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Abstract: Catfishes, belonging to the order siluriformes, represent one of the largest groups of
freshwater fishes with more than 4000 species and almost 12% of teleostean population. Due to their
worldwide distribution and diversity, catfishes are interesting models for ecologists and evolutionary
biologists. Incidentally, catfish emerged as an excellent animal model for aquaculture research
because of economic importance, availability, disease resistance, adaptability to artificial spawning,
handling, culture, high fecundity, hatchability, hypoxia tolerance and their ability to acclimate to
laboratory conditions. Reproductive system in catfish is orchestrated by complex network of nervous,
endocrine system and environmental factors during gonadal growth as well as recrudescence. Lot
of new information on the molecular mechanism of gonadal development have been obtained over
several decades which are evident from significant number of scientific publications pertaining to
reproductive biology and neuroendocrine research in catfish. This review aims to synthesize key
findings and compile highly relevant aspects on how catfish can offer insight into fundamental
mechanisms of all the areas of reproduction and its neuroendocrine regulation, from gametogenesis
to spawning including seasonal reproductive cycle. In addition, the state-of-knowledge surrounding
gonadal development and neuroendocrine control of gonadal sex differentiation in catfish are
comprehensively summarized in comparison with other fish models.

Keywords: catfish; sex differentiation; gonadal development; gametogenesis; neuroendocrine regulation

1. Introduction

Catfish (order Siluriformes) are diverse groups of ray-finned fish that are mostly
benthic or bottom dwellers [1] and are named so for their prominent barbells that resembles
a cat’s whiskers. They represent one of the largest groups of freshwater fishes. They are
scaleless and are defined by features of the skull, spine in front of their fins and swim
bladder. Catfish have widely been caught and farmed for food, due to high protein content,
for hundreds of years across many continents. In addition, some species are also reared as
ornamental fish or research animals due to more adaptability for artificial spawning and
culture. Several air breathing catfish (family- Clariidae) consisting of about 48 species [2]
together with Heteropneustidae and shark catfish (Pangasiidae) species are widely cultured
in the Asia and the Africa due to relatively higher fecundity, high tolerance to hypoxia,
etc. Some of the other widely cultured species includes channel catfish, Ictalurus punctatus
and blue catfish, I. furcatus. Additionally, genus Kryptopterus contains various small and
transparent catfishes described as glass catfish [3].

Catfishes also undergo a seasonal reproductive cycle characterized by distinct stages
[preparatory, pre-spawning, spawning, post-spawning and resting] in subtropical coun-
tries including India controlled by a hormone regulatory pathway primarily involving
gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), follicular stimulating
hormone (FSH), growth hormone, melatonin, and sex steroid hormones [4,5]. Thereby,
a gonadotropin (GTH) surge usually facilitates spontaneous oocytes maturation, ovula-
tion or spermiation in nature. However, catfish usually do not spawn or spermiates in
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laboratory or culture conditions [6–8]. Apart from these, neuroendocrine factors such as,
neurotransmitters and neuropeptides also play a crucial role in neuroendocrine control of
gonadal development and maturation [9]. Testosterone (T) and 17β-estradiol (E2) exert
a primary role in gonadal development locally, by several positive and negative feedback
actions at the levels of brain and pituitary across endocrine axis [10]. Evidently, spawn-
ing strategies for catfish can be divided into two main categories: natural and artificial
spawning wherein artificial spawning is performed by inducing females to ovulate with
hormones, followed by which eggs are hand-stripped and fertilized in vitro.

As endocrine system regulates gonadal development, growth, and reproduction,
hence, fish endocrinology has been the focus of various studies for basic understanding
of these physiological events and for advances in aquaculture. Over the decades, many
fish species have been used to study various aspects of endocrinology in vivo. Several
genome editing and transgenesis studies have also been done to understand the complex-
ity of endocrine functions and regulation in fish. This review summarizes the present
knowledge and key evidence on catfish being used as research models for studying fish
endocrinology. To begin with, key evidence of neuroendocrine control of gonadal develop-
ment and sex determination/differentiation are discussed followed by understanding of
steroidogenic regulation in catfish. Key findings on how catfish models have been used to
understand gene regulation and function using gene knock out/transient gene knock down
through short interfering RNA (siRNA) are listed. Furthermore, wherever necessary the
research findings from catfish models were compared with other teleostean counterparts
for comprehensive review of literature.

2. Neuroendocrine Regulation-GnRHs

Teleost fish are excellent models to study neuroendocrine control of reproduction.
Fishes synthesize LH and FSH from anterior pituitary under the control of hypothala-
mus GnRHs to regulate early gametogenesis, steroidogenesis and ovulation/spermiation.
Hence, puberty is governed by GnRH and certain gonadal steroids. GnRH release is
controlled by several neurotransmitters and neuropeptides. Multiple forms of GnRH have
been identified and localized in brains of most of the non-mammalian vertebrates, includ-
ing, fish [11–13]. In the African catfish, C. gariepinus, two genomic isoforms of GnRH have
been characterized till date [11] along with two forms of GnRH receptors with varied tissue
distribution but no differences in ligand selectivity [14]. The first teleostean GnRH receptor
was isolated from the African catfish [15]. Since the discovery of GnRH in vertebrates over
three decades, considerable progress has been made towards understanding of the neu-
roendocrine control of gonadal development and reproduction in mammals and fish which
has been reviewed extensively by Zohar et al. [16]. Molecular cloning/characterization
of GnRH2 precursor cDNA and its regulation by ovarian steroids were demonstrated
in the stinging catfish, Heteropneustes fossilis [17]. Furthermore, the stimulatory and in-
hibitory interactions between GnRH- neuropeptides, including neuropeptide Y (NPY)
and GnRH- neurotransmitters, including DA and γ-aminobutyric acid (GABA) has been
reviewed and demonstrated well by Trudeau [10] using goldfish model. The effects of
5-hydroxytryptamine (5-HT), GABA and NPY on in vitro release of GnRH have been well
demonstrated in a perciform fish [18]. In addition to this, the functional significance of
GnRH–kisspeptin (a neuropeptide encoded by the kiss gene, the “gatekeeper” of puberty)
in teleostean reproduction and their associated receptors have been reviewed by Gopurap-
pilly et al. [19] including various catfish models. After identification of kiss2 and GnRH2
in the stinging catfish, H. fossilis, [17,20], a recent study demonstrated that kiss2-GnRH2
signaling is involved in photo-thermal-mediated mechanisms controlling reproduction
in catfish [21]. Evolution of kiss functions in teleost along with the common regulatory
mechanism of hypothalamo-hypophyseal gonadal (HHG) axis has been also reviewed by
Kanda [22]. Taken together, these complex systems stimulate gametogenesis and sexual
behaviors through the activation of HHG axis in teleosts including catfish.
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In addition to HHG axis, endocrine feedback system at thyroid axis also contributes to
homeostasis maintenance, growth, differentiation, and reproduction in teleosts including
catfish [23,24]. Hence, thyroid hormone (TH) also plays a critical role in brain develop-
ment/function. THs are also known to modulate reproductive system during different
developmental stages in fish [25] and several catfish models have been extensively used
over the decades to decode the underlying mechanisms of endocrine control of reproduc-
tion and to identify various markers associated functionally across the endocrine axes.

