Supplemental Online Content

Mazzotti DR, Waitman LR, Miller J, et al. Positive airway pressure, mortality, and cardiovascular risk in older adults with sleep apnea. *JAMA Netw Open.* 2024;7(9):e2432468. doi:10.1001/jamanetworkopen.2024.32468

eMethods

- eTable. Definitions of Computable Phenotypes Used for Study Exposure, Outcomes, and Covariates
- eFigure 1. Overview of the PAP Initiation Analysis Study Design
- **eFigure 2.** Overview of the PAP Utilization Exposure Group Study Design
- **eFigure 3.** Summary of IPTW-Adjusted Cox Proportional Hazards Model Assessing the Effect of PAP Initiation on Myocardial Infarction (MI), Heart Failure (HF), Stroke (STROKE) and Coronary Revascularization (REVASC) in all Eligible Participants
- **eFigure 4.** Summary of Inverse Probability Of Treatment Weights (IPTW)–Adjusted Cox Proportional Hazards Models Assessing the Effect of PAP Initiation on All-Cause Mortality (ACM) and MACE Within Categories of Relevant Sociodemographic and Clinical Characteristics
- **eFigure 5.** Summary of Inverse Probability Of Treatment Weights (IPTW)–Adjusted Cox Proportional Hazards Models Assessing the Effect of PAP Initiation on Myocardial Infarction (MI), Heart Failure (HF), Stroke (STROKE) and Coronary Revascularization (REVASC) Within Categories of Relevant Sociodemographic and Clinical Characteristics
- **eFigure 6.** Distribution of Total Count of Positive Airway Pressure (PAP) Claims During the First Year of PAP Utilization
- **eFigure 7.** Categorization of Positive Airway Pressure (PAP) Claim Counts Distribution First Year of PAP Utilization According to Quantile-Based Definitions (Quantile_Median, Quantile_Tertile, Quantile_Quartile), Rule-Based Definitions (Rule_Based), Equal Spaced (EqualSpaced_By4, EqualSpaced_By8) and Based on an Empirical Method That Identified the Most Discriminant Cut Point For All-Cause Mortality and MACE
- **eFigure 8.** Summary of Inverse Probability Of Treatment Weights (IPTW)–Adjusted Cox Proportional Hazards Models Assessing the Effect of Different PAP Exposure Group Definitions at First Year of PAP Utilization on Primary Outcomes: All-Cause Mortality (ACM) and Major Adverse Cardiovascular Events
- **eFigure 9.** Spline Extrapolation Analyses Representing Estimated Hazards Ratio (HR) as a Function of the Total Positive Airway Pressure (PAP) Claim Counts During First Year of PAP Utilization for Each Primary and Secondary Study Outcome
- **eFigure 10.** Summary of IPTW-Adjusted Cox Proportional Hazards Models Assessing the Effect of PAP Utilization Exposure Groups Assessing the Effect of PAP Utilization Exposure Groups Based on Quartiles of PAP Claim Counts on Myocardial Infarction (MI), Heart Failure (HF), Stroke (STROKE) and Coronary Revascularization (REVASC) in All Eligible Participant
- **eFigure 11.** Summary of Inverse Probability of Treatment Weights (IPTW)–Adjusted Cox Proportional Hazards Models Assessing the Effect of PAP Exposure Groups Based on Quartiles of PAP Utilization During First Year on All-Cause Mortality (ACM) and MACE Within Categories of Relevant Sociodemographic and Clinical Characteristics
- © 2024 Mazzotti DR et al. JAMA Network Open.

eFigure 12. Summary of Inverse Probability Of Treatment Weights (IPTW)—Adjusted Cox Proportional Hazards Models Assessing the Effect of PAP Exposure Groups Based on Quartiles of PAP Utilization During First Year on Myocardial Infarction (MI), Heart Failure (HF), Stroke (STROKE) and Coronary Revascularization (REVASC) Within Categories of Relevant Sociodemographic and Clinical Characteristics

eReferences

This supplemental material has been provided by the authors to give readers additional information about their work.

eMethods

Study cohort

Medicare beneficiaries (>65 years) enrolled to part A and B, and ≥2 distinct obstructive sleep apnea (OSA) claims were collected from multi-state, state-wide, multi-year (2011-2020) Medicare fee-for-service claims data. State-level Medicare claims data were originally obtained as part of the Greater Plains Collaborative Reusable Observable Unified Study Environment (GROUSE)¹ and the study protocol has been approved by Institutional Review Boards at each participating institution. The Greater Plains Collaborative (GPC)² is a Patient Centered Outcome Research Network (PCORnet) Clinical Data Research Network including 13 healthcare systems with catchment area across 11 states in the Central U.S.: Kansas, Missouri, Iowa, Wisconsin, Nebraska, Minnesota, Texas, Utah, North Dakota, South Dakota and Indiana.

We defined our study cohort based on a validated EHR algorithm to identify participants with OSA as described by Keenan et al. 2020³. Those with two or more claims with International Classification of Diseases (ICD)-9 or 10 codes for OSA at different dates were classified as having OSA (see the **eTable**). This algorithm presented optimal predictive performance across six health systems in the U.S., with overall positive predictive value (95%CI) of 97.1% (95.6, 98.2) and negative predictive value of 95.5% (93.5, 97.0)³. We further required at least 1-year enrolment with Medicare before their first OSA claim, to better capture beneficiaries that were newly diagnosed with OSA and with complete PAP utilization history since OSA onset. For the analysis of incident MACE, we further excluded beneficiaries with history of any MACE prior to their initial OSA diagnosis date (see *Study Outcomes* for MACE definitions).

Overview of study design

This is an observational, retrospective analysis of state-wide Medicare claims data. Due to its observational nature, we proposed two complementary causal inference designs to estimate the average treatment effect (ATE) of PAP initiation (**Figure 1**) and PAP utilization exposure groups based on counts of PAP claims in the first year since initiation (**Figure 2**).

While patients diagnosed with OSA have confirmed their exposure to the deleterious effects of OSA at the date of their diagnosis, there is variability on when they start PAP therapy when prescribed. Therefore, during the time window between OSA diagnosis (*index T*, **Figure 1**) and PAP initiation for those that initiated therapy (*landmark T*, **Figure 1**), these patients share the same exposure than those that never initiated PAP. This misclassification of time intervals between exposure groups may lead to immortal time bias and misestimation of treatment effects⁴. To control for this bias, we used the prescription time-distribution matching method⁵. In this method, the definition of "time zero" (exposure assignment, covariate determination, and start of follow-up) for the PAP initiation group is the corresponding PAP initiation date for each participant (*landmark T*, **Figure 1**). The distribution of number of days from OSA diagnosis to PAP initiation in this group is then used to randomly select and match a time zero for each member of the non-exposed group (*pseudo landmark date*, **Figure 1**). If participants in the non-exposure group have events prior to their pseudo landmark date, they are not included in the analysis, as they would not meet inclusion criteria.

For the analysis of PAP utilization exposure groups, we only included beneficiaries that have been enrolled and have not experienced events at the 1-year mark (*landmark T*, **Figure 2**) since their PAP initiation date. Exposure groups were defined based on the distribution of claim counts during this first year of PAP utilization (see *PAP utilization definitions*). Therefore, the "time zero" for each participant was the date of the first anniversary of PAP initiation.

PAP utilization definitions

Evidence of PAP initiation was determined based on the first PAP initiation claim after OSA diagnosis. We used the Current Procedural Terminology 4 and Healthcare Common Procedure Coding System codes to identify PAP claims (see the **eTable**). PAP initiation claims were mostly available in the DME claims files and participants were classified as exposed (PAP initiation) and non-exposed (no evidence of PAP initiation throughout the exposure period).

PAP utilization exposure groups are used as surrogate measures of PAP adherence. Conventional definitions of PAP adherence are based on device usage hours and days used and are often used to make reimbursement decisions⁶. Because objective measures of adherence (e.g., hours of PAP use) are not available in Medicare claims databases, we explored different surrogates based on the total count of PAP claims during first year of utilization: a) *Rule-based* definition proposed by Wickwire et al⁷ as: low adherers with < 4 charges, partial adherers with 4-12 charges, and high adherers with >12 charges; b) *Quantile-based*, which segments PAP claim counts based on median, terciles or quartiles; c) *Equally spaced*, which divides PAP claim counts based on incremental number of claims (e.g., 4 or 8 claim increments); d) *Empirical*, by estimating cut-points in the distribution of PAP claim counts using a tree-based discretization algorithm (i.e., a greedy algorithm to iteratively identify the most discriminant cut point for each outcome); and e) *Raw claim counts*, representing the numerical PAP claim counts in the first year. Prior studies have suggested that a greater number of DME claims, such as mask refills, correlates with objective adherence based on hours of use⁸.

To inform our PAP utilization analysis, we observed the distribution of total PAP claims per patient at the end of first year of PAP utilization (**eFigure 3**). PAP claim counts showed a bimodal distribution, suggesting two utilization patterns (a mode on 3 claims and a mode on 14 claims), suggestive of CMS PAP reimbursement models²⁸. We explored different PAP exposure group definitions to determine relevant cut-offs in the distribution of PAP claims (**eFigure 4**). In general, a greater count of PAP claims was progressively associated with lower all-cause mortality and lower MACE incidence risk, and each additional PAP claim was significantly associated with lower hazards of all-cause mortality (0.98 [0.98-0.98]) and MACE (0.99 [0.99-0.99]; **eFigure 5**). Spline extrapolation analyses estimated the HR as a function of PAP claim counts (**eFigure 6**) suggesting greatest hazards around 4-5 PAP

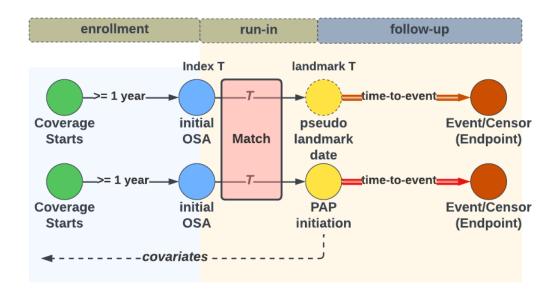
claims and lowest at 17-19 PAP claims across study outcomes. These exploratory analyses helped to inform us that using a *quartile-based definition of PAP utilization based on first year claim counts* (Q1: 1 to 7 claims; Q2: 8 to 12 claims; Q3: 13 to 15 claims; and Q4: >15 claims) provided a realistic representation of PAP utilization patterns with clinically relevant variation in incident outcome risk.

