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Abstract

Background: Capping protein (CP), also known as CapZ in muscle cells and Cap32/34 in Dictyostelium discoideum,
plays a major role in regulating actin filament dynamics. CP is a ubiquitously expressed heterodimer comprising an
α- and β-subunit. It tightly binds to the fast growing end of actin filaments, thereby functioning as a “cap” by
blocking the addition and loss of actin subunits. Vertebrates contain two somatic variants of CP, one being
primarily found at the cell periphery of non-muscle tissues while the other is mainly localized at the Z-discs of
skeletal muscles.

Results: To elucidate structural and functional differences between cytoplasmic and sarcomercic CP variants, we
have solved the atomic structure of Cap32/34 (32 = β- and 34 = α-subunit) from the cellular slime mold
Dictyostelium at 2.2 Å resolution and compared it to that of chicken muscle CapZ. The two homologs display a
similar overall arrangement including the attached α-subunit C-terminus (α-tentacle) and the flexible β-tentacle.
Nevertheless, the structures exhibit marked differences suggesting considerable structural flexibility within the
α-subunit. In the α-subunit we observed a bending motion of the β-sheet region located opposite to the position
of the C-terminal β-tentacle towards the antiparallel helices that interconnect the heterodimer. Recently, a two
domain twisting attributed mainly to the β-subunit has been reported. At the hinge of these two domains Cap32/
34 contains an elongated and highly flexible loop, which has been reported to be important for the interaction of
cytoplasmic CP with actin and might contribute to the more dynamic actin-binding of cytoplasmic compared to
sarcomeric CP (CapZ).

Conclusions: The structure of Cap32/34 from Dictyostelium discoideum allowed a detailed analysis and comparison
between the cytoplasmic and sarcomeric variants of CP. Significant structural flexibility could particularly be found
within the α-subunit, a loop region in the β-subunit, and the surface of the α-globule where the amino acid
differences between the cytoplasmic and sarcomeric mammalian CP are located. Hence, the crystal structure of
Cap32/34 raises the possibility of different binding behaviours of the CP variants toward the barbed end of actin
filaments, a feature, which might have arisen from adaptation to different environments.

Keywords: Capping protein, Actin-binding, Dictyostelium discoideum, Structural flexibility, Cap32/34, CapZ
* Correspondence: mako@nmr.mpibpc.mpg.de
Abteilung NMR basierte Strukturbiologie, Max-Planck-Institut für
Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany

© 2012 Eckert et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:mako@nmr.mpibpc.mpg.de
http://creativecommons.org/licenses/by/2.0


Eckert et al. BMC Structural Biology 2012, 12:12 Page 2 of 15
http://www.biomedcentral.com/1472-6807/12/12
Background
Actin is a key component in all eukaryotic cells and plays
an essential role in a wide range of cellular processes,
such as migration, endocytosis, cytokinesis and gener-
ation of contraction [1-4]. Actin monomers (G-actin) are
able to polymerize into filamentous actin (F-actin) result-
ing in polar helical structures [5]. The two ends of the
filament exhibit distinct biochemical properties and are
differentiated as “barbed” and “pointed”, so named after
the arrowhead appearance when filaments are decorated
with myosin S1 [6]. Filament barbed ends dominate the
dynamics of filament assembly due to higher association
and dissociation rates for actin monomers compared to
the pointed ends [3,7,8]. Furthermore, since the filament
barbed end is preferred for actin monomer addition,
whereas net disassembly is favoured at its counterpart, it
is being referred to as the fast growing end (pointed
end = slow growing end).
In living cells the actin cytoskeleton is in a state of

rapid dynamics. Remodelling of the actin cytoskeleton is
crucial in terms of inducing changes in cell shape, motil-
ity and adhesion and requires strict regulation, both
temporally and spatially, thus enabling the cell to func-
tion in a controlled manner [4,9]. This is achieved by a
vast number of specialized proteins that bind to actin,
thereby modulating actin filament organization and
turnover in response to the changing needs of the cell
[10,11]. Actin-binding proteins are able to fulfil a large
variety of tasks including the control of actin assembly
and disassembly as well as regulating filament branching
and bundling to help arrange actin filaments into higher
order structures [12]. They can be categorized into pro-
teins which bind to actin monomers, filamentous actin
or both [10]. While actin monomer binding proteins
control the amount and availability of monomers for
polymerization, proteins that bind filamentous actin are
involved, among others, in barbed and pointed end cap-
ping, filament severing, and filament crosslinking.
Capping protein (CP) is an F-actin binding protein and

blocks actin filament elongation and turnover by pre-
venting the addition of new monomers at the fast grow-
ing end [11]. Binding of CP to actin filaments occurs
with high affinity (Kd < 1 nM) and 1:1 stoichiometry.
Two major variants of CP have been determined: a cyto-
plasmic form that is also termed Cap32/34 (32 = β- and
34 = α-subunit; [13]) and an isoform found in the Z-discs
of skeletal muscles that is often called CapZ [14,15].
CP is a heterodimeric protein composed of an α- and a
β-subunit, both having molecular masses in the range of
30–36 kDa. The protein is expressed in all eukaryotic
organisms and the subunits exhibit high sequence simi-
larity across the eukaryotic tree of life [11].
Vertebrates usually express three conserved isoforms