2.1. GTH Duality

GTH, a glycoprotein hormone, stimulates gonadal maturation and development in
most of the vertebrates. In many teleosts, including salmonids and rainbow trout, two types
of GTHs, GTH-I (FSH- like) and GTH-II (LH- like) have been characterized [26–30] which
are equipotent in stimulating E2 production, hence, stimulating steroid synthesis, although
localized in separate cells. However, in primitive teleosts such as eel [31,32] and cat-
fish [33–35], only a single GTH (GTH-II) has been characterized which is known to regulate
the entire process of gonadal development. The possibilities implicating about the absence
of FSH-like GTH-I in catfish has been attributed by Joy [36]. The African catfish FSH-R re-
sponded clearly to the highly purified African catfish LH when expressed in a mammalian
cell line [37] and the channel catfish FSH-R responded to human chorionic gonadotropin
(hCG) although the response was weaker than when challenged with human FSH [38,39].

Furthermore, GnRH’s role in the stimulation of LH synthesis in catfish has been
reviewed by Schulz et al. [40]. In line with this, it has been reported that the pituitary
gonadotrophs are known to be activated strongly during initiation of spermatogenesis in
the African catfish, Clarias gariepinus [41].

In addition, seasonal cyclicity of GTH-II has been demonstrated in various catfish
species with standardized protocols as well as comparison with nuclear E2 receptor bind-
ing [42,43]. However, since there is no distinction of GTH-I and GTH-II, it is referred as
GTH-II or LH in these catfish species.

2.2. Neurotransmitters, Neuropeptides and GnRH-GTH Axis

Neurotransmitters such as, catecholamines (CA)- dopamine (DA), norepinephrine
(NE), adrenaline (A) and serotonin (or 5-HT) are low molecular weight organic nitrogen
compounds. In terms of synthesis, packaging, release, and degradation, the amine neuro-
transmitters fall somewhere between the properties of other small-molecule neurotransmit-
ters and those of the neuropeptides. Neurotransmitters such as monoamines, amino acids
and peptides are known to involve in the neuroendocrine control of reproduction.

2.2.1. Serotonin

Serotonergic system plays a critical role in orchestrating HHG axis to promote gonadal
growth in vertebrates including fish. Enzyme, tryptophan hydroxylase (tph), is a crucial
rate-limiting enzyme for serotonin synthesis. Selective up regulation of tph expression and
serotonin levels in brain has been shown in XY male tilapia and abolition of such a phe-
nomenon leads to complete sex reversal during early development [44] which was evident
by para-chlorophenylalanine (pCPA) (a tph blocker) treatment [45,46]. Such a phenomenon
was also well demonstrated in catfish with gender differences where in pCPA skewed the
population towards females by initiating ovarian differentiation [47]. A single injection of
pCPA decreased the content and activity of serotonin in Channa punctatus [48]. Similarly,
pCPA reduced hypothalamic serotonin level and impaired GnRH and LH secretion in the
Atlantic croaker [49]. Furthermore, in fish, serotonergic system can be modulated by a va-
riety of chemical substances and environmental factors. For example, diurnal variations
in serotonin content and turnover in response to melatonin have been demonstrated in C.
punctatus [50] and H. fossilis [51,52]. In teleost, serotonin receptors have been identified and
characterized in several species in peripheral as well as gonadal tissues, as reviewed by
Prasad et al. [53]. Furthermore, high hypothalamic monoamine oxidase (MAO) activity
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with a relatively high turnover of serotonin has been observed during recrudescence in
catfish, relating to high temperature and breeding activity [54,55]. In addition, the involve-
ment of serotonin and MAO has been well demonstrated in feedback regulation of E2
in catfish [52,56–58]. The half-life analysis and turnover of MAO (using pargyline) were
conducted to reveal its involvement in E2-modulated feedback regulation of GnRH-GTH
axis [58]. Ovariectomy-induced changes in plasma levels of GTH partly mediated by
MAO activity and E2 feedback action on serotonin metabolism were also observed in
a seasonal-dependent manner [56–58]. The role of serotonin in fish reproduction including
studies in catfish except a few recent reports [59,60] has been extensively reviewed by
Prasad et al. [53].

2.2.2. CAs

CA, an important component of monoaminergic system in the hypothalamus, modu-
lates the levels of GnRH with subsequent release GTHs in teleosts including catfish [57,61,62].
The CAs include L-DOPA, DA and NA, all of which plays decisive roles in various phys-
iological processes to control reproduction. In the African catfish, dopamine acts as an
endogenous inhibitor of GnRH-stimulated GTH release during spermatogenesis and vitel-
logenesis [63,64].

