0.05) in response to 24-h Pi starva-
tion in rice (Additional file 8: Dataset 2).

To investigate the correlation between transcriptional
changes and nucleosome dynamics, we searched for dif-
ferentially expressed (either up- or down-regulated)
genes (DEGs) in which dynamic nucleosomes were
present. We found that approximately 60%, 20%, and
50% of the DEGs were associated with nucleosome pos-
ition shift, occupancy change, and fuzziness change re-
spectively, within gene-related regions. These observed
proportions were significantly higher than the same
number of randomly selected genes as DEGs (p <2.2 x
107", binomial test, with 10,000 iterations, Fig. 5A and
B). Altogether, 130 out of 134 up-regulated genes and
678 out of 691 down-regulated genes (Additional file 8:
Dataset 2) were found to contain dynamic nucleosomes,
suggesting a strong correlation between transcriptional
changes and nucleosome dynamics in response to Pi
starvation in rice.

To better understand the roles of nucleosome dynam-
ics and transcriptional changes in rice PSR, we sought
functional information for the genes that exhibited
changes in expression and nucleosome dynamics in re-
sponse to Pi starvation. We first examined whether these
genes were biased for type I (housekeeping) or type II
(stress-responsive) genes. We found that both DEGs and
genes with dynamic nucleosomes had higher overlaps
with type II genes than type I genes (1.9 folds, p =
1.73x107% and 1.8 folds, p =2.19x 107> respectively,
Fisher’s exact test). Next we carried out GO term enrich-
ment analysis on DEGs associated with dynamic nucleo-
somes. Up-regulated genes with nucleosome dynamics
were involved in photosynthesis (GO:0015979, FDR =
2.09 x 10*) whereas down-regulated genes containing
dynamic nucleosomes were enriched in GO terms in-
cluding cell cycle (GO:0004079, FDR = 8.01 x 10™°) and
cell wall (GO:0005618, FDR =4.51 x 10~®) (Fig. 5C and
D, Additional file 9: Dataset 3). These results support a
modulation of photosynthesis and growth in rice shoots
in response to Pi starvation through changes in gene ex-
pression that are linked to corresponding changes in nu-
cleosome positioning and occupancy.

In yeast, nucleosome remodeling is necessary for full
induction of several yeast PHO regulon genes, which are
activated in response to Pi deficiency [18, 49]. For ex-
ample, in the case of the yeast PHO5 acid phosphatase
gene, a nucleosome blocks a promoter binding site of
the Pho4 transcription activator under Pi-replete condi-
tions, repressing PHO5 transcription. Upon Pi defi-
ciency, nucleosome remodeling exposes the cis-element
making it accessible to Pho4, which then initiates PHO5
transcription [18]. In rice, the OsPHR2 transcription fac-
tor induces expression of numerous Pi-related genes in
response to Pi starvation by binding to the P1BS cis-
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element (consensus sequence GNATATNC [50]). To in-
vestigate the possible nucleosome dynamics at the P1BS
element in response to 24-h of Pi starvation, we com-
pared nucleosome occupancy between control and —Pi
samples at occurrences of the P1BS motif found within
500 bp upstream of the TSS. Nucleosome occupancy
was higher in the —Pi samples near the center of the
P1BS motif (+ 250 bp) as compared to the control sam-
ples (p =1.58x107°, Wilcoxon signed-rank test, Fig.
6B). To examine the specificity of nucleosome dynamics
at the P1BS motif in response to Pi starvation, we also
compared nucleosome occupancy centered at the G-box
(CACGTGQG) found within 500 bp upstream of the TSS,
which is a known cis-element that regulates jasmonic
acid (JA)-responsive gene expression [15], and we also
observed increased nucleosome occupancy at the G-box
motif in the —Pi samples (p =5.80 x 107'°, Wilcoxon
signed-rank test, Fig. 6C). Moreover, nucleosome occu-
pancy centered at both elements found within 500 bp
downstream of the TSS were lower in the —Pi samples
than the control samples (p <6.19 x10™°, Wilcoxon
signed-rank test, Fig. 6D and E). These results indicate
that the nucleosome dynamics we observed at the P1BS
motif may not be unique to Pi starvation but rather were
the results of a broad effect of higher nucleosome occu-
pancy upstream of the TSS and lower nucleosome occu-
pancy downstream of the TSS caused by Pi starvation
(Fig. 4a and Additional file 2: Fig. S2D). We further plot-
ted MNase-seq density of regions centered at TATA box
and Y-patch (consensus sequence CYTCYYCCYC), a core
promoter element in rice genes [46], and found all TF
binding sites including P1BS were depleted of nucleo-
somes compared with surrounding regions while strong
nucleosome peaks were found on the boundaries of bind-
ing sites regardless of Pi starvation (Fig. 6b, f, and g).