of each of the α- and β-subunit [16-18] as opposed to
invertebrates, plants, and lower eukaryotes, which in
general contain single isoforms of each subunit. The ver-
tebrate α-subunit isoforms are encoded by different
genes [19], whereas the β-subunits arise by alternative
splicing from a single gene [16,17]. One isoform of both
the α- and β-subunits is specifically expressed in germ
cells (α3, β3), while the remaining ones (α1, α2 and β1,
β2) are somatically expressed at varying ratios in differ-
ent cell types and tissues [19]. β1 is the predominant iso-
form in muscle cells. In contrast, β2 is mainly expressed
in non-muscle tissues [17]. The β isoforms are not able
to rescue each others’ function and are thus believed to
fulfil different biochemical and cellular tasks [20]. On
the other hand, there is little indication of specific func-
tions for the α isoforms [11].
Vertebrates contain two somatic variants of CP. The

sarcomeric variant, which is being referred to as CapZ
throughout this manuscript, includes the β1 isoform and
is positioned at the Z-discs of striated muscles [14]. CapZ
is proposed to help attaching actin filament barbed ends
to the Z-discs and to prevent the thin filaments from
growing into the adjacent sarcomere, thus serving as a
key element in thin filament assembly and regulation
within the Z-disc [11]. By contrast, the cytoplasmic vari-
ant, which comprises the β2 isoform, is found at the con-
tact sites of actin with membranes [21], where it is
believed to play an essential role in the dendritic nucle-
ation model [22]. In this model activation of the Arp2/3
complex results in a branched network of actin filaments
thereby generating new barbed ends, which are primarily
oriented towards the cell membrane. As actin subunits
are added to the newly created filament ends the mem-
brane is pushed forward [12]. By capping these ends over
time, the growing filaments are kept short and branched,
which stabilizes the filament network and sustains the
propulsive force for leading edge elongation of migrating
cells [1]. In addition, actin assembly is restricted to the
new barbed ends near the plasma membrane [23], thus
enabling rapid and directed extension of the cell front.
Several molecules are able to modulate the barbed end

capping activity of CP by either binding directly to the
protein or through association with filament barbed ends
and thereby inhibiting CP from binding. Polyphosphoino-
sitides (PPIs), such as phosphatidylinositol-4,5-bispho-
sphate (PIP2) [24-26] and the proteins CARMIL [27] and
V-1 [28] were found to directly associate with CP and to
inhibit its capping activity. The crystal structures of CapZ
(chicken α1/β1) in complex with CARMIL and V-1, re-
spectively, were recently reported [29,30]. However, to
date no high resolution structure of CP bound to PIP2
exists. One possible role of PIP2, an important component
of the plasma membrane and one of the most potent sig-
nalling lipids, might be to facilitate membrane movement
of highly motile cells, such as those of Dictyostelium
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discoideum, through inhibition of actin filament capping
by CP near the membrane [24], thus allowing rapid pro-
trusion of the cell edge. Computational docking studies
predict that PIP2 interacts with a set of three highly con-
served basic residues in close proximity to the α-subunit’s
C-terminus [25]. Two of these basic residues are critical
for actin filament capping [31]. Such an interaction would
therefore prevent for steric reasons the ability of CP to as-
sociate with the actin filament.
The crystal structure of CapZ (chicken α1/β1) [32] has

provided valuable insight into the atomic architecture of
CP found at the Z-discs of skeletal muscles. However,
until now a high-resolution structure of the cytoplasmic
variant is not available. By characterizing the atomic
structure of Cap32/34 from the cellular slime mold Dic-
tyostelium discoideum as a model for cytoplasmic CP
and comparing it to that of CapZ, we aimed to elucidate
structural and functional differences between the two
CP isoforms. This allowed us to shed light on potential
interaction sites with muscle and non-muscle specific
components, respectively.