Among the CAs, DA exerts an inhibitory control on GTH while NA stimulates GTH
by regulating GnRH synthesis in teleost [65,66]. Additionally, negative feedback by sex
steroids also involves in activation of inhibitory DA system [10]. In the Indian stinging
catfish, high temperature decreases DA activity and increases NA activity, which is a
stimulatory signal for GTH-II [57]. Mamta and Senthilkumaran [67] demonstrated gfrα-1
plausibly entrains GnRH-GTH either directly or indirectly, by partially targeting CA-
ergic activity. In addition, another study in catfish demonstrated catecholestrogens (CE)
related enzymatic changes in during GnRH analogue-induced ovulation and suggesting E2
modulation of catechol-O-methyltransferase (COMT) activity [68]. Ovariectomy and/or E2
replacement also modulated hypothalamic COMT activity in catfish. In addition, season-
specific changes in hypothalamic COMT demonstrated its involvement in CA/CE mediated
control of GTH [69]. Enzyme tyrosine hydroxylase (th) regulates the levels of GnRH in
brain and GTHs in the pituitary. In H. fossilis brain, th activity and its correlation with
the annual reproductive cycle [70] is well demonstrated and is known to be modulated
by cyclic AMP- protein kinase A and protein kinase C [71]. Furthermore, sex-specific
differential expression of th was observed in early developmental stages in male and
female catfish brain that correlates with CAs [62]. Furthermore, a study in the Indian
catfish demonstrated sexual dimorphism in th-positive neurons in the preoptic area of the
brain [72]. In some air breathing catfish species, coexisting in sub-tropical waters, there is
seasonality in the dominance of the CA during the reproductive cycle wherein DA content
and turnover were found to be high during the resting phase and decreased as breeding
season progressed with a concomitant increase in NE turnover [57] unlike goldfish wherein
the DA inhibitory tone is high. The turnover studies were explicitly performed using
α-MPT to depict content and turnover of CA in catfish. Furthermore, NE was high in pre-
spawning phase and A was high in spawning phase but not in resting phase. In line with
this, administration of a single high dose of GnRH analogue facilitated induced-spawning
and the periovulatory changes of monoaminergic system has been well demonstrated for
the first time in catfish. Furthermore, precise action of CA on GTH- release has been well
studied using specific blockers/precursors in ovariectomized catfish [57,66,69]. Overall,
photoperiod, temperature, and E2-negative feedback act on CA to regulate GTH secretion.

2.2.3. GABA

GABA is an important amino acid neurotransmitter. Studies in teleost, including
goldfish, rainbow trout and catfish, had confirmed the presence of the metabolic enzymes
of GABA in fish brain [73–76]. A pioneering investigation partially characterized the GABA
receptor [77] followed by the demonstration of an uptake system in the brain of channel
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catfish [78]. In teleosts, including the Indian catfish, GABA is known to stimulate GTH-II
release during puberty (independent of the DA system) and its distribution in catfish
forebrain showed seasonal variation which could be altered negatively upon ovariectomy
and restored upon E2 replacement [65,79]. A recent study in catfish demonstrated the
role of laser puncture exposure on gonad maturation by examining GABA release in the
brain [80].

2.2.4. Neuropeptide Y

NPY, a 36 amino-acid neuropeptide, is involved in various physiological and homeo-
static processes including stimulation of appetite. NPY has been indentified and demon-
strated in several fish species including the I. punctatus, C. batrachus and C. gariepinus [81–85].
Increase in NPY during fasting is consistent with results in mammals [86] and fish models,
including channel catfish [87]. Significance of NPY in the regulation of GnRH–LH axis was
demonstrated by Subhedar et al. [88] using C. batrachus, also known as C. magur. Involve-
ment of NPY and NPYY1 receptors was evident in regulation of GnRH–LH complex and
GH cells in catfish pituitary [82,83]. However, all these studies showed localization pattern
of NPY using heterologus antiserum. It is important to use homologous system to delin-
eate the localization pattern precisely. In line with this, Sudhakumari et al. [85] precisely
localized NPY transcript and protein in the preoptic area of the brain in C. gariepinus using
homologous system. In addition, the authors demonstrated higher expression of NPY in
the brain during pre-spawning phase as compared to other reproductive phases. Transient
silencing of NPY-esiRNA (directly into the brain) decreased the expression of tph2, cfGnRH,
th, hsd3b in brain and LH-b/GTH-II in pituitary in addition to several ovary-related tran-
scripts indicating NPY’s role in ovarian development through GnRH-GTH axis. Thus, the
authors established possible interaction of NPY with GnRH-GTH axis.

2.3. Brain Sex Differentiation/Dimorphism

Studies on pubertal development have been conducted in various fish species includ-
ing catfish [35,89,90] suggesting that sex steroids regulate the development of the HHG
axis in teleost. Furthermore, its correlation with testicular function has been reviewed by
Blázquez and Trudeau [91]. Gonadectomy during later stages of gonadal recrudescence
increases LH secretion in several teleost including the African catfish and the Indian catfish
which can be restored by treatment with testosterone/E2 [66,92–95]. Ovarian aromatase,
cyp19a1a, is known to be involved in conversion of androgens to estrogens and is also
known for its role in sex reversal [96]. However, teleost also produce brain aromatase,
encoded by cyp19a1b which synthesize high amounts of neuroestrogens [97] plausibly
along with the action of its related transcription factors such as ftzf1 and foxl2 [98] as seen
in catfish, leading to “Brain sex differentiation”. In teleost, most of the earlier reports
tend to suggest that gonadal sex differentiation drives brain sex differentiation which has
been reviewed extensively by Senthilkumaran et al. [99]. Nevertheless, the influence of
brain serotonergic system on gonadal sex development in catfish is well demonstrated
indicating the existence of “Brain sex differentiation” in teleosts including catfish. However,
yet the brain sex changes are questioned as a “consequence” or “cause” to gonadal sex
determination/differentiation [44,47,89].