Discussion

In this study, we determined nucleosome patterns in rice
genes and explored the correlations among nucleosome
patterns, gene structure, gene function, and transcription
activities. We also captured nucleosome dynamics along
with transcriptional changes in response to 24 h of Pi
starvation and showed a significant relationship between
the two.

We found higher nucleosome occupancy surrounding
the TSS and the TTS compared to the gene body sug-
gesting the role of chromatin organization in defining
the initiation and termination of transcription (Fig. 1la,
Additional file 2: Fig. S2A and B). The presence of
evenly-spaced nucleosome arrays downstream of the
TSS and NDRs immediately upstream of the TSS at
PCG further indicates the impact of chromatin
organization on transcriptional activities (Fig. 1a). The
nucleosome patterns we found in rice genes were largely
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consistent with patterns in yeast and human [6, 12], but
as with Arabidopsis, rice genes lacked evenly-spaced nu-
cleosome arrays upstream of the TSS (Fig. 1la). Studies
on yeast and human used single cell types but studies on
Arabidopsis and rice, including this study, used homoge-
nized plant tissues consisting of multiple cell types that
could contribute to the heterogeneity of nucleosome
patterns in the promoter region due to tissue-specific
expression differences. However, a genome-wide study

on the single-celled protozoan Tetrahymena thermo-
phila also showed nucleosome phasing downstream but
not upstream of the TSS [40]. This result is possibly due
to cell-to-cell differences within the same 7. thermophi-
lia culture, since studies on single-cell nucleosome map-
ping in yeast showed that different cells in the same
yeast culture possessed different nucleosome patterns in
the promoter region [51]. Another explanation is that
that since the plant and T. thermophila genomes contain
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larger numbers of genes compared to yeast and human,
they may contain greater variability in nucleosome pat-
terns at the promoter region which interferes with the
detection of nucleosome arrays. The variable length of
DHS was shown to mask the detection of nucleosome
arrays upstream of the TSS in rice [13]. We identified
two subsets of genes that had evenly-spaced nucleo-
some arrays upstream of the TSS and the nucleosome
arrays were canceled out while an average profile was
plotted suggesting nucleosome patterns at individual
genes may differ from stereotypical averaged profiles
(Fig. 1B). Nonetheless, the arrays downstream of the
TSS were “in phase” in both subsets of genes indicat-
ing the role of coding sequence characteristics and
transcription activities in establishing nucleosome
arrays.