Study Outcomes

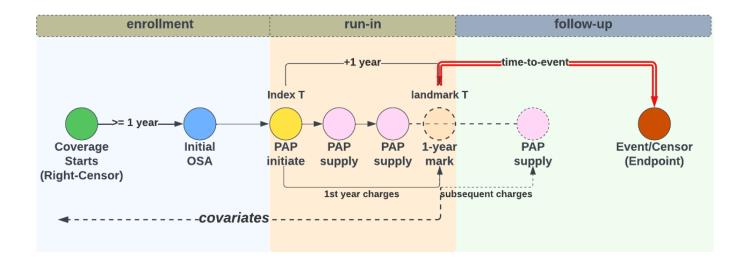
We assessed two primary outcomes: all-cause mortality and incidence of MACE. All-cause mortality was obtained by identifying date of death provided in the Medicare beneficiary summary file. The main sources of death information CMS uses are: Social Security Death Master File, Medicare Common Working File and Online date of death submitted by family members⁹. MACE was defined as a composite outcome defined as the first occurrence of myocardial infarction (MI), heart failure (HF), stroke or coronary revascularization, identified by diagnostic and procedure code claims, as specified in the **eTable**. In analyses using MACE as the outcome, we excluded participants with evidence of MACE prior to the index date. Secondary analyses using each individual component of MACE as outcomes were also presented.

Covariates

We included the following covariates of interest: age at the first OSA diagnosis, sex, race (White, Black, American Indian, Asian, Other), low-income subsidy or dual-eligibility indicator (determined as the patient being eligible for dual enrolment to Medicaid or Low Income Subsidy for at least 1 month during their enrolment period) representing proxies of socioeconomic status, prior history of type 2 diabetes, hypertension, obesity, atrial fibrillation, MACE (only in models assessing all-cause mortality), chronic obstructive pulmonary disease (COPD), chronic kidney disease (CKD), anxiety disorder, hypersomnia, insomnia, Charlson comorbidity index (CCI, categorized as 0, 1-2, 3-4 or 5+ comorbidities)^{10,11}, prescriptions of anticoagulants, antihypertensives, antilipidemic agents and blood glucose regulators. The **eTable** describes specific diagnosis and procedure codes utilized to define each computable phenotype above used as covariates.


Statistical analyses

Sociodemographic characteristics and clinical history were described between PAP initiation exposure groups using counts and percentages for categorical data and median and interquartile range for continuous data. Univariate associations between demographic and clinical history variables with PAP initiation exposure groups were performed using chi-squared tests. We used Kaplan-Meier survival analyses and log-rank tests to compare survival curves between PAP initiation exposure groups for MACE and all-cause mortality. We assessed the proportional hazards assumption by assessing scaled Schoenfeld residuals, which did not find strong evidence of violation of the proportionality assumption. We implemented a causal inference framework to determine the effect of PAP initiation or PAP utilization exposure groups on the outcomes of interest (all-cause mortality and MACE) using inverse probability of treatment weights (IPTW). A detailed theoretical framework of causal inference in the context of PAP exposures groups can be found elsewhere 12. First, we derived propensity scores (PS) from regularized generalized regression models using either PAP initiation (logistic) or PAP utilization exposure groups (Poisson or ordinal, depending on definition) as the outcome with a penalizing term tuned using 5-fold cross-validation. Next, we calculated IPTW based on PS for individuals in each exposure group as 1/PS for the exposed group and 1/(1-PS) for the non-exposed group. These weights were used in fully adjusted weighted Cox regression models assessing the effect of PAP initiation or PAP utilization exposure groups on the outcomes of interest, representing causal estimate of the ATE derived from a doubly robust estimator. This framework was applied to our primary analyses, as well as to secondary analyses assessing individual components of MACE. Competing risk analyses using the Fine-Gray models were also assessed and results were not different from Cox proportional hazards model. Results of analysis stratified by age groups (65-69, 70-74, 75-79, 80+ years), sex, race, low-income subsidy or dual-eligibility, type 2 diabetes, hypertension, obesity, atrial fibrillation, MACE (for all-cause mortality), COPD, CKD, anxiety disorder, hypersomnia, insomnia, CCI categories, prescriptions of anticoagulants, antihypertensives, antilipidemic agents, and blood glucose regulators are also presented. Spline extrapolation analyses were used to represent hazard ratios as a function of total PAP claim counts during first year. We determined statistical significance based on Bonferroni-corrected thresholds of p<0.025 (2 primary outcomes). To determine the strength of association a potential unmeasured confounder would need to express with both the exposure and the outcome that could explain away the observed associations, we calculated E-values relative to effect estimates of our primary and secondary outcomes, as reported by WanderWeele and Ding¹³, using the web application available from Mathur et al.¹⁴. All data extraction, processing and analyses were conducted using Snowflake SQL and R (version 4.3.0).


eTable. Definitions of Computable Phenotypes Used for Study Exposure, Outcomes, and Covariates

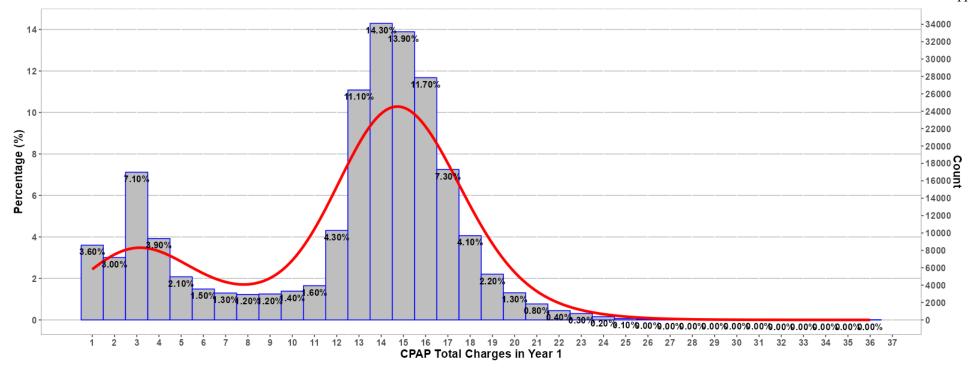
Computable phenotype	Definition					
Obstructive sleep apnea	ICD-9-CM: 327.20, 327.23, 327.29, 780.51, 780.53, 780.57					
	ICD-10-CM: G47.30, G47.33, G47.39					
	Algorithm: two or more instances at different dates, first instance used to define onset					
PAP initiation	CPT-4: 94660					
r Ar illitiation	HCPCS: E0601, E0470, E0471					
	CPT-4: 94660					
PAP utilization	HCPCS: E0601, E0470, E0471, A4604, A7027, A7028, A7029, A7030, A7031, A7032, A7033,					
rAr utilization	A7034, A7035, A7036, A7037, A7038, A7039, A7044, A7046, E0561, E0562					
	Algorithm: count distribution used to determine PAP utilization groups					
Myocardial infarction	ICD-9-CM: 410.X, 412.X					
	ICD-10-CM: I21.X, I22.X, I23.X					
	Algorithm: first instance after time zero					
Stroke	ICD-9-CM: 431.X, 434.X					
	ICD-10-CM: I61.X, I62.X, I64.X					
	Algorithm: first instance after time zero					
Heart failure	ICD-9-CM: 428.X					
	ICD-10-CM: I50.X					
	Algorithm: first instance after time zero					
	ICD-9-CM: 327.20, 327.23, 327.29, 780.51, 780.53, 780.57					
Cardiac revascularization	ICD-10-PCS: 021X, 027X					
	HCPCS: 92920-92944, 92973, 92974, 92975, 92980, 92981, 92982, 92984, 92995, 92996					
	Algorithm: first instance after time zero					
Peripheral procedures	ICD-9-CM: 00.4, 00.66					
1	HCPCS: 37220-37235, 37215-37218, 37236-37249, 37211-37214, 37184-37188					
	Algorithm: first instance after time zero					
Obesity	ICD-9-CM: 278.00, 278.01, 278.03					
	ICD-10-CM: E66.X, Z68.3, Z68.4					
	Algorithm: coded at or prior time zero					
Type 2 diabetes	ICD-9-CM: 250.X, 357.2, 362.0					
71	ICD-10-CM: E10.X, E11.X, E08.42, Z13.42					
	Algorithm: coded at or prior index date					
Hypertension	ICD-9-CM: 401.X, 402.X, 403.X, 404.X, 405.X					
>, F	ICD-10-CM: I10.X, I11.X, I12.X, I13.X, R03.X					
	Algorithm: coded at or prior time zero					
	ICD-9-CM: 427.3					
Atrial fibrillation	ICD-10-CM: I48.X					
Turiur riorrimurori	Algorithm: coded at or prior time zero					
	ICD-9-CM: 300.X					
Anxiety disorder	ICD-10-CM: N18.X					
inmiety disorder	Algorithm: coded at or prior time zero					
	ICD-9-CM: 585.X					
Chronic kidney disease	ICD-10-CM: F40.X-F48.X					
Cinomic Ridney disease	Algorithm: coded at or prior time zero					
Hypersomnia	ICD-9-CM: 327.1					
rrypersonnia	ICD-10-CM: F51.1, G47.1					
	Algorithm: coded at or prior time zero					
Insomnia	ICD-9-CM: 327.0, 307.41, 307.42, 780.52					
msomma	ICD-10-CM: F51.01, F51.02, F51.09					
	Algorithm: coded at or prior time zero					
	ICD-9-CM: 496.X					
Chronic obstructive	ICD-9-CM: 490.X ICD-10-CM: J44.X					
pulmonary disease						
	Algorithm: coded at or prior time zero					
Medications	See: https://raw.githubusercontent.com/RWD2E/phecdm/main/res/valueset_autogen/ecqm-					
	medication.json					

Abbreviations: ICD: International Classification of Diseases; CM: Clinical Modification; CPT: Current Procedural Terminology; PCS: Procedure Coding System; HCPCS: Healthcare Common Procedure Coding System