Additionally, teleost models including catfish have been used extensively to study
neurotoxicity [100] and neuroendocrine disruption [101]. Neurotoxicity studies are impor-
tant to identify promising neuroprotective agents for example, ascorbic acid for Al-induced
neurotoxicity which was demonstrated using C. gariepinus [102]. In line with this, Mamta
and Senthilkumaran [67] used 1-methyl-1,2,3,6-tetrahydropyridine (MPTP), to demonstrate
the interaction of GDNF and DA-ergic system in catfish brain. In addition, controlled
release of sex steroids using osmotic pump altered brain GnRH1 and CA-ergic system
dimorphically in the African catfish providing insights into the reproductive toxicity of sex
steroid analogues during gonadal recrudescence [103]. The schematic representation on
neuroendocrine control of reproduction in catfish has been depicted in the Figure 1.
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Figure 1. Schematic representation of neuroendocrine control of reproduction in catfish.

3. Gonad genesis

Gonad, in most fish species including catfishes, has bipotential fates to form ovary
or testis depending upon a sex determination/differentiation cue [96,104,105] and vari-
ous factors after which gonadal differentiation and further development of gonad takes
place. Some hermaphrodite fishes can change their sex uni-directionally or bi-directionally
during their life cycle, however, catfishes show gonochoristic pattern. Sex differentiation
in fish is characterized by differential expression of related genes [106–109]. However,
environmental cues, such as, temperature also plays a crucial role in sex differentiation in
a few fish species including C. gariepinus [110] and I. punctatus [111]. Environmental sex
determination in fish has been reviewed by Baroiller et al. [112].

3.1. Sex Determination/Differentiation, Gonadal Development and Growth

In mammals, the discovery of sex determining region Y, SRY gene, demonstrated its
crucial role in testicular development [113,114]. However, the same has not been identified
in fish except for a study involving identification of Y-chromosome specific molecular mark-
ers in a cyprinid fish using sry-specific PCR primers [115]. In fish, dmy or dmrt1b (duplicate
copy of dmrt1) was found to be master sex determination gene, which was identified in
the Japanese medaka, Oryzias latipes [116,117] as well as in O. curvinotus [118]. Following
which, dmrt1 have also been identified as testis-related gene in Cynoglossus semilaevis [119]
and with multiple forms in catfish [120]. Thereafter, several studies were performed in
various fish species including catfish to indentify crucial sex determination/differentiation
genes [121] wherein several candidate genes for sex determination/differentiation were
elucidated, for example, amhy in the Nile tilapia, Oreochromisniloticus [122], the Patagonian
pejerrey, Odontesthes hatcheri [123] and O. bonariensis [124]; amhr2 in Takifugu rubripes [125];
sdY in the rainbow trout, Oncorhynchus mykiss [126]; gsdf and sox3 in O. luzonensis and
O. dancena [127,128]. The cellular, molecular and physiological aspects of sex determina-
tion/differentiation in teleost have been reviewed by Sandra and Norma [129]. Further-
more, epigenetic characterization of sex chromosones were examined in two species of
bullhead catfish (Amblycipitidae), Liobagrus marginatus and L. styani [130]. The genetic
and epigenetic processes involved in regulation of sex-change in fish have been well re-
viewed by Ortega-Recalde et al. [131]. Additionally, sex determination/differentiation
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and feminization in the Southern catfish, S. meridionalis [132] and the channel catfish, I.
punctatus [133] has been reviewed wherein gdsf and cxcl12 plausibly initiated testicular
differentiation as demonstrated in channel catfish. The genetic basis of sex determina-
tion/differentiation in fishes has been reviewed by Nagahama [134]. Several genes involved
in sex determination/differentiation, such as dmrt1, sox9, foxl2, bcar1 [135], and cyp19 in
catfish have been also identified. In addition to this, another study in catfish revealed
the role of ckit in germ cell proliferation, development, and maturation during gonadal
recrudescence [136]. Dimorphic expression of various transcription factors and steroido-
genic enzyme genes has been demonstrated by Raghuveer et al. [47] during critical period
of gonadal differentiation in catfish. Detailed analysis of various genes involved in sex
differentiation in catfish has been reviewed [137].

3.2. Gonadal Recrudescence and Sex Reversal

Most of the fishes exhibit seasonal cycle in reproduction in the subtropical and tropical
countries. The release of gametes from the body into the surrounding water is called
spawning in fish. Some fishes are daily breeders (such as zebrafish) and some spawn
during a specific season/period (seasonal/annual breeders like catfish) due to several envi-
ronmental cues. During the breeding season of the species, the gonads attain full maturity
followed by spawning. Gonadal recrudescence occurs after spawning subsequently to
entrain seasonal/reproductive cycle. The breeding season and hence the spawning period
is extremely variable among the bony fishes. Some seasonal breeders spawn only once
(catfish), others twice (common carp), while still others may spawn several times during a
year. Catfishes, generally, spawn annually during monsoon in the subtropical countries.
Additionally, bony fishes can reverse their sex according to various environmental/social
cues during their lifetime [96,138,139], however, it varies from species to species. Concepts
and mechanisms involving sexual plasticity and gametogenesis in fishes including cat-
fish has been covered extensively in “Sexual Plasticity and Gametogenesis in Fishes” by
Senthilkumaran [140] and co-authors. Despite these, clear information about gonadal dif-
ferentiation in sex-changing fishes remains limited. In catfish, female-to-male sex reversal
has been achieved by fadrozole (aromatase inhibitor) and tamoxifen (estrogen receptor
antagonist) treatment [141–143] as well as with pulsatile treatment of methyltestosterone
(MT) and ethynyl estradiol (EE2), as demonstrated by Raghuveer and Senthilkumaran [120].
Furthermore, functional feminization of the channel catfish, I. punctatus, was demonstrated
through treatment of estrogen diet [142,143]. Hence, estrogens, in teleost, are responsible
for ovarian differentiation and feminization although the detailed mechanism involved
remains elusive. However, potential androgens like 11-ketotestosterone (11-KT), MT and
even non-aromatizable androgen [144] also produced female dominant populations in
blue catfish and channel catfishes suggesting that no hormonal treatment could direct
masculine sex determination [143,145]. Incidentally, treatment of MT occasionally resulted
in intersex in catfish [120]. Hormonal induction of sex-reversal in fish including catfish has
been extensively reviewed by Pandian and Kirankumar [146].