Positions of nucleosomes in the genome are not ran-
dom but rather are controlled by the combination of
both cis- and trans-determinants. We observed lower
nucleosome occupancy at relatively highly expressed
genes, and higher expressed genes had larger distance
between the TSS and the +1 nucleosome (the first nu-
cleosome peak downstream of the TSS) with a wider 5’
NDR (Additional file 3: Fig. S3). These observations
agree with previous findings in Arabidopsis and rice,
reflecting the correlation between open chromatin archi-
tecture and transcription [7, 8, 13]. It has been widely
reported that GC- and AT-rich sequences favor and dis-
favor nucleosome formation, respectively [11]. Indeed,
enriched SS (G/C) dinucleotides in the cores of well-
positioned nucleosomes and enriched WW (A/T) dinu-
cleotides in nucleosome flanking sequences has been
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observed for yeast [9], Drosophila [14], human [12], rice
[15], and T. thermophila [40]. However, seemingly
contradictory correlations among GC content and nu-
cleosome occupancy have been observed. For example,
the GC content of randomly selected genomic fragments
of yeast and human are positively correlated with nu-
cleosome occupancy, whereas a negative correlation is
observed for rice and Arabidopsis [8, 52]. Also, GC con-
tent has a negative correlation with nucleosome occu-
pancy at predicted transcription factor binding sites in
human and rice [8, 52]. Herein, we compared the rela-
tionship between nucleosome occupancy and GC con-
tent in several ways. First we mapped GC content
distribution across the TSS, which correlated with nu-
cleosome occupancy on a “macro” level: relatively low
levels upstream of the TSS and higher levels downstream
(Fig. 2A). By comparing the -140 and -250 gene sub-
sets, we also showed a positive correlation on a “micro”
level: peaks of GC% overlapped with the positions of the
corresponding -1 nucleosome peaks (Fig. 2a). These ob-
servations are consistent with GC-rich sequences favor-
ing nucleosome occupancy. However, grouping PCG
into GC quintiles showed an obvious negative correl-
ation across the TSS, particularly in the downstream re-
gion (Fig. 2d). Together these results support the
hypothesis that GC content intrinsically influences nu-
cleosome occupancy, but that other determinants in-
cluding transcription contribute to nucleosome
occupancy. We also observed that genes with on average
48% to 53% of GC content downstream of the TSS have
better nucleosome phasing, suggesting the influence of
GC content on nucleosome phasing downstream of the
TSS (Fig. 2d). Future studies on DNA sequence arrange-
ment at positioned nucleosomes within different regions
of rice genes may reveal how DNA sequence (content
and arrangement) affects genome-wide nucleosome
positioning.

Distinct nucleosome patterns across the TSS of rice
genes make it possible to categorize genes based on their
nucleosome patterns across the TSS. We show two
groups of rice genes (type I and type II) clustered by
their distinct nucleosome patterns across the TSS with
distinct gene functions (Fig. 3). Type I genes have wide
5" NDRs correlating with relatively high transcription
rate as housekeeping genes, whereas type II stress-
responsive genes have nucleosomes positioned on either
side of the TSS which may create obstacles for transcrip-
tion machinery as well as serving as the landmarks for
TF and chromatin remodelers to recognize under in-
duced conditions. Nucleosome patterns show strong
correlations with the above-discussed gene characteris-
tics, suggesting the possibility of inferring such charac-
teristics (e.g. expression and function) from the
associated nucleosome patterns. Indeed, recent studies
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have shown promising results on predicting tumor gene
expression and tissue of origin from nucleosome pat-
terns of cell-free DNA in human plasma [53, 54]. To-
gether, our findings support a conserved correlation
between nucleosome patterns and gene characteristics in
eukaryotes, which could benefit the agricultural and
medical communities in the near future.