Methods
Protein isolation and purification
The Dictyostelium discoideum Cap32 and Cap34 subunits
were co-expressed in Escherichia coli using pETmD1-
mako, an expression vector, which allows simultaneous
expression of the two subunits. This vector was built on
pETDuet™-1 (Novagen) by replacing the second MCS by
the MCS of pDXA-mako [33] for easy shuttling of genes
between bacterial and Dictyostelium expression vectors. A
full-length cDNA clone for Cap34 was obtained from the
Japanese Dictyostelium cDNA project (clone VFM643;
[34]). Cap32 was assembled from two overlapping cDNA
clones, SSA656 and SSJ183 [35,36]. Cap32 and Cap34
were PCR-amplified applying the Expand High Fidelity
PCR System (Roche) from cDNAs using primer A (5′-
GGTTATGTACAAGGTACAGAAAAGCAATTAAGT
TGTTGTCTCG -3′; Cap32, forward, BsrGI site under-
lined) and primer B (5′- CCGACGCGTACTACCAG
CAAGATTTACTTTACCAG -3′; Cap32, reverse, MluI
site underlined) for Cap32, and primer C (5′- CCGCCAT
GGCCTCAAATCAAGAATCGTTCAAATC-3′; Cap34,
forward, NcoI site underlined) and primer D (5′- CCGAC
GCGTAAGCTTTTTTTATTTTCATTGGCAATTTTGA
AGTTTTTG -3′; Cap34, reverse, HindIII site underlined)
for Cap34, respectively. The PCR products were digested
and subsequently ligated into pETmD1-mako. Thereby,
the coding sequence of Cap32 is fused to an N-terminal
8xHis tag.
The plasmid was transformed into Escherichia coli

BL21-CodonPlus(DE3)-RIL strain cells (Stratagene), which
were cultured in LB broth containing 80 μg ml−1 ampicil-
lin at 37°C until an OD(600 nm) of 0.6–0.8 was reached.
Protein expression was induced at 22°C by the addition of
IPTG to a final concentration of 0.1 mM and the cell cul-
ture was allowed to grow overnight. The cells were har-
vested by centrifugation at 6,000 X g for 15 min and the
cell pellets were stored at −20°C. For protein purification
the cell pellets were resuspended in 20 mM Hepes pH 7.3,
50 mM NaCl, 0.1 mM PMSF, and 1 mM DTT supplemen-
ted with EDTA-free protease-inhibitor-cocktail (Roche)
and disrupted on ice by sonication. The lysate was centri-
fuged at 37,000 X g for 40 min to remove cellular debris.
The supernatant was sterile filtered through an Ultra-

free-MC GV 0.22 μm syringe filter (Millipore) before ap-
plication onto a 10 ml column of Ni-NTA superflow
resin (Qiagen) pre-equilibrated with IMAC buffer (buffer
A: 50 mM Hepes pH 7.3, 30 mM KAc). The column was
extensively washed first with buffer A and then with
50 mM Hepes pH 7.3, 300 mM KAc (buffer B) to re-
move non-specifically bound proteins. The third washing
step was performed with buffer A including 40 mM
imidazole pH 7.3, and finally Cap32/34 was eluted from
the column using a linear gradient of 40–500 mM imid-
azole pH 7.3 in buffer A. Fractions containing the target
protein were pooled and dialyzed against 20 mM Hepes
pH 7.3, 100 mM NaCl, 0,5 mM EDTA, 0.1 mM EGTA,
and 1 mM MgAc. After protein concentration using a
Vivaspin 6 30 k (GE Healthcare), Cap32/34 was further
purified by size-exclusion chromatography on a HiLoad
16/60 Superdex 200 column (GE Healthcare) equili-
brated and run with 20 mM Hepes pH 7.3, 100 mM
NaCl, 0,5 mM EDTA, 0.1 mM EGTA, and 1 mM MgAc.
After checking the protein purity by SDS-PAGE, the

sample was concentrated to 8 mg ml−1 with a Vivaspin 6
30 k (GE Healthcare) and supplemented with sucrose to
a final concentration of 3% (w/v). The protein was then
divided into 50 μl aliquots in thin-walled PCR tubes,
flash-cooled in liquid nitrogen, and stored at −80°C. A
total of ~20 mg pure Cap32/34 was obtained from 1 L
cell culture.

Crystallization, data collection, and processing
Crystallization trials were performed using hanging-drop
vapor diffusion with standard sparse-matrix screens.
Drops were prepared by manually dispensing 2 μl of pro-
tein solution with 2 μl reservoir solution and equilibrated
against 400 μl reservoir solution in 24-well VDX plates
(Hampton Research). Initial crystals formed in 100 mM
Hepes pH 7.5, 20% (w/v) PEG 8000 at 20°C and grew to
typical dimensions of 10× 10× 120 μm within 4–6 d. Sub-
sequently, crystals were optimized by micro-seeding. The
best diffracting crystals were grown in 100 mM Hepes pH
7.5, 17% (w/v) PEG 8000, and had maximum dimensions
of 15× 15× 200 μm.
Prior to data collection, the crystals were harvested from

the drops using mounted cryoloops (Hampton Research),



Table 1 Crystallographic statistics

Cap32/34

Data Collection

Space Group P41

Cell Dimensions

a, b, c (Å) 124.5, 124.5, 77.5

α, β, γ (º) 90, 90, 90

Resolution Range (Å) 50-2.2 (2.3-2.2)

Number of Reflections 367874

Number of Unique Reflections 60185

Completeness (%) 99.8 (99.6)

Multiplicity

Rmerge
† 14.9 (83.5)

<I/σI> 14.2 (3.8)