4. Gamete Maturation

Gonadal maturation is a critical event wherein gonads undergo cyclic morphological
and physiological changes to produce functional gametes during the spawning phase with
the help of several gene/factors and hormones. Artificial induction is used to advance the
maturation of gonad in seasonal breeders (like catfish and eel) during the off-breeding sea-
son. This was first time demonstrated by Miura et al. [147] using the Japanese eel wherein,
hCG injection could induce spermatogenesis. As hCG shares the same receptor as LH, stud-
ies were carried out to use hCG or ovaprim to advance gonadal development/maturation
in teleost instead of GnRH analogues [148–150]. All these techniques have been adopted
from the first discovery of ‘LinPe’ technique for induced breeding in fishes. This has been
well established in several catfish [62,151]. In fact, controlled release of hCG via osmotic
pump resulted in off-season breeding in catfish [150].
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4.1. Final Oocyte Maturation

Final oocyte maturation (FOM), in fish, is promoted by the maturation inducing
steroid, 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DP) which is produced in ovarian
granulosa cells by hsb20b, a key enzyme that initiates maturational events [152]. Further-
more, in teleost, shift in steroidogenesis from E2 to 17α, 20β-DP seems to be a crucial step
during oocyte maturation [153,154]. Eventually, promoter motif analysis of hsb20b in catfish
and rainbow trout demonstrated that hsb20b type B of rainbow trout had no promoter
activity while hsb20b type A of rainbow trout and catfish hsb20b promoters showed basal
promoter activity, wherein, cAMP responsive elements were the key regulators along
with crebs [155] which was also indentified in the promoter motif of cyp19a1a [156,157].
Additionally, cyp19a1a expression is also crucial to understand the molecular mechanisms
that precede ovarian differentiation/development. In vertebrates including teleost, foxl2 is
one of the earliest markers of ovarian differentiation. In addition, ad4bp/sf-1, foxl2 and ftz-f1
regulated cyp19a1a/b expression directly or indirectly in various fish species including cat-
fish [97,156,158–163]. Furthermore, cAMP regulated hsb20b up-regulation in catfish [155].
A single form of creb was identified and characterized in C. gariepinus during FOM unlike
multiple forms in the Nile tilapia, O. niloticus [164]. In this line, studies in common carp,
suggested plausible roles for ptx and thoc3 in ovarian growth, maturation/recrudescence
upon functional analysis [165,166]. However, such an observation is yet to be investigated
in any catfish species. Transcriptional interaction of Pax2 on wnt5 also attributed to ovarian
development in catfish explicitly [167] indicating multiple regulatory factors involved in
gonadal function. Another report compared oocyte maturation of teleost with mammals to
explicitly describe the phenomenon [168]. In fact, several of these studies in catfish were
well complemented with enzyme activity assays to substantiate gene expression analysis
authenticating downstream action [169].

Variety of hormones/metabolites/neurotransmitters showed oocytes maturation ef-
fects in addition to maturation-inducing hormone (MIH) in catfish species. This included
cortisol, vasotocin (VT), CEs and CAs [61,170–178]. Both GTH and ovarian steroids
modulate VT levels in catfish to influence follicular growth, ovulation, and spawning
[174,175,179]. Incidentally, serotonin also induces oocyte maturation in fish and mol-
lusks [180–185] which is yet to be explored in any catfish species. Despite these findings,
MIH remains to be 17α,20β-DP in catfish too like some teleosts [176]. Catfish do not
spawn in captivity without induction that may perhaps explain presence of various oocyte
maturation inducing agents in vivo.

4.2. Sperm Maturation

In the African catfish, testicular development includes four stages that are distin-
guished by the presence of spermatogonia alone; spermatogonia and spermatocytes; sper-
matogonia, spermatocytes and spermatids; and finally, all germ cell stages, including
spermatozoa [35,89]. In fish, GTHs show prominent steroidogenic potency at the onset of
spermatogenesis and during rapid testicular growth and thier receptors have been localized
in testicular tissue, also in the milt of channel catfish and in the seminal vesicles of the
African catfish [37–39]. Maturation-inducing steroids such as 17α,20β-DP have been impli-
cated in sperm maturation of teleosts to some extent including catfish [140,186]. Moreover,
steroids T and 11-KT (a potent androgen in fishes) are responsible for sperm maturation
and testicular development [186]. As described in the previous section, dmrt1 along with
other factors are known to be the molecular players in testicular differentiation and gamete
maturation. In addition, several findings suggested that wt1, ad4bp/sf-1, nr2c1, gata4, sox3,
sox9, sycp3 and pfpdz1 have a potential role in the testicular development, maintenance,
and recrudescence in catfish by favoring spermatogenesis [187–191]. However, studies on
transcriptional networks between nr2c1 and other factors are necessary to demonstrate
their interaction during testicular development and spermatogenesis.
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5. Steroidogenic Enzyme Gene Regulation, Transcription Factors and Co-Modulators

Several genes/factors have been identified in teleost implicating their crucial roles
in gametogenesis and gonadal steroidogenesis and most of which are regulated directly/
indirectly by pituitary GTHs [137]. Steroidogenesis starts with rate-limiting transport of
cholesterol into mitochondria [192] mediated by steroidogenic acute regulatory protein
(StAR). StAR gene has been identified and characterized in teleosts, including rainbow
trout, the African catfish and medaka [193–195]. Enzyme, cyp11a1, is involved in the
conversion of cholesterol to pregnenolone, which thereby initiates the whole process of
steroidogenesis including production of active steroids like 17α,20β-DP, T, 11-KT and
E2 [168,196] via action of several steroidogenic enzymes genes which have been well
identified and characterized in many teleost including catfish together with their associated
transcription factors as evident from promoter motif analysis of the steroidogenic enzymes
which has been reviewed in detail by Rajakumar and Senthilkumaran [169].