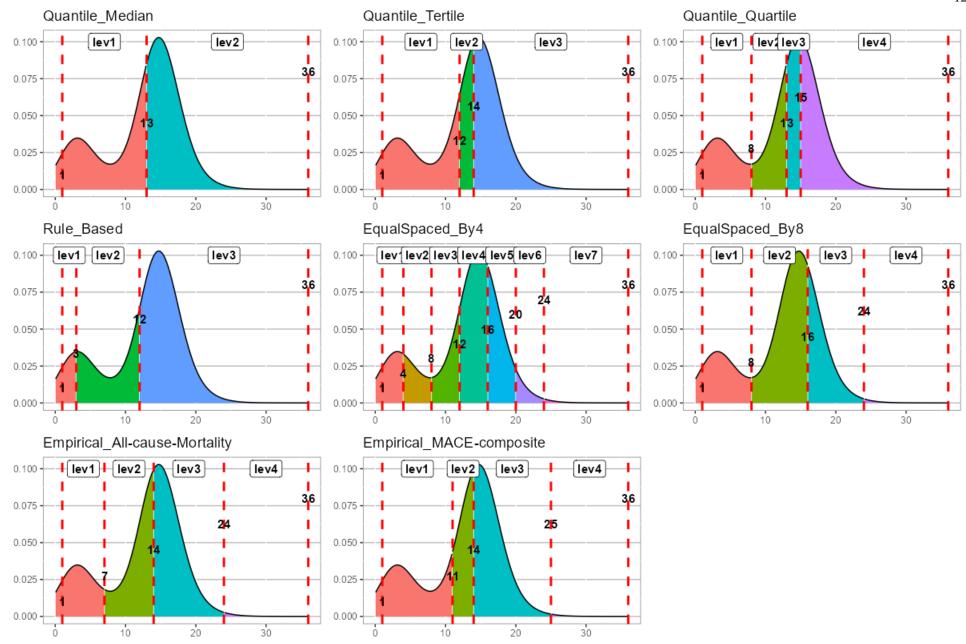
eFigure 1. Overview of the PAP Initiation Analysis Study Design

eFigure 2. Overview of the PAP Utilization Exposure Group Study Design

eFigure 3. Summary of IPTW-Adjusted Cox Proportional Hazards Models Assessing the Effect of PAP Initiation on Myocardial Infarction (MI), Heart Failure (HF), Stroke (STROKE) and Coronary Revascularization (REVASC) in all Eligible Participants. Results were derived from IPTW-weighted Cox proportional hazards models adjusted for age, sex, race, low-income-subsidy or dual-eligibility indicator, type 2 diabetes, hypertension, obesity, atrial fibrillation, COPD, CKD, hypersomnia, and insomnia, anxiety disorder, hypersomnia, insomnia, CCI, prescriptions of anticoagulants, antihypertensives, antilipidemic agents and blood glucose regulators. Reference category is no evidence of PAP initiation. Abbreviations: ACM: all-cause mortality; COPD: chronic obstructive pulmonary disease; CKD: chronic kidney disease; CCI: Charlson comorbidity index; PAP: positive airway pressure; HR: hazard ratio; CI: confidence interval; MACE: major adverse cardiovascular event; IPTW: inverse probability of treatment weights.

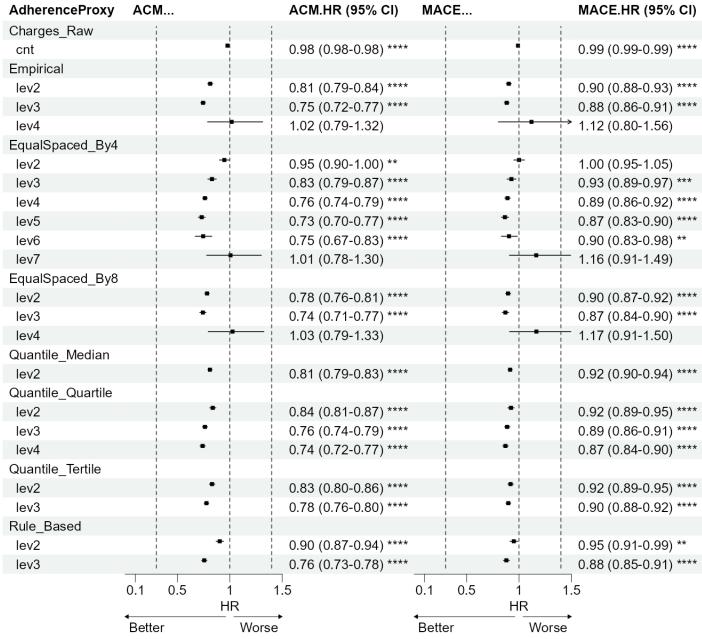

Stratification	ACM	ACM.HR (95% C	I) MACE		MACE.HR (95% CI)	Stratification	ACM		ACM.HR (95% CI)	MACE		MACE.HR (95% CI)
01.Age	1	1 1	1	1 1		10.Hypertension	1	1 1		1	1 1	
65-69 years	•	0.52 (0.51-0.54) *	***	•	0.91 (0.90-0.93) ****	No	•		0.55 (0.53-0.57) ****		•	0.92 (0.90-0.94) ****
70-74 years	•	0.52 (0.51-0.53) *	***	•	0.92 (0.90-0.93) ****	Yes			0.53 (0.52-0.53) ****		•	0.89 (0.89-0.90) ****
75-79 years	•	0.54 (0.53-0.56) *	***		0.89 (0.87-0.90) ****	11.T2DM		- 1 1				
80+ years	•	0.54 (0.53-0.54) *	***		0.86 (0.85-0.88) ****	No	•		0.53 (0.53-0.54) ****		•	0.91 (0.90-0.92) ****
02.Sex						Yes	•		0.53 (0.52-0.53) ****		•	0.88 (0.87-0.89) ****
Female		0.52 (0.51-0.53) *	***		0.88 (0.87-0.89) ****	12.Anxiety Disorder						
Male	•	0.53 (0.53-0.54) *	***	•	0.91 (0.90-0.92) ****	No	•		0.54 (0.53-0.54) ****		• ;	0.90 (0.89-0.91) ****
03.Race						Yes	•		0.50 (0.49-0.51) ****		•	0.88 (0.87-0.90) ****
Black	•	0.55 (0.53-0.58) *	***	-	0.90 (0.86-0.93) ****	13.Atrial Fibrilation						
Native American		0.57 (0.47-0.68) *	***	-	0.86 (0.73-1.00)	No			0.54 (0.53-0.54) ****		•	0.90 (0.90-0.91) ****
Asian		0.60 (0.53-0.67) *	***	•	0.93 (0.85-1.02)	Yes	•		0.47 (0.46-0.48) ****		•	0.85 (0.83-0.87) ****
Other	-	0.54 (0.46-0.64) *	***	•	0.94 (0.83-1.06)	14.Chronic Kidney Disease						
Unknown	•	0.55 (0.53-0.57) *		•	0.97 (0.94-1.00)	No	•		0.53 (0.52-0.54) ****		•	0.90 (0.89-0.91) ****
White	•	0.53 (0.52-0.53) *	***		0.89 (0.89-0.90) ****	Yes			0.53 (0.52-0.54) ****		•	0.89 (0.87-0.90) ****
04.Low-income-subsidy/Dual Eligibili	ity					15.Charlson Comorbidity Inde	ex					
No	•	0.53 (0.52-0.54) *	***	•	0.91 (0.91-0.92) ****	c0	•		0.55 (0.52-0.58) ****		•	0.94 (0.92-0.96) ****
Yes	•	0.53 (0.52-0.53) *			0.86 (0.85-0.87) ****	c1			0.54 (0.53-0.56) ****		•	0.88 (0.87-0.90) ****
05.Hypersomnia						c2			0.53 (0.52-0.54) ****		•	0.89 (0.88-0.91) ****
No		0.52 (0.52-0.53) *	***		0.90 (0.89-0.91) ****	c3	•		0.52 (0.52-0.53) ****		•	0.89 (0.87-0.91) ****
Yes	•	0.63 (0.61-0.65) *	***		0.89 (0.87-0.92) ****	16.Anti-coagulant						
06.Insomina					,	No			0.53 (0.52-0.53) ****		•	0.90 (0.89-0.90) ****
No		0.52 (0.52-0.53) *	***		0.90 (0.89-0.91) ****	Yes		1 1	0.53 (0.52-0.55) ****		•	0.92 (0.90-0.94) ****
Yes	•	0.55 (0.54-0.57) *	***		0.87 (0.85-0.89) ****	17.Anti-hypertensive						
07.MACE History				1 1		No			0.53 (0.52-0.54) ****		•	0.91 (0.89-0.92) ****
No		0.54 (0.53-0.55) *	***			Yes			0.53 (0.52-0.54) ****		•	0.89 (0.89-0.90) ****
Yes		0.53 (0.52-0.53) *				18.Anti-lipemic						
08.Obesity						No			0.53 (0.52-0.53) ****		•	0.90 (0.89-0.91) ****
No	•	0.55 (0.54-0.55) *	***		0.91 (0.90-0.92) ****	Yes			0.53 (0.52-0.54) ****		•	0.90 (0.89-0.91) ****
Yes	•	0.51 (0.50-0.51) *	***		0.88 (0.87-0.89) ****	19.Blood glucose regulator		- 1 1				
09.COPD						No			0.53 (0.52-0.53) ****		•	0.90 (0.89-0.91) ****
No		0.53 (0.52-0.53) *	***		0.90 (0.90-0.91) ****	Yes			0.53 (0.52-0.54) ****	i	•	0.89 (0.87-0.91) ****
Yes		0.54 (0.53-0.55) *			0.88 (0.86-0.89) ****		0.1 0.5	1 1.2		0.1 0.5	1 1.2	
	0.4			$\overline{}$	(0.1 0.3	HR HR		0.1 0.5	HR	
	0.1 0.5	1 1.2 HR	0.1 0.5	1 1.2 HR			Better	Worse	•	Better	Worse	→
	Better	Worse	Better	Worse			Dettel	VVOISE		Dettel	VVOIS	=

eFigure 4. Summary of Inverse Probability Of Treatment Weights (IPTW)-Adjusted Cox Proportional Hazards Models Assessing the Effect of PAP Initiation on All-Cause Mortality (ACM) and MACE Within Categories of Relevant Sociodemographic and Clinical Characteristics. Results were derived from IPTW-weighted Cox proportional hazards models adjusted for age, sex, race, low-income-subsidy or dual-eligibility indicator, type 2 diabetes, hypertension, obesity, atrial fibrillation, MACE (all-cause mortality only), COPD, CKD, hypersomnia, and insomnia, anxiety disorder, hypersomnia, insomnia, CCI, prescriptions of anticoagulants, antihypertensives, antilipidemic agents and blood glucose regulators. Among stratified models, stratification variable was not included as a covariate in propensity score models nor in outcome models. Reference category is no evidence of PAP initiation. Abbreviations: ACM: all-cause mortality; COPD: chronic obstructive pulmonary disease; CKD: chronic kidney disease; CCI: Charlson comorbidity index; PAP: positive airway pressure; HR: hazard ratio; CI: confidence interval; MACE: major adverse cardiovascular event; IPTW: inverse probability of treatment weights.