Refinement

Rwork
{ 0.226

Rfree
} 0.265

R.m.s. deviations

Bond lengths (Å) 0.008

Bond angles (°) 1.36

Ramachandran Analysis

Residues in most favoured regions (%) 95.9

Residues in allowed regions (%) 4.1

Outliers (%) 0

Model statistics

Protein residues:

No. in subunit A & B 514

B-factor A & B (Å2) 15.4

Additional groups:

Water (No. / B-factor) 328 / 37.9

Values in parentheses refer to the highest resolution shell.
†Rmerge= ΣhklΣi|Ii(hkl) -< I(hkl)> |/ ΣhklΣiIi(hkl); where Ii(hkl) is the intensity of the
ith measurement of reflection hkl and< I(hkl)> is the mean value of Ii(hkl) for
all i measurements.
{Rwork= Σhkl||Fo|-|Fc||/Σ|Fo|,where Fo is the observed structure factor and Fc is the
calculated structure factor.
}Rfree is the same as Rcryst except calculated with a subset, 5%, of data that are
excluded from refinement calculations.

Eckert et al. BMC Structural Biology 2012, 12:12 Page 4 of 15
http://www.biomedcentral.com/1472-6807/12/12
briefly transferred to a cryoprotection buffer consisting of
mother liquor supplemented with 20% (v/v) glycerol, and
subsequently flash-cooled and stored in liquid nitrogen. Dif-
fraction data sets were collected to 1.9 Å resolution at
beamline ID23-2 at the European Synchrotron Radiation
Facility (Grenoble, France) at 100 K using a MAR CCD de-
tector and the helical data collection method as implemen-
ted at the beamline [37]. All data sets were processed and
scaled using the XDS/XSCALE programs [38,39]. The crys-
tals belong to space group P41 with unit cell dimensions of
a=124.5, b=124.5, c =77.5 Å and α=β= γ=90° and con-
tain two molecules in the asymmetric unit. This corre-
sponds to a Matthews’ coefficient of 2.27 Å3 Da−1, giving a
solvent content of ~46%. The data collection and proces-
sing statistics are summarized in Table 1.

Structure solution and refinement
Initial phases were obtained by molecular replacement
(MR) using the program CNS [40]. The structure of
CapZ from Gallus gallus (PDB code 1IZN) [32] with the
solvent ions and the flexible β-subunit C-terminus (resi-
dues 252–277) omitted was used as starting model. The
structural model was refined using CNS, including rigid
body, simulated annealing, energy minimization, and in-
dividual B-factor refinement in several cycles. Manual in-
spection, rebuilding, and addition of water molecules
were performed with Coot [41]. Analysis of the Rama-
chandran plot reveals ~96% of the residues in most
favourable regions and none in disallowed regions. The
accuracy of the protein structure model was validated
using MolProbity [42]. The final model contains residues
2–272 (and 2–270 for the second molecule within the
asymmetric unit, respectively) of the 281 residues of the
α-subunit and all residues of the β-subunit except for
residues 1, 140–145 and 251–272 (253–272 for the sec-
ond molecule within the asymmetric unit). The structure
was deposited in the Protein Data Bank (PDB code
4AKR). All figures were prepared with PyMOL [43].
Structural alignments were conducted using least squares
superposition (LSQ) as implemented in Coot [41].

Results and discussion
Overall structure of Dictyostelium discoideum Cap32/34
Crystals of the Cap32/34 protein were obtained by the
hanging-drop vapour diffusion technique. The crystals
belong to the tetragonal space group P41 with unit-cell
parameters of a = 124.5, b = 124.5, c = 77.5 Å and α= β=
γ= 90°, and contain two molecules per asymmetric unit
(Table 1). The structure was solved by molecular replace-
ment using the crystal structure of CapZ from Gallus
gallus [32] as a search model (PDB code 1IZN). The
structural model was refined to 2.2 Å resolution with a
final Rwork of 22.6% and an Rfree of 26.5% (Figure 1).
Superposition of the two Cap32/34 molecules within
the asymmetric unit revealed only small deviations in
their overall structures, with a root-mean-square devi-
ation (r.m.s.d.) of 0.3 Å for 512 common Cα atoms.
Equivalently to chicken CapZ [32], the α- and β-subunits
of Cap32/34 from Dictyostelium discoideum have strik-
ingly similar secondary and tertiary structures (Fig-
ure 1C), despite showing only modest homology at the
amino acid sequence level. Furthermore, the two subunits
are extensively intertwined, resulting in a pseudo 2-fold
axis of rotational symmetry of the entire molecule. Given
the tight interactions occurring between the CP subunits,
it is not surprising that the heterodimer is extremely
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(See figure on previous page.)
Figure 1 Crystal structure of Dictyostelium discoideum Cap32/34. A) Ribbon presentation of Cap32/34. The structural motifs are shown in
different colours. For clarity and comparability we used the same motif and colour scheme as in [30]. The helices are numbered from the N- to
the C-terminus. B) Top view of the structure highlighting the β-strands. Compared to CapZ, one more β-strand could be assigned to both the
α-globule and the β-globule region. C) Superposition of Cap32 (red) and Cap34 (blue). While the globule regions are markedly similar, the N-stalk
regions point to different directions demonstrating the pseudo 2-fold symmetry of the CP.
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stable as opposed to the individual subunits. Briefly,
Cap32/34 has the shape of a mushroom, comprising
a stalk (“N-stalk”) and a cap (“central β-sheet” and
“antiparallel H5s”). The mushroom stalk is composed of
six anti-parallel α-helices, of which three are contributed
from the N-terminus of each subunit (H1–3). Stretches
of five antiparallel β-strands of the α-subunit (S1–5)
and four of the β-subunit (S1–4) are located next to the
stalk and under the cap of the mushroom (“α- and β-
globule”). The cap consists of a single ten-stranded anti-
parallel β-sheet formed by five β-strands of each subunit
(S6–10).