In addition to these, over a decade, next generation sequencing (NGS) techniques
has been widely utilized for the identification of sex-related candidate genes and genetic
markers using catfish models including red tail catfish [197]; the Hong Kong catfish [198];
amur catfish [199]; channel catfish [200,201]; yellow catfish [202–205] and the Indian and the
African catfish [unpublished data] by investigating gonadal transcriptomes. These studies
have provided a valuable genomic resource for further investigating the genetic basis of sex
determination/differentiation and would aid in understanding more about sex-controlled
breeding in catfish with a scope to extend this information to other teleost species.

6. Gene Knockout/Knockdown/siRNA Based Transient Gene Silencing

In the last few decades, there have been major advances in the field of gene/protein
expression analysis to delineate their function in the organism. Many of the expression
analysis techniques have been standardized in teleost including quantitative PCR, western
blot, northern blotting, reporter assays, and high-throughput techniques like RNAseq and
microarrays together with localization techniques such as in situ hybridization for mRNA
and, immunohistochemisty/cytochemistry and immunofluroscence for protein.

However, in recent years, the field of reverse genetics has been evolving widely with
the development of novel genome editing technologies, such as RNA interference (RNAi),
zinc finger nucleases (ZFN) and plasmids, morpholinos, TALEN and CRISPR/Cas9 for
functional analysis including targeted gene knockdown and knockout in various species
including zebrafish, tilapia, and catfish [206–218]. Morpholinos, on the other hand, provide
better specificity than RNAi (siRNA/shRNA/esiRNA) by decreasing the possibility of
catastrophic off-target antisense effects [219], and has been widely used for studies in ze-
brafish and goldfish [217,218]. However, use of these technologies in catfish model has not
been explored due to year long duration for development to maturation. Nevertheless, fu-
ture studies need to be performed on this line to obtain novel information. In many animal
models including catfish, RNA knockdown can be achieved more feasibly using siRNA,
shRNA or esiRNA. In this line, in vivo and in vitro transient gene silencing using PEI me-
diated siRNA/shRNA/esiRNA has been standardized and well established at tissue and
cellular levels in gonads and brain as well as at animal level in our laboratory using various
fish models including catfish [67,85,136,165,188,220,221] to functionally characterize many
important factors related to teleostean reproduction. In addition, Senthilkumaran [168]
compared mammalian and piscine oocyte maturation with a note on sperm maturation
citing the involvement of hsd20b vis-à-vis 17α,20β-DP in addition to T and 11-KT [140,222].
In line with these, more detailed knock-down analysis can be performed. Orchestration of
various genes during different stages of gametogenesis/gonadogenesis of catfish has been
schematically represented in the Figure 2.
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7. Future Perspectives

Sex determining genes are the master switches controlling sex determination/
differentiation in vertebrates including fishes. Catfishes have been used for decades now,
to identify and characterize crucial genes and factors in reproduction and neuro-endocrine
control of reproduction. Important findings from such studies have been summarized in
the Table 1.

However, up to now, Sry and dmy have been the only sex-determining genes isolated
in mammals and medaka [114,116], but neither Sry nor dmy homolog, other than dmrt1
as testis-specific gene in autosomes, has ever been isolated in any other fish species, in-
cluding catfish. However, Y-chromosome specific molecular markers have been identified
using sry-specific PCR primers in cyprinid fish, Puntius conchonius [115]. Experimental
evidence demonstrating amh function and other candidate genes in sex determination is
less explored in catfish. Additionally, in the studies involving identification and charac-
terization of steroidogenic enzyme genes using fish models, most of the time data stops
at gene expression analysis through quantitative PCR. However, studies, from our lab-
oratory, on localization, enzymatic assays and protein quantification indicated a robust
way of analyzing the enzyme genes not only to distinguish tissue level activities but also
seasonally [169]. As most of the catfish species do not spawn naturally under laboratory
conditions, studies comparing GTH-induced models together with the use of advanced
NGS techniques might leads to discovery/identification of crucial players in spawning
and might provide new insights to understand its molecular mechanisms. This makes the
use of seasonally breeding catfish unique and advantageous for such studies. Moreover,
identification and characterization of novel sex determination related genes which are
crucial to understand the masculinization/feminization mechanisms will help and promote
aquaculture immensely across teleost including catfish.
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Table 1. Studies in catfish species: Identification of crucial genes/factors in reproduction and its neuroendocrine regulation.

Catfish Species Nature of Study Markers (Genes/Factors/Hormones) Studied Highlights References

C. magur (C.
batrachus)

Neuroendocrine
regulation

th Female specific high expression of th in brain during early development. [62]

th Sexual dimorphism in the hypophysiotropic th-positive neurons in the
preoptic area associated with LH cells. [72]

Neuroendocrine-
reproductive

axis

GTH-II
Development of a heterologous radioimmunoassay for GTH-II and

indication of a dynamic positive/negative feedback relationship between
gonadal steroids and GTH-II.