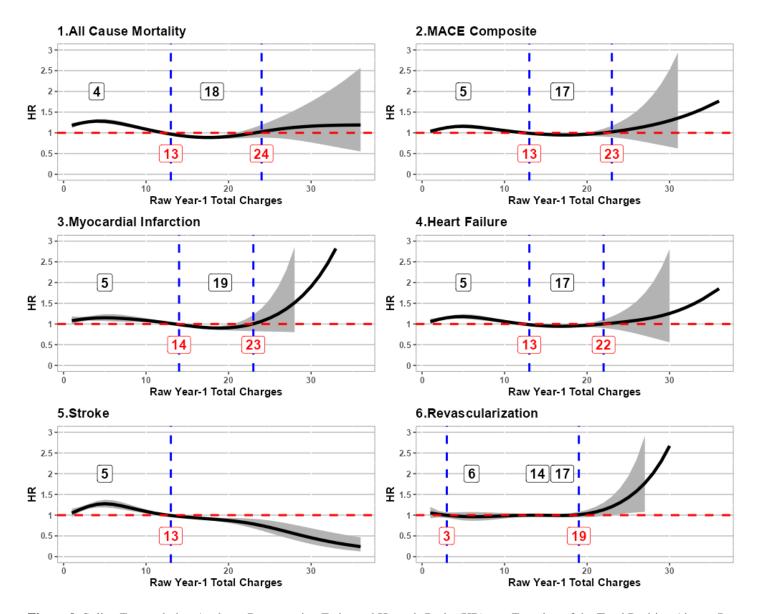

Stratification	MI	MI.HR (95% CI)	HF		HF.HR (95% CI)	STROKE		STROKE.HR (95% CI	REVASC		REVASC.HR (95%
01.Age			-	1 1			1 1		1		
65-69 years	•	0.85 (0.83-0.87) ****		•	0.91 (0.89-0.93) ****		•	0.87 (0.85-0.90) ****		•	1.06 (1.03-1.10) **
70-74 years	•	0.84 (0.82-0.86) ****		•	0.91 (0.90-0.93) ****		•	0.87 (0.84-0.89) ****		•	1.05 (1.02-1.09) **
75-79 years	•	0.81 (0.79-0.84) ****		•	0.86 (0.84-0.88) ****		•	0.88 (0.85-0.91) ****		-	1.09 (1.04-1.14) **
80+ years	•	0.83 (0.80-0.86) ****		•	0.86 (0.84-0.88) ****		•	0.83 (0.81-0.86) ****		i +	1.18 (1.12-1.24) ***
2.Sex											
Female	•	0.80 (0.79-0.82) ****		• 1	0.89 (0.88-0.90) ****		•	0.83 (0.81-0.85) ****			1.03 (0.99-1.07)
Male		0.85 (0.84-0.87) ****		•	0.89 (0.88-0.90) ****		•	0.89 (0.87-0.91) ****		•	1.10 (1.08-1.13) ***
3.Race					0.00 (0.00 0.00)			(
Black	-	0.79 (0.74-0.85) ****			0.89 (0.85-0.93) ****		-	0.90 (0.84-0.96) **			1.07 (0.95-1.20)
Native American		0.77 (0.61-0.97)	-		0.88 (0.73-1.07)	_		0.74 (0.56-0.99)	-		→ 1.01 (0.70-1.45)
	-	0.77 (0.61-0.97)			0.99 (0.88-1.11)		-	1.00 (0.84-1.18)			1.03 (0.82-1.28)
Asian	_					_					
Other		0.87 (0.70-1.06)			0.94 (0.81-1.10)			0.86 (0.68-1.08)			1.03 (0.79-1.33)
Unknown		0.86 (0.82-0.91) ****		-	0.94 (0.90-0.97) **		_	0.93 (0.88-0.99)		1.7	1.17 (1.07-1.27) **
White	•	0.84 (0.82-0.85) ****		•	0.89 (0.88-0.90) ****		•	0.85 (0.84-0.87) ****		•	1.08 (1.05-1.10) ***
04.Low-income-subsidy/Dual ty	y						- 1 1				
No	•	0.85 (0.84-0.87) ****		• 1	0.90 (0.89-0.91) ****		• 1	0.88 (0.87-0.90) ****		•	1.09 (1.07-1.12) ***
Yes	• 1	0.80 (0.78-0.82) ****		• ; ;	0.87 (0.86-0.89) ****		•	0.82 (0.80-0.84) ****		-	1.05 (1.01-1.10) *
05.Hypersomnia				- 1 1			- 1 1				
No	•	0.84 (0.83-0.85) ****		•	0.89 (0.88-0.90) ****		•	0.87 (0.85-0.88) ****		•	1.09 (1.06-1.11) ***
Yes	•	0.77 (0.73-0.81) ****		•	0.88 (0.85-0.91) ****		•	0.82 (0.78-0.86) ****		+	1.01 (0.94-1.09)
06.Insomina		(3.1.0.0.0.)						()			(
No		0.84 (0.83-0.86) ****			0.89 (0.88-0.90) ****			0.86 (0.85-0.88) ****		•	1.09 (1.07-1.11) ***
Yes		0.79 (0.76-0.82) ****			0.90 (0.88-0.93) ****			0.85 (0.81-0.88) ****		+	1.01 (0.95-1.07)
08.Obesity		0.75 (0.70-0.02)		- 1 1	0.50 (0.00-0.55)		- 1 1	0.00 (0.01-0.00)		- 1 1	1.01 (0.55-1.07)
		0.84 (0.82-0.85) ****			0.00 (0.00 0.04) ****			0.00 (0.00 0.00) ****			4.07 (4.05.4.40) ***
No			- 1		0.90 (0.89-0.91) ****	- 1		0.88 (0.86-0.90) ****			1.07 (1.05-1.10) ***
Yes	- 1	0.83 (0.81-0.85) ****		-	0.88 (0.86-0.89) ****			0.82 (0.80-0.84) ****		1-1	1.10 (1.06-1.14) ***
09.COPD				- 1 1			- 1 1				
No	•	0.84 (0.82-0.85) ****		• 1	0.89 (0.88-0.90) ****		• 1	0.87 (0.86-0.89) ****			1.07 (1.05-1.09) ***
Yes		0.83 (0.80-0.85) ****	1	• ; ;	0.88 (0.86-0.89) ****			0.81 (0.79-0.84) ****	1		1.15 (1.09-1.21) ***
10.Hypertension	1 1	1	1	1.1		1	1.1		1	1 1	
No	•	0.87 (0.84-0.91) ****		•	0.91 (0.89-0.94) ****		•	0.95 (0.91-0.99) *		•	1.05 (1.00-1.11)
Yes	•	0.83 (0.82-0.84) ****		•	0.89 (0.88-0.90) ****		•	0.85 (0.83-0.86) ****		•	1.09 (1.06-1.11) ***
11.T2DM							- 1				
No	•	0.84 (0.82-0.85) ****			0.90 (0.89-0.91) ****			0.89 (0.87-0.91) ****		•	1.08 (1.05-1.11) ***
Yes		0.84 (0.82-0.85) ****		•	0.88 (0.87-0.89) ****		•	0.82 (0.81-0.84) ****		•	1.09 (1.06-1.12) ***
12.Anxiety Disorder		0.04 (0.02 0.00)		- 1 1	0.00 (0.01 0.00)		- 1 1	0.02 (0.01 0.01)			1100 (1100 1112)
No Disorder		0.85 (0.83-0.86) ****			0.90 (0.89-0.91) ****			0.87 (0.85-0.88) ****			1.08 (1.05-1.10) ***
		0.78 (0.76-0.81) ****			0.87 (0.85-0.89) ****			0.85 (0.82-0.88) ****		-	1.11 (1.05-1.16) ***
Yes		0.76 (0.76-0.81)			0.07 (0.05-0.09)			0.03 (0.02-0.00)			1.11 (1.05-1.16)
13.Atrial Fibrilation	-			- 1	0.00 (0.00 0.01) ****		- 1	0.00 (0.05 0.00) ++++			1 00 (1 00 1 10)
No		0.84 (0.83-0.85) ****			0.90 (0.89-0.91) ****			0.86 (0.85-0.88) ****			1.08 (1.06-1.10) ***
Yes	-	0.78 (0.74-0.83) ****		•	0.84 (0.81-0.87) ****		-	0.84 (0.79-0.90) ****		-	1.07 (0.98-1.17)
14.Chronic Kidney Disease							- 1 1				
No	•	0.84 (0.83-0.85) ****		•	0.89 (0.88-0.90) ****		•	0.87 (0.85-0.88) ****		•	1.08 (1.05-1.10) ***
Yes	•	0.81 (0.78-0.84) ****		• 1	0.88 (0.87-0.90) ****		•	0.82 (0.80-0.86) ****		-	1.09 (1.04-1.15) **
15.Charlson Comorbidity Index							- 1 1				
c0	•	0.85 (0.82-0.87) ****		•	0.92 (0.89-0.94) ****		•	0.94 (0.91-0.98) **		-	1.09 (1.04-1.14) ***
c1	•	0.83 (0.81-0.85) ****		•	0.88 (0.87-0.89) ****		•	0.86 (0.84-0.88) ****		•	1.03 (1.00-1.06)
c2	•	0.84 (0.81-0.86) ****			0.89 (0.87-0.91) ****		•	0.84 (0.82-0.87) ****		-	1.16 (1.12-1.22) ***
c3	•	0.83 (0.81-0.86) ****			0.89 (0.87-0.90) ****			0.82 (0.79-0.84) ****		-	1.08 (1.03-1.13) **
16.Anti-coagulant		1 0.00 (0.01-0.00)		- 1 1	0.00 (0.01-0.00)		- 1 1	0.02 (0.75-0.04)			1.00 (1.00-1.10)
No		0.84 (0.82-0.85) ****			0.89 (0.88-0.90) ****			0.86 (0.84-0.87) ****			1.08 (1.06-1.10) **
Yes	•			•			•			-	
		0.82 (0.79-0.86) ****			0.91 (0.89-0.94) ****		- 1 1	0.89 (0.85-0.94) ***			1.08 (1.00-1.15)
17.Anti-hypertensive							- 1	0.05 (0.00 0.05) ++++			
No		0.83 (0.81-0.85) ****			0.90 (0.89-0.91) ****		1 1	0.85 (0.83-0.87) ****		1.1	1.04 (1.01-1.07)
Yes	•	0.84 (0.83-0.86) ****		-	0.89 (0.88-0.90) ****		-	0.87 (0.85-0.89) ****		•	1.12 (1.09-1.15) ***
18.Anti-lipemic											
No	•	0.83 (0.82-0.85) ****		•	0.90 (0.88-0.91) ****		•	0.85 (0.84-0.87) ****		•	1.06 (1.03-1.09) ***
Yes		0.84 (0.82-0.85) ****		• 1	0.88 (0.87-0.89) ****		•	0.87 (0.85-0.89) ****		•	1.11 (1.07-1.14) ***
19.Blood glucose regulator											
No		0.84 (0.82-0.85) ****		•	0.89 (0.88-0.90) ****		•	0.87 (0.85-0.88) ****		•	1.07 (1.04-1.09) ***
Yes		0.84 (0.81-0.86) ****			0.88 (0.87-0.90) ****		•	0.84 (0.82-0.87) ****		-	1.13 (1.08-1.18) ***
											(1.50-1.10)
		1.2	0.1 0.5	1 1.2	?	0.1 0.5	1 1.2	2	0.1 0.5	1 1.2	
	HR			HR			HR			HR	