Cap32/34 shows the same overall architecture as CapZ
Superposition of the Cap32/34 molecule onto its homolog
CapZ (PDB code 1IZN) resulted in an r.m.s.d. value of
~1.7 Å over 498 equivalent Cα atoms (the flexible β-sub-
unit C-termini were excluded), which illustrates the highly
conserved architecture of the two CP variants (Figure 2A).
While the α-subunits of the two homologs superposed
with an r.m.s.d. of ~1.7 Å over the Cα atoms (264 resi-
dues), the β-subunits match better (r.m.s.d. of ~1.0 Å for
242 residues excluding the β-tentacle), indicative of the
latter being structurally more strongly conserved. This is
in agreement with findings based on sequence compari-
sons (Figure 3). In order to quantitatively determine which
of the CP subunits is more conserved we calculated se-
quence identity matrices for all CP subunits in all eukar-
yotes that have been annotated recently (Hammesfahr and
Kollmar, submitted to BMC Evolutionary Biology). Be-
cause the data includes sequences from all branches of the
eukaryotes each subunit shows a broad distribution. The
comparison of the medians of the populations shows that
Cap2 (Capβ) is considerably stronger conserved than
Cap1 (Capα).

Cap32/34 reveals strong conformational flexibility in the
α-subunit
Comparing the secondary structural elements of Cap32/34
and CapZ, the β-sheets in the globule regions of Cap32/34
each comprise one additional β-strand. The most promin-
ent structural difference is located in the α-subunits in the
part of the central β-sheet that is connected to the α-glob-
ule and opposite to the β-tentacle (Figure 2B). The loops
connecting the β-strands move towards the antiparallel H5s
giving Cap32/34 a more compact structure compared to
CapZ. Based on the first crystal structure CapZ has been
thought to have a fairly rigid structure except for the mobile
β-tentacle. Recently and surprisingly, the structure of CapZ
in complex with V-1 showed that CapZ consists of two
rigid domains that undergo conformational changes but do
not correspond to the two subunits [30]. The smaller do-
main contains the β-globule, some β-strands of the central
β-sheet, a small part of the β-H5 helix, and the α-tentacle.
The crystal structure of a C-terminal truncation mutant
(CapZβΔC) confirmed that CapZ has an intrinsic conform-
ational flexibility within these two domains [30]. The smal-
ler domain contains the region that establishes the initial
electrostatic contact with the actin-filament and conform-
ational flexibility might therefore either prevent strong
binding or be pivotal for uncapping. Here, Cap32/34
shows a different type of strong conformational flexibil-
ity that is located in the α-subunit (Figure 2B). This
part is located opposite to the β-tentacle, which estab-
lishes the second actin-binding interaction. It might be
important for modulating actin-binding through its influ-
ence on the tightly connected antiparallel H5 helices to
which the β-tentacle is linked. Based on the structure of
CapZ bound to the actin filament [31] this region would
also be ideally suited for binding CP to the membrane, ei-
ther directly or mediated by another molecule. Surprisingly,
in activated macrophages and platelets CP appears to be
simultaneously bound to membranes and actin filaments
[47], which would not occur if PIPs bound to the molecule
that have an uncapping function. This suggests the possi-
bility that this region of cytoplasmic CP could serve as a
binding site for non-PIP lipids in motile cells, thereby me-
diating membrane attachment of actin. Thus, CP could
have an additional role in the dendritic nucleation model
apart from capping the barbed end of actin filaments.