[42]

MAO Estimation of MAO activity in gonads during different reproductive phases
with a sudden decline after spawning. [54]

COMT Changes in ovarian OE2,OE-2-H and COMT depicts stimulation of CE
synthesis and degradation during GnRH-induced ovulation. [68]

NPY NPY receptors are involved in the secretogogue effects of NPY on LH and
GH cells in the pituitary similar to mammalian Y1 receptors. [82]

Promoter motif
analysis sox3, hsd11b Sox3 binds to hsd11b promoter and transactivates to regulate male

reproduction. [191]

Reproductive
endocrinology

cyp11a1
Exposure of MT and EE2 during testicular development showed lower

cyp11a1 levels in the testis and brain indicating a certain feedback
intervention.

[196]

nr2c1 Expression during pre-spawning phase and localization of nr2c1 transcripts
in sperm/spermatids. [187]

Transient gene
silencing wt1, ad4bp/sf-1, gata4

Transient silencing of wt1-esiRNA downregulated ad4bp/sf-1 and gata4
expression, along with steroidogenic enzyme genes related to androgen

production.
[188]

Transient gene
silencing, promoter

motif analysis
pax2, wnt4, wnt5

Synchronous expression of pax2 and wnt5 during the ovarian development
and recrudescence. pax2 siRNA treatment reduced the expression of

ovarian development like signaling molecules– wnt4/5. Transcriptional
interaction of Pax2 on wnt5.

[167,220]
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Table 1. Cont.

Catfish Species Nature of Study Markers (Genes/Factors/Hormones) Studied Highlights References

C. gariepinus

Neuroendocrine
regulation

GTH Purification of GTH, development and validation of a homologous
radioimmunoassay for GTH. [6]

cGnRH-II, cfGnRH, cGnRH-II is the more potent GTH-II secretagogue than cfGnRH. [11]

cfGnRH-R1, cfGnRH-R2 cfGnRH-R1 showed higher affinity than cfGnRH-R2 for cGnRH-II, cfGnRH. [14]

DA, GnRH, GTH, LH-RHa DA inhibited GnRH- induced GTH release. [64,92]

tph, 5-HT Male specific expression of tph in preoptic area of hypothalamus during
early development. [47]

gfrα-1
Transient silencing of gfrα-1-siRNA downregulated brain specific genes

and MPTP exposure indicated an interaction between GFRα-1 and
DA-ergic system.

[67]

Promoter motif
analysis

cyp19a1b, ftz-f1, foxl2 Synchronous expression of cyp19a1b, ftz-f1 and foxl2 in the brain with high
ftz-f1 and foxl2 expressionin the female brain. [98]

CRE, cAMP, hsd20b Identification of CRE in hsd20b promoter and its modulation by cAMP
implicating its role in FOM. [155]

Reproductive
endocrinology

dmrt1a, dmrt1b, dmrt1c, MT Identification of multiple dmrt1s as testis-specific markers upon MT
treatment. [120]

StAR Elevation of StAR during hCG-induced oocyte maturation, in vitro and
in vivo. [194]

Neuroendocrine-
reproductive

axis

cGnRH-II, GTH-II, cfGnRH Increase in 11-KT after cGnRH-II and cfGnRH treatment in 24 and 39
week-old fish respectively. [90]

GTH

Castration resulted in increased plasma GTH levels, decreased GTH
content in pituitary. T and androstenedione (aromatizable androgens)

could abolish the castration-induced increase in plasma GTH and restored
pituitary GTH content, however, non-aromatizable androgens could not.

[93]

CAs, GnRH-I, E2, MT, 11-KT
Controlled release of sex steroids modulates GnRH and CAs activity

dimorphically. Brain-related transcripts were elevated after estrogenization
as compared to androgenization.

[103]

cyp19a1a, cyp19a1b
cyp19a1a plays critical role during ovarian differentiation and

demonstration of female specific expression of brain cyp19a1b during
ontogeny.

[158]
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Table 1. Cont.

Catfish Species Nature of Study Markers (Genes/Factors/Hormones) Studied Highlights References

Transient gene
silencing

NPY
Significant decrease in expression of ovary-related transcripts after

NPY-esiRNA transient gene silencing indicating a role of NPY in ovary
through cfGnRH-GTH axis.

[85]

c-kit, 11-KT, T Decrease in 11-KT and T levels upon c-kit esiRNA silencing. [136]

sycp3 sycp3 -esiRNA transient gene silencing affected the expression level of
various testis-related genes. [189]

H. fossilis Neuroendocrine
regulation

GTH, DA, 5-HT, NE, CE, COMT Preovulatory decrease in DA content with rise in 5-HT and NE levels. [8]

hfGnRH2, kiss2 Characterization of brain kiss2 and hfGnRH2. Kiss2-GnRH2 signaling is
involved in photo-thermal-mediated mechanisms controlling reproduction. [17,20,21]

GTH, DA, NE, A

5-HT, NE and A are stimulatory to GTH secretion. Hypothalamic 5-HT
content and turnover were inhibited after pCPA and melatonin treatment
but the content and turnover of CAs were not. However, α-MPT treatment

decreased the content and turnover of DA, NE, and A.

[52]

E2, GTH, MAO Half-life analysis and turnover study of hypothalamic MAO. E2 exerts
feedback regulation of GTH. [58]

DA, NE, A, VT Physiological changes in VT is differentially regulated by CAs wherein DA
inhibits and NE/A stimulates vasotocin (VT). [61]

GTH-II Ovariectomy-induced rise in GTH-II was regulated by activation of
hypothalamic serotonergic and suppression of dopaminergic mechanisms. [66]

th, E2, pKA, pKC, cAMP
E2 modulated the short-term activation of brain th activity differentially

and th activity could be positively correlated with the annual reproductive
cycle.

[70,71]

GABA, GTH-II, E2
GABA regulates GTH-II secretion even when dopamine receptor function

is inhibited. [79]
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Table 1. Cont.

Catfish Species Nature of Study Markers (Genes/Factors/Hormones) Studied Highlights References

Neuroendocrine-
reproductive

axis

GTH, E2, NE(2)R
High NE(2)R levels in pituitary, followed by hypothalamus and

telencephalon in all the seasons. Ovariectomy exerted a strong negative
feedback on GTH secretion in the prespawning phase.