© 2024 Mazzotti DR et al. JAMA Network Open.

eFigure 5. Summary of Inverse Probability Of Treatment Weights (IPTW)-Adjusted Cox Proportional Hazards Models Assessing the Effect of PAP Initiation on Myocardial Infarction (MI), Heart Failure (HF), Stroke (STROKE) and Coronary Revascularization (REVASC) Within Categories of Relevant Sociodemographic and Clinical Characteristics. Results were derived from IPTW-weighted Cox proportional hazards models adjusted for age, sex, race, low-income-subsidy or dual-eligibility indicator, type 2 diabetes, hypertension, obesity, atrial fibrillation, MACE (all-cause mortality only), COPD, CKD, hypersomnia, and insomnia, anxiety disorder, hypersomnia, insomnia, CCI, prescriptions of anticoagulants, antihypertensives, antilipidemic agents and blood glucose regulators. Among stratified models, stratification variable was not included as a covariate in propensity score models nor in outcome models. Reference category is no evidence of PAP initiation. Abbreviations: ACM: all-cause mortality; COPD: chronic obstructive pulmonary disease; CKD: chronic kidney disease; CCI: Charlson comorbidity index; PAP: positive airway pressure; HR: hazard ratio; CI: confidence interval; MACE: major adverse cardiovascular event; IPTW: inverse probability of treatment weights.



eFigure 6. Distribution of Total Count of Positive Airway Pressure (PAP) Claims During the First Year of PAP Utilization



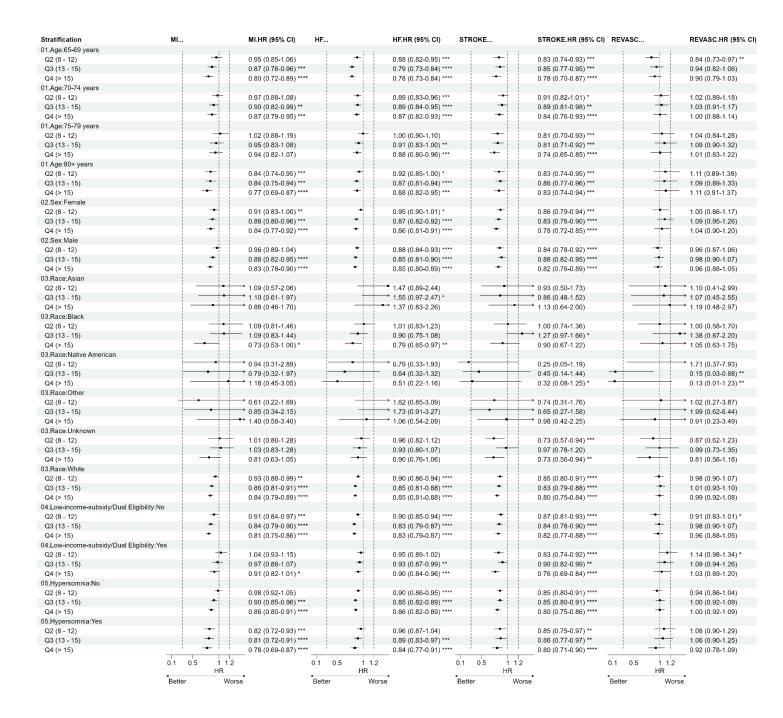
eFigure 7. Categorization of Positive Airway Pressure (PAP) Claim Counts Distribution During First Year of PAP Utilization According to Quantile-Based Definitions (Quantile_Median, Quantile_Tertile, Quantile_Quartile), Rule-Based Definitions (Rule_Based), Equal Spaced (EqualSpaced_By4, EqualSpaced_By8) and Based on an Empirical

Method That Identified the Most Discriminant Cut Point For All-Cause Mortality and MACE (Empirical_All-case-Mortality, Empirical_MACE-composite). Vertical red dashed lines represent cut points for each definition.

eFigure 8. Summary of Inverse Probability Of Treatment Weights (IPTW)-Adjusted Cox Proportional Hazards Models Assessing the Effect of Different PAP Exposure Group Definitions at First Year of PAP Utilization on Primary Outcomes: All-Cause Mortality (ACM) and Major Adverse Cardiovascular Events (MACE).

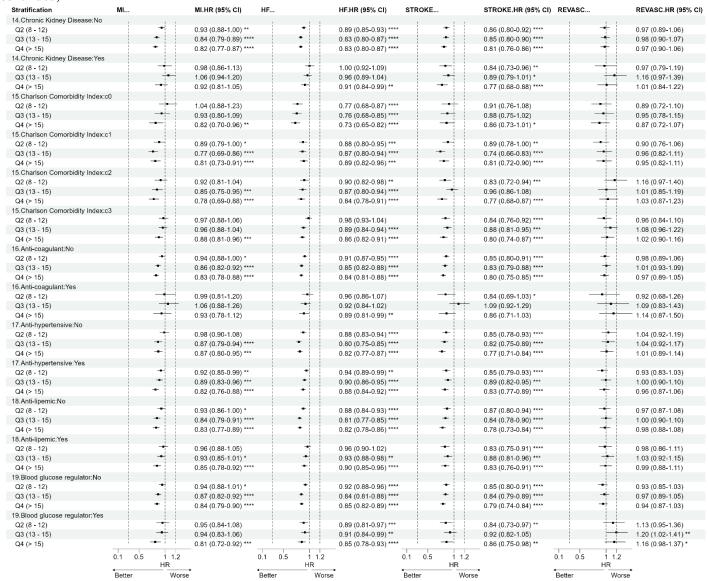
eFigure 9. Spline Extrapolation Analyses Representing Estimated Hazards Ratio (HR) as a Function of the Total Positive Airway Pressure (PAP) Claim Counts During First Year of PAP Utilization for Each Primary and Secondary Study Outcome. Blue vertical dashed lines represent HR inflection points, with the corresponding count of PAP claims. Number in black boxes represent the number of claims with highest and lowest HR within each inflection. Numbers in red boxes represent the number of claims at the inflection. Red horizontal dashed lines represent the null (HR=1).

eFigure 10. Summary of IPTW-Adjusted Cox Proportional Hazards Models Assessing the Effect of PAP Utilization Exposure Groups Based on Quartiles of PAP Claim Counts on Myocardial Infarction (MI), Heart Failure (HF), Stroke (STROKE) and Coronary Revascularization (REVASC) in All Eligible Participants. PAP exposure groups were defined as follows: Q1 (reference): 1-7 claims; level 2: 8-12 claims; level 3: 13-15 claims; level 4: >15 claims). Results were derived from IPTW-weighted Cox proportional hazards models adjusted for age, sex, race, low-income-subsidy or dual-eligibility indicator, type 2 diabetes, hypertension, obesity, atrial fibrillation, COPD, CKD, hypersomnia, and insomnia, anxiety disorder, hypersomnia, insomnia, CCI, prescriptions of anticoagulants, antihypertensives, antilipidemic agents and blood glucose regulators. Abbreviations: ACM: all-cause mortality; COPD: chronic obstructive pulmonary disease; CKD: chronic kidney disease; CCI: Charlson comorbidity index; PAP: positive airway pressure; HR: hazard ratio; CI: confidence interval; IPTW: inverse probability of treatment weights.