Structure and function of the tentacles
Like in CapZ’s α-subunit the C-terminus of Cap34 includes
a short amphipathic α-helix (also called α-tentacle), which
is tightly connected by hydrophobic contacts to the body of
the β-subunit through a strictly conserved tryptophan resi-
due (Trp-267 in Cap34 from Dictyostelium discoideum,
Trp-271 in chicken CapZ; Figure 4). The α-tentacle is
bound to the β-subunit of CP in all crystal and NMR struc-
tures. Especially the NMR analyses show that the flexibility
of the α-subunit’s C-terminus is limited to the last 12 resi-
dues (L275 – A286 in human Cap1α), which are C-terminal
to the strictly conserved tryptophan residue and the 1-turn
helix [48,49]. In addition, the C-terminal truncation
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mutants mouse Cap1α ΔC13 [50] and yeast Cap1α ΔC10
[51] showed only a weak effect on actin binding as did
many single residue mutations in the C-terminus of yeast
Cap1 [51]. In contrast, longer C-terminal truncations of 28
(mouse Cap1α ΔC28; [50,52]) and 30 residues (yeast Cap1
ΔC30; [51]) abolished actin-binding. In view of the tight
and conserved interaction of the antiparallel helices with
the central β-sheet the effects of the longer C-terminal
truncations could also be due to the disturbance of the
structural stability of this region. Thus the α-subunit’s
interaction with actin is either solely mediated by the basic
patch, in which case the α-tentacle would not move but re-
tain the integrity and stability of the CP dimer, or the α-ten-
tacle moves out of its position to bind actin thus opening a
hydrophobic patch on the CP surface. These possibilities
can only be tested by mutations that do not disturb the sta-
bility of this region. Based on the NMR experiments, the
results from the short C-terminal truncations, and the
many single residues mutations in the α-tentacle it seems
most likely that the α-tentacle is not moving upon actin-



Figure 3 Sequence identity comparison of CP subunits. The scores of the sequence identity matrices of the CP subunits were rounded and
the percentage of sequences plotted against the sequence identity. The inlet contains box plots of the data for each CP subunit. 368 α-subunit
and 299 β-subunit CP sequences were derived from CyMoBase [44,45]. For calculating the sequence identities poorly aligned positions and
divergent regions of the alignments were removed using Gblocks [46]. Sequence identity matrices (2D-matrix tables containing sequence
identities scores for each pair of sequences) were obtained by calculating the ratio of identities to the length of the longer of the two sequences
after positions where both sequences contain a gap were removed.
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binding. The only flexible region consists of the C-terminal
12 residues, which, however, are not strongly conserved
and only show a slight effect on actin-binding.
In contrast to the α-tentacle, neither Cap32/34 nor

CapZ crystals grown at physiological pH provided an in-
terpretable electron density for the C-terminal segment
of the β-subunit (β-tentacle), indicating that this part of
the CP molecule is highly mobile. Molecular dynamics
studies confirmed the highly flexible nature of this region
[53] and NMR experiments showed that the β-tentacle
adopts a coil structure in solution [49]. Crystals of native
CapZ have previously been soaked into an acidic solution,
which stabilized the β-tentacle and allowed its structure
to be solved [32]. Hereby it was demonstrated that the
β-tentacle also comprises a short amphipathic α-helix,
which, more importantly, extends out from the main
body of the protein without making any specific interac-
tions with CP. Although the β-tentacle sequence is not
conserved in general, the three hydrophobic positions
(residues L258, L262, and L266 in GgCapZ) at intervals of
four residues are conserved (Figure 5) and exchanging
them by polar residues abolishes actin-binding [50].
Therefore, CP has been proposed to bind to actin in two
steps—first electrostatically through the basic patch on its
α-subunit’s C-terminus, followed by hydrophobic interac-
tions via its amphipathic β-tentacle [11]. The β-tentacles’
helical structure is stabilized in the crystal structure by
interaction with a symmetry-related molecule [32]. We
also soaked the Dictyostelium Cap32/34 crystals in acidic
solution but did not see additional electron density in the
region where the β-tentacle would be located.