The second part of our work revealed changes in nu-
cleosome patterns and transcription activities in re-
sponse to 24 h of Pi starvation and their correlations in
rice. Genome-wide studies in yeast showed dynamic re-
lationships among nucleosome patterns, gene expression
and TF binding responding to heat shock and oxidative
stress [19, 20]. In Arabidopsis, 1-h of coronatine (COR)
treatment was shown to trigger changes in transcript
abundance, but differential gene expression changes
were not correlated with nucleosome occupancy changes
in genes [8]. Our data show that 24 h of Pi starvation in-
duces genome-wide nucleosome reorganization, espe-
cially at the regions surrounding the TSS and the coding
sequence (Fig. 4 and Additional file 7: Fig. S5), and we
found a strong correlation between nucleosome dynam-
ics at genes and transcriptional changes (Fig. 5a and b).
Among the three types of nucleosome dynamics (pos-
ition shift, occupancy change and fuzziness change), we
found that position shift and fuzziness are more relevant
to DEGs by Pi starvation than occupancy change (Fig. 5a
and b), indicating specificity of nucleosome dynamics
and its association with biological functions, as demon-
strated in yeast previously [47]. Histone variants H2A.Z
and H3.3, and acetylated and methylated histones are
usually enriched in the +1 nucleosome and contribute to
the flexibility of nucleosome occupancy which assists
nucleosome eviction and assembly of the pre-initiation
complex [55]. H2A.Z deposition at PSR genes was
shown to be correlated with Pi starvation responses in
Arabidopsis [36]. Our observation of enriched nucleo-
some dynamics across the TSS during Pi starvation may
reflect the replacement of canonical histones with vari-
ants such as H2A.Z as well as post-translational modifi-
cations of histones at the TSS (Fig. 4A and C).

Unlike previous studies in yeast and Arabidopsis, we
employed iRNA-seq on ribosome-depleted total RNA to
capture changes in nascent RNA transcript instead of
quantification of steady-state RNA transcript in response
to an environmental perturbation, improving the identi-
fication of DEGs that are specific to the treatment. With
24 h of Pi starvation, photosynthesis was up-regulated
while cell cycle and cell wall synthesis were down-
regulated (Fig. 5¢ and d). These observations are consist-
ent with a recent study on Pi starvation in the dinofla-
gellate Amphidinium carterae, which showed decreased
cell division in response to Pi starvation, but continued
photosynthetic capability [24]. We propose a similar
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adaptation strategy carried out by rice in response to
short-to-medium term Pi starvation, which includes en-
hancing photosynthesis to accumulate energy, and redu-
cing DNA replication, cell division, and cell wall
expansion to minimize Pi usage. In Arabidopsis, the
DNA element G-box plays a role in regulating JA-
responsive gene expression, and it was shown that nu-
cleosomes were depleted at this element regardless of
COR treatment, which mimics JA responses [8]. We
show similar patterns at the rice core promoter elements
TATA box and Y-patch, as well as P1BS; that nucleo-
somes were depleted at those elements regardless of Pi
starvation (Fig. 6b, f, and g). This may result from con-
stant binding of frans-acting factors to assist a rapid
transcriptional change in response to stress.

We observed a significant drop in Pi concentration
after 24 h of Pi starvation in the roots (Additional file 6:
Fig. S6D), and future nucleosome and transcription pro-
filing studies could include roots where Pi is sensed and
acquired. We anticipate that monitoring nucleosome dy-
namics with transcriptional changes at multiple time
points of Pi starvation with Pi re-supply in a single cell
of multiple plant cell types, and identification of PSR-
related chromatin remodelers could broaden the under-
standing on PSR in rice and eventually provide useful re-
sources for the agricultural community.

Conclusions

Our work provides a high-resolution map of nucleosomes
in the rice genome, along with its transcriptional profile in
response to Pi starvation. We also provide measurements
on the correlation between nucleosome dynamics and tran-
scriptional changes. We demonstrate how gene characteris-
tics may affect nucleosome patterns in rice genes. Our
findings advance the understanding towards eukaryotic
gene regulation at the chromatin level.