Stratification	ACM		ACM.HR (95% CI)	MACE		MACE.HR (95% CI
01.Age:65-69 years		1 1		1	1 1	
Q2 (8 - 12)	-		0.81 (0.75-0.88) ****	_		0.90 (0.84-0.95) ***
Q3 (13 - 15)	-		0.69 (0.63-0.74) ****	•		0.86 (0.81-0.91) ***
Q4 (> 15)	-	1 1	0.68 (0.63-0.74) ****	-		0.83 (0.79-0.88) ***
01.Age:70-74 years	_					
Q2 (8 - 12)	-	1	0.86 (0.81-0.92) ****	-		0.94 (0.89-1.00) **
Q3 (13 - 15)	-		0.79 (0.74-0.84) ****	•		0.92 (0.88-0.97) ***
Q4 (> 15)	-		0.75 (0.71-0.80) ****	-		0.91 (0.86-0.96) ***
01.Age:75-79 years						
Q2 (8 - 12)	-	-	0.88 (0.81-0.95) ***	-	-	0.96 (0.89-1.04)
Q3 (13 - 15)	-		0.81 (0.75-0.88) ****	-		0.91 (0.85-0.98) **
Q4 (> 15)	-		0.79 (0.74-0.86) ****	-		0.87 (0.81-0.93) ***
01.Age:80+ years						
Q2 (8 - 12)	-		0.82 (0.78-0.87) ****	-		0.90 (0.84-0.97) ***
Q3 (13 - 15)	-		0.76 (0.72-0.80) ****	-		0.86 (0.80-0.91) ***
Q4 (> 15)	•		0.74 (0.71-0.78) ****	-		0.88 (0.82-0.93) ***
02.Sex:Female						
Q2 (8 - 12)	-	-	0.87 (0.82-0.92) ****	-	1	0.95 (0.90-0.99) **
Q3 (13 - 15)	-		0.77 (0.73-0.81) ****	+		0.88 (0.84-0.92) ***
Q4 (> 15)	+		0.75 (0.71-0.79) ****	+		0.88 (0.84-0.92) ***
02.Sex:Male				1		
Q2 (8 - 12)	•		0.82 (0.78-0.86) ****	-		0.91 (0.87-0.95) ***
Q3 (13 - 15)	•		0.76 (0.73-0.79) ****	•		0.89 (0.86-0.93) ***
Q4 (> 15)	-		0.74 (0.71-0.77) ****	-		0.87 (0.83-0.91) ***
03.Race:Asian						
Q2 (8 - 12)	_	 • →	1.15 (0.76-1.76)	-	 • →	1.24 (0.85-1.81)
Q3 (13 - 15)	-	-	0.77 (0.50-1.17)	-	 ■ →	1.26 (0.89-1.78)
Q4 (> 15)	· -	-	0.94 (0.60-1.49)			1.13 (0.79-1.63)
03.Race:Black			,			, ,
Q2 (8 - 12)	-	+	0.97 (0.84-1.13)	-	 - -	1.04 (0.89-1.23)
Q3 (13 - 15)			0.76 (0.65-0.88) ****	-	-	1.03 (0.88-1.20)
Q4 (> 15)		-	0.78 (0.67-0.92) ***		+	0.88 (0.75-1.04)
03.Race:Native American			0.70 (0.07 0.02)			0.00 (0.70 1.01)
Q2 (8 - 12)		• 	0.91 (0.46-1.80)	-	 	0.73 (0.34-1.56)
Q3 (13 - 15)			0.43 (0.21-0.89) *	-		0.54 (0.29-1.00) **
Q4 (> 15)			0.68 (0.37-1.26)		<u> </u>	0.63 (0.33-1.22)
03.Race:Other			0.00 (0.01-1.20)			0.00 (0.00-1.22)
Q2 (8 - 12)			0.78 (0.42-1.45)		\downarrow \downarrow \rightarrow	0.99 (0.59-1.66)
Q3 (13 - 15)		++-	0.74 (0.40-1.38)		∔ →	1.18 (0.72-1.95)
Q4 (> 15)		↓ →	0.74 (0.40-1.38)	_	 	1.17 (0.71-1.93)
03.Race:Unknown			0.99 (0.54-1.79)			1.17 (0.71-1.93)
		-	0.94 (0.74 0.02) ***	_	1	0.04 (0.92.4.07)
Q2 (8 - 12)	_	_	0.81 (0.71-0.92) ***	_	<u> </u>	0.94 (0.83-1.07)
Q3 (13 - 15)	-	_	0.88 (0.78-1.00) *	_	1 1	0.92 (0.81-1.04)
Q4 (> 15)			0.83 (0.71-0.97) **			0.88 (0.76-1.00) *
03.Race:White				_		
Q2 (8 - 12)		1 1	0.83 (0.80-0.86) ****			0.92 (0.88-0.95) ***
Q3 (13 - 15)			0.75 (0.73-0.78) ****			0.88 (0.85-0.91) ***
Q4 (> 15)	•		0.73 (0.71-0.76) ****	-		0.87 (0.84-0.90) **
04.Low-income-subsidy/Dual Eligibility:No						
Q2 (8 - 12)	•		0.83 (0.79-0.86) ****	•		0.91 (0.87-0.94) **
Q3 (13 - 15)	•		0.76 (0.73-0.79) ****	•		0.86 (0.83-0.89) **
Q4 (> 15)	•		0.72 (0.69-0.75) ****	-		0.86 (0.83-0.89) **
04.Low-income-subsidy/Dual Eligibility:Ye						
Q2 (8 - 12)	-		0.85 (0.81-0.90) ****	-	†	0.97 (0.91-1.02)
Q3 (13 - 15)	•		0.77 (0.73-0.81) ****	-	† †	0.95 (0.90-1.01) *
Q4 (> 15)	-		0.77 (0.73-0.81) ****	-		0.91 (0.86-0.96) **
05.Hypersomnia:No						
Q2 (8 - 12)	-		0.84 (0.81-0.88) ****	-		0.92 (0.89-0.96) **
Q3 (13 - 15)	•		0.78 (0.75-0.80) ****	•		0.88 (0.86-0.92) **
Q4 (> 15)	•		0.76 (0.73-0.79) ****	-		0.88 (0.85-0.91) **
05.Hypersomnia:Yes						. ,
Q2 (8 - 12)	-		0.81 (0.76-0.88) ****	-		0.92 (0.86-0.99) **
Q3 (13 - 15)	-		0.72 (0.67-0.77) ****	-		0.90 (0.84-0.96) **
Q4 (> 15)	-	1 1	0.69 (0.64-0.74) ****	-	1 1	0.85 (0.79-0.90) **
	7 7	1 1 2		0.4	1 1 6	
	0.1 0.5	1 1.2		0.1 0.5	1 1.2	
		HR			łR	

Stratification	ACM	ACM.HR (95% CI)	MACE	MACE.HR (95% CI)
06.Insomina:No				
Q2 (8 - 12)	•	0.83 (0.80-0.86) ****	•	0.92 (0.88-0.95) ****
Q3 (13 - 15)	•	0.75 (0.73-0.78) ****	•	0.87 (0.84-0.90) ****
Q4 (> 15)	•	0.73 (0.71-0.76) ****	•	0.85 (0.82-0.88) ****
06.Insomina:Yes	_			
Q2 (8 - 12)		0.86 (0.80-0.92) ****		0.94 (0.88-1.01)
Q3 (13 - 15)		0.79 (0.74-0.85) ****		0.94 (0.88-1.01) *
Q4 (> 15)	_ _	0.76 (0.71-0.81) ****		0.95 (0.89-1.01)
07.MACE History:No	-	0.70 (0.72.0.04) ****		
Q2 (8 - 12)		0.79 (0.73-0.84) **** 0.69 (0.65-0.73) ****		
Q3 (13 - 15)	-	0.70 (0.66-0.75) ****		
Q4 (> 15) 07.MACE History:Yes		0.70 (0.66-0.75)		
Q2 (8 - 12)		0.86 (0.82-0.89) ****		
Q3 (13 - 15)		0.79 (0.76-0.82) ****		
Q4 (> 15)		0.76 (0.73-0.79) ****		
08.Obesity:No		0.70 (0.73-0.79)		
Q2 (8 - 12)		0.80 (0.76-0.84) ****	-	0.91 (0.88-0.95) ****
Q3 (13 - 15)	•	0.76 (0.73-0.79) ****	•	0.88 (0.85-0.92) ****
Q4 (> 15)	•	0.73 (0.69-0.76) ****	•	0.87 (0.83-0.90) ****
08.Obesity:Yes		0.10 (0.00-0.10)		0.07 (0.00-0.00)
Q2 (8 - 12)	-	0.89 (0.85-0.94) ****		0.94 (0.89-0.99) **
Q3 (13 - 15)	•	0.77 (0.74-0.81) ****	-	0.90 (0.86-0.94) ****
Q4 (> 15)	•	0.76 (0.72-0.80) ****	-	0.88 (0.84-0.92) ****
09.COPD:No		0.70 (0.72 0.00)		0.00 (0.01 0.02)
Q2 (8 - 12)	•	0.82 (0.78-0.86) ****	-	0.91 (0.88-0.95) ****
Q3 (13 - 15)	•	0.75 (0.72-0.78) ****	•	0.89 (0.86-0.92) ****
Q4 (> 15)	•	0.72 (0.69-0.76) ****	-	0.87 (0.84-0.90) ****
09.COPD:Yes		0.12 (0.00-0.10)		0.07 (0.04-0.00)
Q2 (8 - 12)		0.86 (0.82-0.90) ****	-=-	0.94 (0.88-1.01) *
Q3 (13 - 15)	-	0.78 (0.74-0.81) ****	-	0.89 (0.84-0.94) ****
Q4 (> 15)	•	0.76 (0.72-0.79) ****	-	0.89 (0.83-0.94) ****
10.Hypertension:No		0.10 (0.12 0.10)		0.00 (0.00 0.01)
Q2 (8 - 12)	-	0.70 (0.59-0.84) ****		0.81 (0.72-0.90) ****
Q3 (13 - 15)		0.60 (0.51-0.71) ****		0.84 (0.76-0.93) ****
Q4 (> 15)	-	0.63 (0.54-0.74) ****	-	0.82 (0.74-0.91) ****
10.Hypertension:Yes		0.00 (0.01 0.1 1)		0.02 (0.11 1 0.01)
Q2 (8 - 12)	•	0.84 (0.81-0.87) ****	-	0.94 (0.90-0.97) ****
Q3 (13 - 15)	•	0.77 (0.75-0.80) ****	•	0.89 (0.86-0.92) ****
Q4 (> 15)	•	0.75 (0.72-0.77) ****	•	0.88 (0.85-0.91) ****
11.T2DM:No		,		,
Q2 (8 - 12)	-	0.79 (0.75-0.84) ****	•	0.89 (0.85-0.93) ****
Q3 (13 - 15)	•	0.74 (0.71-0.78) ****	•	0.87 (0.84-0.91) ****
Q4 (> 15)		0.73 (0.69-0.77) ****	-	0.86 (0.83-0.90) ****
11.T2DM:Yes		,		,
Q2 (8 - 12)	-	0.87 (0.83-0.91) ****	-=-	0.96 (0.92-1.01)
Q3 (13 - 15)	•	0.77 (0.74-0.81) ****	-	0.91 (0.87-0.95) ****
Q4 (> 15)	•	0.75 (0.72-0.78) ****	-	0.89 (0.85-0.93) ****
12.Anxiety Disorder:No				
Q2 (8 - 12)		0.83 (0.80-0.87) ****	-	0.91 (0.88-0.95) ****
Q3 (13 - 15)	•	0.76 (0.73-0.79) ****	•	0.89 (0.86-0.92) ****
Q4 (> 15)	•	0.73 (0.70-0.76) ****	•	0.86 (0.83-0.89) ****
12.Anxiety Disorder:Yes				
Q2 (8 - 12)	+	0.84 (0.79-0.90) ****	-=-	0.95 (0.89-1.01)
Q3 (13 - 15)	+	0.77 (0.72-0.81) ****	-	0.87 (0.82-0.92) ****
Q4 (> 15)	+	0.76 (0.71-0.80) ****	-	0.89 (0.84-0.95) ****
13.Atrial Fibrilation:No				
Q2 (8 - 12)	•	0.82 (0.79-0.85) ****	•	0.92 (0.89-0.95) ****
Q3 (13 - 15)	•	0.76 (0.73-0.79) ****	•	0.88 (0.86-0.91) ****
Q4 (> 15)	•	0.74 (0.71-0.76) ****	•	0.88 (0.85-0.91) ****
13.Atrial Fibrilation:Yes				
Q2 (8 - 12)		0.93 (0.85-1.02)	+	1.01 (0.89-1.14)
Q3 (13 - 15)	-	0.78 (0.72-0.85) ****	-	0.92 (0.82-1.03)
Q4 (> 15)	ı i i	0.76 (0.70-0.83) ****	i i	0.81 (0.72-0.91) ****
	0.1 0.5 1 1.2		0.1 0.5 1 1.2	
	HR		HR	
	Better Worse	•	Better Worse	•