Structure and flexibility of a linker connecting β-strands
of the central β-sheet in the β-subunit
In addition to the region connecting the β-strands of the
central β-sheet of the α-subunits opposite to the β-ten-
tacle, the crystal structure of Cap32/34 reveals a notable
difference between the β-subunits of the two homologs.
Due to disorder no electron density could be assigned to
residues Gln-140–Gln-145 of the Cap32 central β-sheet
(Figure 6). This region corresponds to a solvent-access-
ible turn region between S7 and S8 (corresponding to S6
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Figure 4 Sequence conservation within the actin-binding region of the α-subunits. The sequence logos are based on 368 α-subunit
sequences and illustrate the sequence conservation within the multiple sequence alignment of the α-subunits. Here, only the C-termini of the
α-subunits are shown because most of the residues implicated in actin binding map to this region (For the representation of the entire α-subunits
see Additional file 1). For better orientation, the sequences of five representative α-subunits are shown: the three isoforms of chicken Cap1 for
comparison because all previous crystal structures have been obtained from chicken Cap1α, the yeast Cap1 as one of the targets of mutagenesis
experiments, and Dictyostelium Cap34 whose structure is presented here. Secondary structural elements as determined from the chicken CapZ
crystal structure are drawn as yellow arrows (β-strands) and as red boxes (α-helices). Residues important for inter-heterodimer binding, V-1 binding,
PIP2-binding, and actin-binding are highlighted by orange, green, red, and purple stars, respectively. Numbering below the logos refers to positions
in the multiple sequence alignment (The full-length multiple sequence alignment of the α-subunits is available as Additional File 2).
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and S7 in chicken Capβ), thus being referred to in this
study as “linker βS7–S8” (β denotes the CP β-subunit).
Since this segment is well-ordered in the CapZ structure,
one could assume that the difference in flexibility might
arise from “linker βS7–S8” undergoing conformational
dynamics and serving as a binding site in the Cap32
molecule. As can be seen from the sequence alignment
(Figure 5), “linker βS7–S8” harbours up to two basic
amino acids (Lys-142, Lys-143 both in Cap32 from
Dictyostelium discoideum and chicken Cap2, respectively),
which, based on the crystal structure of CapZ, are posi-
tioned directly at the tip of the loop. Since acidic resi-
dues are not located in immediate proximity, the
molecular surface of this region exhibits a pronounced
positive electrostatic potential, making it particularly suit-
able for electrostatic interactions with negatively charged
target sites. The sequence alignment further reveals that
Lys-142 and Lys-143 of Cap32 are C-terminally flanked by
three additional residues (Gly-144, Gln-145, Pro-146)
resulting in an elongated linker region.
Implication of “linker βS7–S8” from Cap32 in
actin-binding
In a recent NMR study of mouse cytoplasmic CP (α1/β2)
interacting with the inhibitor proteins CARMIL-1 and
V-1, respectively, “linker βS7–S8” was found to undergo
significant chemical shift changes, suggesting that this
site is involved in actin-binding [48,49]. As part of the
same study, charge reversal mutations of Lys-142 and
Lys-143 severely decreased the affinity for the barbed
end [49]. In contrast, lysine to alanine mutations indi-
cated that the residues Lys-142 and Lys-143 of mouse
cytoplasmic CP (α1/β2) hardly affect actin affinity [50].
However, mutations of the arginines and lysines of the
“basic triad” already showed that substitutions by alanine
only resulted in minor effects in contrast to the severe
impact of the charge reversal and double/triple muta-
tions on actin-binding. The so called “basic triad”, three
highly conserved basic residues in close proximity to the
CP α-subunit C-terminus, is supposed to mediate the ini-
tial contact with the barbed end of actin filaments [31].
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(See figure on previous page.)
Figure 5 Sequence conservation within the actin-binding region of the β-subunits. The sequence logos are based on 299 β-subunit
sequences and illustrate the sequence conservation within the multiple sequence alignment of the β-subunits. Two regions known to be
important for actin-binding are shown (For the representation of the entire β-subunits see Additional file 3). For better orientation, the sequences
of three representative β-subunits are shown: chicken Cap2 of which all previous crystal structures have been obtained, the yeast Cap2 as one of
the targets of mutagenesis experiments, and Dictyostelium Cap32 whose structure is presented here. Secondary structural elements, important
residues indicating various interactions, and taxa/species with elongated loops are denoted as in Figure 4 (The full-length multiple sequence
alignment of the β-subunits is available as Additional File 4). Loops, which exist only in single species, have been removed to shorten the
alignment by the number of residues as indicated. Numbering below the logos refers to positions in the multiple sequence alignment.
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These residues are exposed to the solvent and thus pro-
vide the center of a basic patch on CP. Several basic and
conserved residues in close proximity have also been
implicated to be involved in actin-binding, namely resi-
dues R195, K223, and R225 of the β-subunit of CapZ
[50]. The “linker βS7–S8” is also in close vicinity to the
“basic triad” but the two lysines are not strictly conserved
Lys-142

Lys-142Lys-142

Lys-1Lys-1

Asp-139

Gln-138

Thr-137

Lys-136

Lys-135

S6

Lys-1Lys-1

A

S7

Cap32

GgCapZβ

Figure 6 Structure of “linker βS7–S8” from Cap32. Ribbon representatio
chicken CapZβ structures. The residues of β-strands S7 and S8 of Cap32 an
models. The part of Cap32 that is not visible in the electron density has be
K143 of Dictyostelium Cap32 for comparison.
and even absent in fungi and yeasts (Figure 5). Thus, we
suppose that the two lysines of “linker βS7–S8”, similar
to the basic residues R195, K223, and R225, are not es-
sential for the major contact with actin, which is
mediated by the “basic triad”, but contribute to the basic
patch to support barbed end capping on actin-binding.
In addition, the “linker βS7–S8” is located directly next
4343

S8

S9

4343

Pro-146

Met-147

Arg-148

Gly-149

Thr-150

Trp-151

sp-152

n of the region around “linker βS7–S8” of the superposed Cap32 and
d the two lysines K142 and K143 of chicken CapZ are shown as stick
en drawn illustrating the hypothetical positions of the lysines K142 and
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to the hinge of the two rigid domains identified in CapZ
that undergo conformational changes [30].