Methods

Plant material and growth conditions

Rice (Oryza sativa ssp. japonica cv. Nipponbare) seeds
were surface-sterilized with 5% bleach and rinsed, and
soaked in sterile distilled water at 37 °C in the dark for
3 days for pre-germination. Seeds were allowed to ger-
minate at 22 °C under a 16 h/8 h day/night cycle for
14 days. Rice seedlings were transferred to half-strength
Hoagland’s nutrient media (2.5 mM KNOjz; 1 mM
KH,PO,, 3.5 mM Ca(NOs3),-4H,0, 1 mM MgSO47H,0,
5 uM MnCl,-4H,0, 0.07 mM NaMoO, 0.02 mM
H3BO3, 0.3 pM ZnSO47H,0, 0.2 uM CuSO,4-5H,0,
0.014 mM Fe(EDTA)) for 21 days in a growth room
under non-sterile conditions. For nutrient treatment,
seedlings were transferred to fresh half-strength Hoag-
land’s or the same media lacking phosphorus (KH,PO,)
for 24 h. The hydroponic experiments were performed
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under 16 h/8 h day/night cycles and temperature was
kept at 22 °C in a growth room. The pH of the solution
was adjusted to 5.5 and the solution was renewed every
7 days. Shoots (green tissues) and roots from the seedlings
were flash frozen in liquid nitrogen, and stored at —80 °C.

MNase-seq

The EZ Nucleosomal DNA Prep Kit (Zymo Research, Ir-
vine, CA) was used for nuclei isolation and mono-
nucleosomal DNA preparation from plant tissues. The
nuclei isolation and MNase treatment were performed
according to the manual with modifications. Briefly, tis-
sues were ground in liquid nitrogen and re-suspended in
HBM buffer (25 mM Tris pH 7.6, 044 M sucrose,
10 mM MgCl,, 0.1% Triton X, 2 M spermidine, and
10 mM B-mercaptoethanol). The mixture was filtered
with miracloth and centrifuged for 60 min at 2000xg.
Isolated nuclei were washed with Nuclei Prep Buffer
(Zymo Research). The prepared nuclei were treated with
MN Digestion buffer (Zymo research). The nuclei were
digested with 1 U (final concentration of 0.004 U/pl)
micrococcal nuclease (MNase, Zymo Research) for
30 min at room temperature. The digestion was stopped
by addition of 5x MN Stop Buffer (Zymo Research). Nu-
cleosomal DNA was purified by addition of DNA Bind-
ing Buffer (Zymo Research), and centrifuged with a
Zymo-spin IIC Column in a Collection Tube (Zymo Re-
search). DNA was washed with DNA Wash Buffer and
eluted with warm DNA Elution Buffer (Zymo Resarch).
Purified DNA was run on a 2% agarose gel containing
ethidium bromide and visualized under UV light. The
mono-nucleosomal DNA (~150 bp band) was excised
from the gel and purified with a gel purification kit (Qia-
gen, Hilden, Germany).

Approximately 500 ng of MNase-digested mono-
nucleosomal DNA from each sample was used for Illu-
mina library generation. Library construction and deep
sequencing were performed by the Roy J. Carver Bio-
technology Center at the University of Illinois at
Urbana-Champaign using an Illumina HiSeq 2000 plat-
form (Illumina, San Diego, CA). Raw data comprised
100 bp of single-ended reads. Illumina sequencing reads
were mapped to the rice genome (MSU7) [39] using
Bowtie (version 1.1.2) [56] and only uniquely mapped
reads were considered for further analysis. Approxi-
mately 63 million reads per sample (~15x coverage)
were obtained. Correlations among mapped sequencing
samples were analyzed using DeepTools [57]. Mapped
reads were subject to GC content bias correction as pre-
viously described [57, 58]. Nucleosome positions were
identified and analyzed using the dpos function of DAN-
POS software with default settings for two sets of bio-
logical replicates (control and —Pi) [47]. An FDR of 0.05
was used for dynamic nucleosome calling, except for
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position shift where a range setting of 50-95 bp was
used. Genome-wide nucleosome patterns were plotted
using DANPOS [47] or ngs.plot [59]. Nucleosome occu-
pancy were determined as averaged reads per million
mapped reads. IGV was used to visualize mapped reads
to the reference genome [60]. The genome annotation
was obtained from MSU Rice Genome Annotation Pro-
ject website (http://rice.plantbiology.msu.edu/) and pars-
ing of dynamic nucleosome locations were performed
using BedTools (version 2.26.0) [61].