(1)	4014		AOM LID (05%) O"	MAGE		NOT UD (05% C"
Stratification	ACM		ACM.HR (95% CI)	MACE	MA	ACE.HR (95% CI)
14.Chronic Kidney Disease:No	1	. ! !	0.70 (0.70 0.00)			4 (0.00 0.01
Q2 (8 - 12)			0.79 (0.76-0.83) ****	_		91 (0.88-0.94) ****
Q3 (13 - 15)			0.72 (0.69-0.75) ****			37 (0.84-0.90) ****
Q4 (> 15)			0.72 (0.69-0.75) ****	_	8.0	37 (0.84-0.90) ****
14.Chronic Kidney Disease:Yes		_	0.00 (0.00 0.05) ****	_		
Q2 (8 - 12)			0.90 (0.86-0.95) ****			98 (0.91-1.05)
Q3 (13 - 15)			0.83 (0.79-0.87) ****	_	1	97 (0.90-1.04)
Q4 (> 15)			0.77 (0.74-0.81) ****	_	0.8	39 (0.83-0.96) ***
15.Charlson Comorbidity Index:c0	' <u> </u>	_ ! !	0.73 (0.58-0.90) ***	-	0.0	00 (0 70 0 05) ***
Q2 (8 - 12)	-		0.53 (0.43-0.66) ****	-		36 (0.79-0.95) *** 37 (0.80-0.95) ***
Q3 (13 - 15)			0.56 (0.45-0.70) ****	-		33 (0.76-0.90) ****
Q4 (> 15)		-	0.56 (0.45-0.70)		0.0	3 (0.76-0.90)
15.Charlson Comorbidity Index:c1	-	-	0.74 (0.66-0.85) ****	-	0.0	91 (0.85-0.97) ***
Q2 (8 - 12)	-	-	0.67 (0.60-0.76) ****	-		35 (0.80-0.91) ****
Q3 (13 - 15)	-	.	0.72 (0.64-0.81) ****	-	i	,
Q4 (> 15)	,		0.72 (0.04-0.01)		0.8	90 (0.85-0.96) ***
15.Charlson Comorbidity Index:c2	-	-	0.79 (0.71-0.87) ****	-	0.0	92 (0.86-0.99) **
Q2 (8 - 12) Q3 (13 - 15)		-	0.79 (0.71-0.87)			91 (0.85-0.97) ***
Q4 (> 15)	-		0.79 (0.72-0.87)	-		35 (0.79-0.91) ****
15.Charlson Comorbidity Index:c3			0.72 (0.00-0.79)		0.0	33 (0.79-0.91)
Q2 (8 - 12)	'	-	0.86 (0.83-0.89) ****	-	0.0	96 (0.91-1.01)
Q3 (13 - 15)			0.77 (0.75-0.80) ****	-		91 (0.87-0.95) ****
Q4 (> 15)			0.76 (0.73-0.78) ****	-		88 (0.84-0.92) ****
16.Anti-coagulant:No	1		0.70 (0.73-0.70)		0.0	0.04-0.92)
Q2 (8 - 12)		-	0.84 (0.80-0.87) ****		no	92 (0.89-0.96) ****
Q3 (13 - 15)			0.76 (0.73-0.78) ****	•		37 (0.85-0.90) ****
Q4 (> 15)			0.74 (0.71-0.77) ****			37 (0.84-0.90) ****
16.Anti-coagulant:Yes			0.74 (0.71-0.71)		0.0	77 (0.04-0.00)
Q2 (8 - 12)		-	0.84 (0.78-0.91) ****	-	0.9	93 (0.85-1.03)
Q3 (13 - 15)	-	-	0.79 (0.74-0.84) ****	-		98 (0.90-1.07)
Q4 (> 15)	-	.	0.75 (0.70-0.80) ****			39 (0.81-0.97) ***
17.Anti-hypertensive:No			(5.5.5)			(
Q2 (8 - 12)		•	0.81 (0.77-0.86) ****	-	0.9	92 (0.88-0.97) ***
Q3 (13 - 15)	-		0.73 (0.69-0.77) ****	*	8.0	86 (0.82-0.90) ****
Q4 (> 15)	•		0.72 (0.68-0.76) ****	-	0.8	86 (0.82-0.90) ****
17.Anti-hypertensive:Yes						
Q2 (8 - 12)		+	0.85 (0.82-0.89) ****	+	0.9	93 (0.89-0.97) ****
Q3 (13 - 15)	•	•	0.78 (0.75-0.81) ****	•	0.9	91 (0.87-0.94) ****
Q4 (> 15)	-		0.75 (0.72-0.78) ****	-	0.8	88 (0.85-0.92) ****
18.Anti-lipemic:No						
Q2 (8 - 12)		+	0.84 (0.80-0.88) ****	-	0.9	90 (0.86-0.94) ****
Q3 (13 - 15)	-		0.75 (0.72-0.78) ****	•	0.8	86 (0.82-0.89) ****
Q4 (> 15)	-		0.74 (0.71-0.77) ****	+	0.8	35 (0.81-0.88) ****
18.Anti-lipemic:Yes						
Q2 (8 - 12)		+	0.84 (0.80-0.88) ****	-		96 (0.91-1.01) *
Q3 (13 - 15)	•		0.78 (0.74-0.82) ****	-		93 (0.89-0.98) ***
Q4 (> 15)	-		0.75 (0.71-0.78) ****	-	0.9	91 (0.86-0.95) ****
19.Blood glucose regulator:No						
Q2 (8 - 12)	i	•	0.84 (0.80-0.87) ****	•		93 (0.89-0.96) ****
Q3 (13 - 15)	•		0.76 (0.73-0.79) ****	•		37 (0.85-0.90) ****
Q4 (> 15)	•		0.75 (0.72-0.78) ****	•	0.8	37 (0.84-0.90) ****
19.Blood glucose regulator:Yes		_				
Q2 (8 - 12)		_	0.84 (0.79-0.90) ****	-		92 (0.85-0.99) **
Q3 (13 - 15)			0.78 (0.73-0.83) ****			94 (0.88-1.01) *
Q4 (> 15)	· · ·		0.73 (0.68-0.77) ****	-		88 (0.82-0.94) ****
	0.1 0.5	1 1.2			1.2	
		HR —		н	R ——	
	Better	Worse		Better	Worse	


eFigure 11. Summary of Inverse Probability of Treatment Weights (IPTW)-Adjusted Cox Proportional Hazards Models Assessing the Effect of PAP Exposure Groups Based on Quartiles of PAP Utilization During First Year on All-Cause Mortality (ACM) and MACE Within Categories of Relevant Sociodemographic and Clinical Characteristics. PAP exposure groups were defined as follows: level 1 (reference): 1-7 claims; level 2: 8-12 claims; level 3: 13-15 claims; level 4: >15 claims). Results were derived from IPTW-weighted Cox proportional hazards models adjusted for age, sex, race, low-income-subsidy or dual-eligibility indicator, type 2 diabetes, hypertension, obesity, atrial fibrillation, MACE (all-cause mortality only), COPD, CKD, hypersomnia, and insomnia, anxiety disorder, hypersomnia, insomnia, CCI, prescriptions of anticoagulants, antihypertensives, antilipidemic agents and blood glucose regulators.

Among stratified models, stratification variable was not included as a covariate in propensity score models nor in outcome models. Reference category is no evidence of PAP initiation. Abbreviations: ACM: all-cause mortality; COPD: chronic obstructive pulmonary disease; CKD: chronic kidney disease; CCI: Charlson comorbidity index; PAP: positive airway pressure; HR: hazard ratio; CI: confidence interval; MACE: major adverse cardiovascular event.

© 2024 Mazzotti DR et al. JAMA Network Open.