[43]

5-HT, MAO
Day-night variations of 5-HT and MAO are photoperiod-dependent and

are controlled during the gonadal preparatory phase of the annual
reproductive cycle.

[51]

5-HT, MAO High hypothalamic activities of 5-HT and MAO during recrudescence and
day-night variations during the early and mid-preparatory phase. [55]

E2, 5-HT, MAO E2 modulates MAO activity and alters hypothalamic 5-HT in seasonally
dependent manner. [56]

DA, NE, A, E2 E2-negative feedback acts on CA to modulate GTH secretion. [57]

COMT, E2

COMT content increased with progress of ovarian recrudescence in all the
brain regions and declined after spawning. Mammalian GnRH analogue

injection increased ovarian OE-2-H at 8 h and restored to control level after
egg-stripping at 16 h whereas ovarian OE2 and COMT activity was

significantly decreased at 8 h.

[68,69]

VT, isotocin, E2, T, progesterone, hCG, PGF2α,
PGE2

Immunocytochemical distribution of VT. Steroid hormones and hCG
modulated brain and ovarian VT dynamics. Like hCG, VT had differential
effects on ovarian steroidogenesis. VT induced FOM/ovulation through

the VT receptors and activation of VT secretion and ovarian recrudescence
by long photoperiod and high temperature.

[172–177]

DA, NE, A, propranolol NE modulated FOM through β-adrenergic mechanism, implicating a
neural control of oocyte maturation/ovulation [178]

Reproductive
endocrinology E2, T, cortisol T acted as a precursor for estrogen synthesis and cortisol enhanced

estrogen-induced vitellogenin synthesis. [171]
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Table 1. Cont.

Catfish Species Nature of Study Markers (Genes/Factors/Hormones) Studied Highlights References

I. punctatus

Gene-editing LH LH gene editing and sterilization using ZFN technology [216]

Neuroendocrine-
reproductive

axis
ccLHR, ccFSHR

Characterization of ccLHR and ccFSHR. LH, a key regulator of
periovulatory maturational events, and seasonal changes in ovarian

expression of the ccFSHR (peaked at the onset of ovarian recrudescence
and decreased prior to spawning).

[38,39]

NGS

amh, dmrt1, dmrta2, dmrt3a,among others Identification of male-biased genes. [200]

gsdf, cxcl12, nanog, pou5f1,among others Identification of male-preferential genes, such as gsdf, cxcl12, as well as
other cytokines mediating the development of the gonad into a testis. [201]

C. punctatus
Neuroendocrine-

reproductive
axis

5-HT pCPA injection decreased both the content and activity of 5-HT. [48]

5-HT, DA, NE
Melatonin administration caused diurnal variations in 5-HT content and
turnover with no effect to indole treatment. Melatonin caused significant

reduction of NE with no affect on DA.
[50]

P. fulvidraco

Gene
editing-CRISPR/Cas9 pfpdz1

Male-specific expression during sex differentiation. Overexpression of
pfpdz1 using additive transgenesis initiated testicular differentiation

whereas targeted inactivation of pfpdz1 using CRISPR/Cas9 triggered
ovarian differentiation.

[190]

NGS

hsd20b, sox9a, spags, fgfbp2, dmrt1, cyp17a, igfbpii,
among others Identification of sex-related genes. [204]

dmrt1, sox9a/b, cyp19b, wt1, amh, dax1, sf1, vasa,
nanos, among others Identification of candidate genes for sex determination/differentiation. [205]

A. seemanni Neuroendocrine
regulation 5-HT, th Localization of 5-HT positive neurons in the pineal stalk. [59]

S. nigriventris Neuroendocrine
regulation 5-HT, th th1-expressing dopamine cells (unlike th2-expressing ones) do not

co-localize with 5-HT. [59]

M. cavasius Neuroendocrine
regulation 5-HT Melatonin inhibited reproductive activity through modulation of

serotonergic activity. [60]

M. wyckioides NGS amhr2, gnrh, gnrhr, cyp19a, igf1, igf2, taar, pcdh16,
gcnt3, among others

Identification of 19 differentially expressed genes in the pituitary,
annotated to 32 signaling pathways related to gonad development. [197]

C. fuscus NGS cyp17a1, cyp11c1, hsd3b1, hsd17b1, hsd17b2, tgfβ2,
tgfβ3,among others Identification of sex-related genes. [198]

S. asotus NGS amh, dmrt1, fgfrl1a, wnt5a, tab3, lmnl3, among others Identification and sex-specific expression of candidate genes. [199]
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Abbreviations

MPTP 1-methyl-1,2,3,6-tetrahydropyridine
11-KT 11-ketotestosterone
17α,20β-DP 17α,20β-dihydroxy-4-pregnen-3-one
E2 17β-estradiol
5-HT 5-hydroxytryptamine
A adrenaline
CA catecholamine
COMT catechol-O-methyltransferase
CE catecholestrogens
DA dopamine
EE2 ethynyl estradiol
FOM final oocyte maturation
FSH follicular stimulating hormone
GABA γ-aminobutyric acid
GTH gonadotropin
GnRH gonadotropin-releasing hormone
hCG human chorionic gonadotropin
HHG hypothalamo-hypophyseal-gonadal
LH luteinizing hormone
MT methyltestosterone
MIH maturation-inducing hormone
MAO monoamine oxidase
NPY neuropeptide Y
NGS next generation sequencing
NE norepinephrine
pCPA para-chlorophenylalanine
RNAi RNA interference
StAR steroidogenic acute regulatory protein
siRNA short interfering RNA
T testosterone
TH thyroid hormone
tph tryptophan hydroxylase
th tyrosine hydroxylase
VT vasotocin
ZFN zinc finger nucleases
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