RNA-seq
The total RNA from plant tissues was extracted using an
RNeasy Plant Mini Kit (Qiagen) according to the manu-
facturer’s instructions. On-column DNase digestion was
performed on the extracted total RNA with an RNase-free
DNase set (Qiagen) according to manufacturer’s instruc-
tions to reduce DNA contamination. Approximately 2 pg
of DNase-treated total RNA from each sample was used
for sequencing library construction. For sequencing library
preparation, ribosomal RNA was removed with Ribo-
Zero™ rRNA Removal Kit (Plant) and the remaining RNA
was processed with the TruSeq Stranded mRNA library
construction kit (Illumina) starting at the fragment/elute
step (no mRNA selection). Library construction and deep
sequencing were performed by the Roy J. Carver Biotech-
nology Center at the University of Illinois at Urbana-
Champaign using an Illumina HiSeq 2500 platform (Illu-
mina). Raw data comprised 100 bp of single-ended reads.
Ribosomal RNA reads were further removed by map-
ping sequencing reads to all known rice ribosomal DNA
sequences obtained from the Oryza repeat database
(http://plantrepeats.plantbiology.msu.edu/index.html)
using Bowtie [56] with default settings, and reads that
failed to align were kept. The remaining reads were
then mapped to the rice genome (MSU7) [39] using
TopHat2 [62] with the following settings: —b2-sensitive
-g 1, allowing only one hit for each read. Approximately
97 million reads per sample were obtained. Correlations
among mapped sequencing samples were analyzed
using DeepTools [57]. Cufflinks [43] was used to deter-
mine transcript abundance (FPKM) of each gene from
two control replicates. Differential expression of bio-
logical replicates between control and —Pi were deter-
mined by the iRNAseq pipeline [48] based on the
sequencing reads abundance at the introns with default
settings. Records from the output file ‘introns.txt’ of the
iRNA-seq pipeline was filtered for adjusted p-value
(Padj) < 0.05, and then genes with positive log2 FC
were determined as up-regulated, and genes with nega-
tive values were determined as down-regulated. GO
term enrichment analysis were performed using
AgriGO with default settings [42].
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Statistical methods

Statistical methods were used as previously reported:
We used k-means clustering as the clustering method to
classify genes based on nucleosome patterns across the
TSS [59]. We used Mann-Whitney U test to address the
FPKM differences between two groups of genes with dif-
ferent sizes [8, 15, 54], and Fisher’s exact test to address
the overrepresentations of genes [8, 30, 48], and Wil-
coxon signed-rank test to address differences in nucleo-
some occupancy [19, 48], and binomial test to address
the bias over random [13, 63], and Student’s ¢-test to ad-
dress differences in P and Pi measurements from plant
tissues [31, 33]. All statistical tests were performed using
R (v 3.2.3, https://www.r-project.org/) and significance
was defined as p < 0.05.

Quantification of total phosphorus (P) and inorganic
phosphate (Pi)

Plant tissues were rinsed thoroughly in distilled water
before analyses. Quantification of total phosphorus was
conducted by an acid digestion method as described pre-
viously [64]. Briefly, 0.5 g of the dried leaf and root tis-
sues were digested with 5.0 mL of concentrated HNOj3
in a heat block at 125 °C for 2.5 h followed by repeated
addition of 3 mL 30% H,O, until the digest was clear.
The temperature of the heat block was reduced to 80 °C
for the residue to dry. Colorless dry residue was dis-
solved in 20 mL deionized water and analyzed by induct-
ively coupled plasma emission spectroscopy (ICP) using
(NH,4),HPO#4 as the standard in the LSU Soil Testing &
Plant Analysis Laboratory.

Quantification of inorganic phosphate (Pi) was con-
ducted by grinding plant tissue in liquid nitrogen and
dissolving in distilled water. Pi was quantified by the
molybdate assay [65], and a standard curve was gener-
ated using KH,POj,.