Stratification	MI	MI.HR (95% CI)	HF	HF.HR (95% CI)	STROKE	STROKE.HR (95% CI)	REVASC	REVASC.HR (95% C
06.Insomina:No					1			
Q2 (8 - 12)	-	0.94 (0.88-1.01) *	•	0.90 (0.86-0.94) ****	-	0.84 (0.78-0.90) ****	-+	0.97 (0.88-1.06)
Q3 (13 - 15)	-	0.87 (0.82-0.92) ****	•	0.85 (0.81-0.88) ****		0.83 (0.78-0.88) ****	+ 1	0.99 (0.91-1.07)
Q4 (> 15)	-	0.82 (0.77-0.87) ****		0.83 (0.79-0.86) ****		0.78 (0.73-0.83) ****		0.95 (0.87-1.04)
06.Insomina:Yes		(1111)		(((
Q2 (8 - 12)		0.95 (0.83-1.08)		0.96 (0.88-1.05)	-	0.90 (0.79-1.02)		0.97 (0.80-1.19)
Q3 (13 - 15)		0.94 (0.83-1.07)		0.90 (0.83-0.98) **		0.95 (0.85-1.06)		1.14 (0.96-1.35)
Q4 (> 15)		0.91 (0.81-1.03)		0.94 (0.87-1.02)	-	0.87 (0.78-0.98) **		1.12 (0.94-1.34)
08.Obesity:No		0.01 (0.01 1.00)		0.01(0.011.02)		0.07 (0.70 0.00)		1.12 (0.01 1.01)
Q2 (8 - 12)		0.95 (0.88-1.02)	-	0.89 (0.85-0.94) ****	-	0.87 (0.80-0.93) ****		0.96 (0.86-1.06)
Q3 (13 - 15)		0.84 (0.79-0.90) ****		0.86 (0.81-0.90) ****		0.87 (0.81-0.93) ****	-	0.97 (0.89-1.07)
Q4 (> 15)	-	0.82 (0.77-0.88) ****	i i i	0.86 (0.82-0.90) ****		0.80 (0.74-0.85) ****		0.92 (0.84-1.02)
08.Obesity:Yes		0.02 (0.77-0.00)		0.60 (0.62-0.90)		0.80 (0.74-0.83)		0.92 (0.04-1.02)
	-	0.04 (0.05.4.03)	-	0.04 (0.00 4.00) **	-	0.82 (0.74.0.04) ****	-	4.00 (0.07.4.46)
Q2 (8 - 12)		0.94 (0.85-1.03)		0.94 (0.88-1.00) ** 0.86 (0.81-0.91) ****	1 1	0.82 (0.74-0.91) **** 0.83 (0.76-0.91) ****		1.00 (0.87-1.15)
Q3 (13 - 15)	-	0.94 (0.87-1.03)	-		1		1	1.08 (0.95-1.22)
Q4 (> 15)	- 1	0.86 (0.79-0.95) ***	-	0.84 (0.79-0.89) ****		0.81 (0.74-0.89) ****	-	1.08 (0.95-1.22)
09.COPD:No			-		-			
Q2 (8 - 12)	- 1	0.94 (0.87-1.00) *	i i i	0.90 (0.86-0.94) ****		0.85 (0.79-0.90) ****	T	0.95 (0.86-1.04)
Q3 (13 - 15)	-	0.89 (0.83-0.94) ****		0.87 (0.83-0.91) ****		0.84 (0.79-0.89) ****	T	0.99 (0.91-1.08)
Q4 (> 15)	-	0.83 (0.78-0.89) ****	•	0.84 (0.81-0.88) ****	-	0.81 (0.76-0.86) ****	-	0.95 (0.87-1.04)
09.COPD:Yes								
Q2 (8 - 12)	-	0.97 (0.86-1.09)	-	0.95 (0.88-1.02)	-	0.87 (0.76-0.99) **		1.07 (0.88-1.30)
Q3 (13 - 15)	-	0.86 (0.77-0.96) ***	-	0.84 (0.78-0.90) ****		0.94 (0.84-1.06)	†• •	1.10 (0.93-1.31)
Q4 (> 15)		0.85 (0.76-0.95) ***	-	0.87 (0.81-0.93) ****	-	0.78 (0.69-0.88) ****	· +++	1.11 (0.94-1.32)
10.Hypertension:No								
Q2 (8 - 12)		0.91 (0.75-1.10)		0.72 (0.62-0.83) ****		0.92 (0.76-1.11)	-	1.00 (0.76-1.32)
Q3 (13 - 15)	-	0.83 (0.70-0.99) **	-	0.73 (0.64-0.83) ****	-	0.86 (0.73-1.03)		1.24 (0.97-1.58) *
Q4 (> 15)	-	0.75 (0.62-0.90) ***	-	0.73 (0.64-0.83) ****	-	0.84 (0.70-1.00) *		1.03 (0.80-1.33)
10.Hypertension:Yes								
Q2 (8 - 12)		0.95 (0.89-1.01) *	•	0.93 (0.89-0.97) ***	-	0.84 (0.79-0.90) ****	+	0.97 (0.89-1.06)
Q3 (13 - 15)	-	0.89 (0.84-0.94) ****	•	0.87 (0.84-0.91) ****	•	0.85 (0.81-0.90) ****	+	0.99 (0.91-1.07)
Q4 (> 15)	•	0.85 (0.80-0.90) ****	•	0.86 (0.83-0.90) ****		0.80 (0.75-0.85) ****	+ 1	0.98 (0.90-1.06)
11.T2DM:No				` '				, ,
Q2 (8 - 12)	-	0.90 (0.83-0.98) **	-	0.88 (0.84-0.93) ****	-	0.85 (0.79-0.92) ****		0.92 (0.82-1.04)
Q3 (13 - 15)		0.89 (0.83-0.96) ***	-	0.84 (0.80-0.88) ****		0.82 (0.77-0.88) ****	+	0.98 (0.89-1.09)
Q4 (> 15)	-	0.82 (0.76-0.88) ****	-	0.85 (0.80-0.89) ****		0.79 (0.73-0.85) ****		0.94 (0.85-1.05)
11.T2DM:Yes		0.02 (0.10 0.00)		0.00 (0.00 0.00)		(0.10 0.00)		0.01 (0.00 1.00)
Q2 (8 - 12)	+	0.99 (0.91-1.08)	-	0.95 (0.90-1.01) *	-	0.85 (0.77-0.93) ****	-	1.03 (0.91-1.16)
Q3 (13 - 15)	-	0.87 (0.81-0.95) ****	-	0.88 (0.83-0.93) ****	-	0.90 (0.83-0.98) **		1.05 (0.94-1.17)
Q4 (> 15)	-	0.86 (0.79-0.93) ****		0.86 (0.81-0.90) ****	-	0.82 (0.75-0.89) ****		1.03 (0.92-1.16)
		0.60 (0.79-0.93)		0.00 (0.01-0.90)		0.82 (0.73-0.89)		1.03 (0.92-1.10)
12.Anxiety Disorder:No	-	0.97 (0.90-1.03)		0.89 (0.85-0.94) ****	-	0.82 (0.76-0.88) ****	4	0.98 (0.89-1.07)
Q2 (8 - 12)	-				1 1		-	
Q3 (13 - 15)		0.89 (0.84-0.95) ****		0.84 (0.81-0.88) ****		0.85 (0.80-0.91) ****		1.02 (0.93-1.10)
Q4 (> 15)	-	0.84 (0.79-0.90) ****		0.83 (0.80-0.87) ****	-	0.79 (0.74-0.84) ****		0.97 (0.89-1.05)
12.Anxiety Disorder:Yes								
Q2 (8 - 12)	-	0.87 (0.77-0.99) **	-	0.96 (0.89-1.05)		0.95 (0.84-1.06)		0.94 (0.78-1.13)
Q3 (13 - 15)		0.85 (0.76-0.95) ***	-	0.88 (0.81-0.95) ****		0.85 (0.76-0.94) ***	•	1.00 (0.85-1.18)
Q4 (> 15)	-	0.80 (0.72-0.90) ****		0.89 (0.82-0.96) ***	-	0.83 (0.74-0.92) ****		1.04 (0.88-1.23)
13.Atrial Fibrilation:No								
Q2 (8 - 12)	-	0.95 (0.89-1.00) *	•	0.90 (0.86-0.94) ****		0.85 (0.80-0.91) ****	+	0.97 (0.89-1.06)
Q3 (13 - 15)	-	0.88 (0.83-0.93) ****		0.85 (0.82-0.89) ****		0.85 (0.80-0.89) ****	+	1.01 (0.94-1.09)
Q4 (> 15)	-	0.84 (0.79-0.89) ****	•	0.85 (0.82-0.89) ****	+	0.81 (0.76-0.86) ****	+	0.98 (0.90-1.06)
13.Atrial Fibrilation:Yes								
Q2 (8 - 12)		0.93 (0.72-1.21)		1.08 (0.94-1.25)		0.85 (0.65-1.12)		0.92 (0.60-1.42)
Q3 (13 - 15)		0.94 (0.74-1.19)		0.91 (0.79-1.04)		1.04 (0.82-1.32)	- 	1.00 (0.68-1.46)
Q4 (> 15)	-	0.79 (0.62-1.00) *		0.83 (0.73-0.95) ***	-	0.70 (0.54-0.89) ***		1.10 (0.76-1.58)
	0.4		04 05		0.4 0.5	T	04 05 4 10	- ' '/
	0.1 0.5 1		0.1 0.5 1 1.	2	0.1 0.5 1.1	.Z	0.1 0.5 1 1.2	
	+ HR		HR.	→	+	→	+HR	•
	Better \	Worse	Better W	orse	Better W	/orse	Better Worse	

eFigure 12. Summary of Inverse Probability Of Treatment Weights (IPTW)-Adjusted Cox Proportional Hazards Models Assessing the Effect of PAP Exposure Groups Based on Quartiles of PAP Utilization During First Year on Myocardial Infarction (MI), Heart Failure (HF), Stroke (STROKE) and Coronary Revascularization (REVASC) Within Categories of Relevant Sociodemographic and Clinical Characteristics. PAP exposure groups were defined as follows: level 1 (reference): 1-7 claims; level 2: 8-12 claims; level 3: 13-15 claims; level 4: >15 claims). Results were derived from IPTW-weighted Cox proportional hazards models adjusted for age, sex, race, low-income-subsidy or dual-eligibility indicator, type 2 diabetes, hypertension, obesity, atrial fibrillation, COPD, CKD, hypersomnia, and insomnia, anxiety disorder, hypersomnia, insomnia, CCI, prescriptions of anticoagulants, antihypertensives, antilipidemic agents and blood glucose regulators. Among stratified models, stratification variable was not included as a covariate in propensity © 2024 Mazzotti DR et al. *JAMA Network Open*.

score models nor in outcome models. Reference category is no evidence of PAP initiation. Abbreviations: ACM: all-cause mortality; COPD: chronic obstructive pulmonary disease; CKD: chronic kidney disease; CCI: Charlson comorbidity index; PAP: positive airway pressure; HR: hazard ratio; CI: confidence interval.

eReferences

- 1. Waitman LR, Song X, Walpitage DL, et al. Enhancing PCORnet Clinical Research Network data completeness by integrating multistate insurance claims with electronic health records in a cloud environment aligned with CMS security and privacy requirements. *J Am Med Inform Assoc.* 2021.
- 2. Waitman LR, Aaronson LS, Nadkarni PM, Connolly DW, Campbell JR. The Greater Plains Collaborative: a PCORnet Clinical Research Data Network. *Journal of the American Medical Informatics Association*. 2014;21(4):637-641.
- 3. Keenan BT, Kirchner HL, Veatch OJ, et al. Multisite validation of a simple electronic health record algorithm for identifying diagnosed obstructive sleep apnea. *J Clin Sleep Med.* 2020;16(2):175-183.
- 4. Yadav K, Lewis RJ. Immortal Time Bias in Observational Studies. *Jama*. 2021;325(7).
- 5. Zhou Z, Rahme E, Abrahamowicz M, Pilote L. Survival Bias Associated with Time-to-Treatment Initiation in Drug Effectiveness Evaluation: A Comparison of Methods. *American Journal of Epidemiology*. 2005;162(10):1016-1023.
- 6. Schwab RJ, Badr SM, Epstein LJ, et al. An official American Thoracic Society statement: continuous positive airway pressure adherence tracking systems. The optimal monitoring strategies and outcome measures in adults. *Am J Respir Crit Care Med.* 2013;188(5):613-620.
- 7. Wickwire EM, Bailey MD, Somers VK, et al. CPAP adherence is associated with reduced inpatient utilization among older adult Medicare beneficiaries with pre-existing cardiovascular disease. *Journal of Clinical Sleep Medicine*. 2022;18(1):39-45.
- 8. Scharf MT, Keenan BT, Pack AI, Kuna ST. Mask Refills as a Measure of PAP Adherence. *Journal of Clinical Sleep Medicine*. 2017;13(11):1337-1344.
- 9. Jarosek S. Death Information in the Research Identifiable Medicare Data. 2022; https://resdac.org/articles/death-information-research-identifiable-medicare-data, 2022.
- 10. de Groot V, Beckerman H, Lankhorst GJ, Bouter LM. How to measure comorbidity. a critical review of available methods. *J Clin Epidemiol*. 2003;56(3):221-229.
- 11. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. *J Chronic Dis.* 1987;40(5):373-383.
- 12. Bettega F, Leyrat C, Tamisier R, et al. Application of Inverse-Probability-of-Treatment Weighting to Estimate the Effect of Daytime Sleepiness in Patients with Obstructive Sleep Apnea. *Annals of the American Thoracic Society.* 2022;19(9):1570-1580
- 13. VanderWeele TJ, Ding P. Sensitivity Analysis in Observational Research: Introducing the E-Value. *Annals of Internal Medicine*. 2017;167(4).
- 14. Mathur MB, Ding P, Riddell CA, VanderWeele TJ. Web Site and R Package for Computing E-values. *Epidemiology*. 2018;29(5):e45-e47.