Additional files

Additional file 1: Figure S1. Reproducibility of MNase-seq and RNA-
seq. C1, control replicate 1; C2, control replicate 2; P1, —Pi replicate 1, P2,
—Pi replicate 2. (A) Clustered heatmap of mapped MNase-seq samples
with Spearman correlation coefficient (). The distances among sample
pairs are determined as 1-p. (B) Clustered heatmap of mapped rmRNA-
seq samples with Pearson correlation coefficient (r). The distances among
sample pairs are determined as 1-r. (PDF 161 kb)

Additional file 2: Figure S2. Nucleosome patterns across the
transcription termination site and gene body of rice genes. Regions
1000 bp upstream and downstream of the transcription termination site
(TTS or 3" boundary of the element), and gene body (GB, from TSS (5'
boundary) to TTS (3" boundary) of a gene) were used to plot MNase-seq
density under control conditions (A and B) and control and -Pi (C and
D). (A) MNase-seq density for all rice genes across the TTS under control
conditions. (B) MNase-seq density for all rice genes across the GB under
control conditions. (C) MNase-seq density of PCG across the TTS from 24-
h control and =Pi rice shoots. (D) MNase-seq density of PCG across the
GB from 24-h control and —Pi rice shoots. (PDF 77 kb)
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Additional file 3: Figure S3. Correlations between nucleosome patterns
and gene expression. (A) Heatmap of MNase-seq density of PCG sorted
by their expression level under control conditions from RNA-seq analysis
of the same tissue (1st highest, 5th lowest). The vertical line in the middle
of the heatmap indicates the TSS. (B) Average plot of the same data with
genes grouped by their expression levels. (PDF 65 kb)

Additional file 4: Dataset 1. GO term enrichment for six clusters of
genes. (ZIP 1029 kb)

Additional file 5: Figure S4. Significantly enriched GO terms for
clusters ABC (type | gene) and DEF (type Il gene). The color of the node
represents the corrected p-value with a color scale ranging from yellow
(corrected p-value = 0.05) to dark orange (corrected p-value =5x 107").
(PDF 443 kb)

Additional file 6: Figure S6. Changes of total phosphorus and
inorganic phosphate concentrations in response to phosphate starvation.
All values are the mean =+ standard error of the mean; n =3 biological
replicates with 3 technical repeats each. DW, dry weight; FW, fresh
weight. (A) Total phosphorus (P) concentrations for shoots of 5-week-old
seedlings grown under full nutrient (Ctrl) and Pi-starvation (—Pi) condi-
tions. (B) Total P concentrations for roots of 5-week-old seedlings grown
under full nutrient (Ctrl) and Pi-starvation (—Pi) conditions. (C) Inorganic
phosphate (Pi) concentrations for shoots of 5-week-old seedlings grown
under full nutrient (Ctrl) and Pi-starvation (=Pi) conditions. (D) Pi concen-
trations for roots of 5-week-old seedlings grown under full nutrient (Ctrl)
and Pi-starvation (=Pi) conditions. (PDF 38 kb)

Additional file 7: Figure S5. Changes in nucleosome occupancy at the
exons of rice genes in response to phosphate starvation. MNase-seq
density of exons grouped according to their length: (A) 170-240 bp; (B)
315-350 bp; (C) 480-550 bp (D) 645-715 bp under control and —Pi con-
ditions. Plots are centered at the 5" boundaries of the exons. (PDF 58 kb)

Additional file 8: Dataset 2. Gene lists for 134 up-regulated genes, 130
up-regulated genes with dynamic nucleosomes, 691 down-regulated genes,
and 678 down-regulated genes with dynamic nucleosomes. (XLSX 22 kb)

Additional file 9: Dataset 3. GO term enrichment for up- and down-
regulated genes associated with dynamic nucleosomes. (ZIP 20 kb)
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