Cap32/34 and lipid-binding
CP is known to be inhibited by polyphosphoinositedes such
as phosphatidylinositol 4,5 bisphosphate (PIP2) [54]. PIP2
does not only bind to CP but is also able to uncap CP from
the barbed ends [55]. A structure of PIP2 bound to CP is
not available yet. It is known, however, from structures of
other actin-binding proteins in complex with PIP2 or the
sugar moieties of PIP2 that PIP2 preferentially binds to pro-
tein-specific patterns of lysines and arginines. Therefore,
the region around the “basic triad” that harbours many
solvent exposed lysines and arginines has been proposed to
be the PIP2 binding site of CP. A triple mutation of two of
the basic residues of the “basic triad” (K256 and R260) to-
gether with a closely located arginine of the β-subunit
Cap32/34

CP β-subunit CP α-subunit

GgCapZ

A

B

Figure 7 Putative binding site for Z-disc proteins. A) Coil representatio
the Cα atoms. B) Surface presentation of chicken CapZ with structural moti
between the α-subunit isoforms Capα1 and Capα2 are highlighted in black
increased B-factors in the chicken CapZ structure.
(R225) has been most effective in abolishing PIP2-binding
[25]. As in the studies of the interaction of CP with actin,
single alanine mutations had been less effective compared
to charge reversal, double and triple mutants. However,
most of the basic residues around the “basic triad”, includ-
ing βR195, βR223, βR225, and the two lysines of “linker
βS7–S8”, are also conserved in all CP (Figures 4 and 5) and
thus could also contribute or be responsible for PIP2 bind-
ing. To unambiguously reveal the PIP2 binding site a more
comprehensive mutational study or a high-resolution struc-
ture would be necessary. We also sought to characterize
the structure of Cap32/34 in complex with the lipid PIP2.
To accomplish that, we performed both co-crystallization
and crystal soaking experiments in which the molecular
ratio of the ligand was varied. Although crystals were
obtained by co-crystallization there was no evidence for
additional electron density. Similarly, our attempts to bind
90°

CP β-subunit

CP α-subunit

GgCapZ

B-factor

low high

n of Cap32/34 and chicken CapZ illustrating the B-factor distribution of
fs defined and coloured as in Figure 1. Residues that are different
. These residues cluster in the same part of the α-globule that shows
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the inhibitor to Cap32/34 by soaking the crystals were not
successful.

Possible interaction site of CapZ with the Z-discs of
skeletal muscles
Another difference between Cap32/34 and CapZ became
apparent when the distribution of B-factor values was
compared. As illustrated in Figure 7, the CapZ α- sub-
unit segment spanning from Leu-101–Leu-117 exhibits
a substantially higher average B-factor compared to the
corresponding region in Cap32/34 (~86.8 Å2 for CapZ
compared to ~24.2 Å2 for Cap32/34). Furthermore, the
two homologs do not only adopt markedly different con-
formations within this part of the molecule (Cα r.m.s.d.
of ~3.0 Å) but also display different secondary structural
elements (residues Lys-103 – Pro-108 of CapZ exhibit a
random coil structure, whereas the equivalent region in
Cap32/34 is part of a β-strand). CapZ has recently been
found to associate with the giant sarcomeric protein
nebulin, which is thought to target the protein to the
Z-disc [56]. Surprisingly, cytoplasmic CP also binds to
nebulin in vitro, whereas in myocytes, which contain both
CP variants, only CapZ has been found at the Z-disc [56].
Consequently, another binding partner might be respon-
sible for targeting CapZ to the Z-disc. Based on our
observation that the CapZ molecule includes a solvent-
accessible region greatly differing in both flexibility and
conformation from that of Cap32/34, residues Leu-101 –
Leu-117 within the α-subunit may contribute to the inter-
action with the Z-disc of the sarcomere, either in an indir-
ect manner by being involved in mediating the process or
through direct binding. These conclusions are in line with
the conformational flexibility of the neighbouring regions
of the loops connecting S6 and S7, and S8 and S9 (see
above) that also revealed differences between cytoplasmic
CP and CapZ.

Conclusions
We here report the first high resolution structure of a
cytoplasmic CP. The overall structure of Cap32/34 from
Dictyostelium discoideum reveals a similar arrangement as
compared to its sarcomeric variant CapZ. Like in CapZ,
the individual CP subunits exhibit very similar secondary
and tertiary structures despite sharing a very low sequence
homology. Moreover, the subunits are extensively inter-
twined and organized in such a way that the molecule has
a pseudo 2-fold axis of rotational symmetry down its cen-
ter point.
As has been observed in CapZ, the Cap32/34 structure

showed the attachment of the α-tentacle to the central
β-sheet and the antiparallel H5 helices, and supported the
highly flexible nature of the β-tentacle, which is proposed
to swing out and bind to actin. By superposition onto
CapZ we observed considerably structural flexibility in the
α-subunits. In Cap34 the region located opposite to the
C-terminal β-tentacle moves towards the antiparallel heli-
ces that interconnect the heterodimer leading to a more
compact CP structure. This bending motion demonstrates
additional flexibility in CP to the two domain twisting
attributed mainly to the β-subunit as observed in the
structure of CapZ complexed with V-1.
Furthermore, there is evidence that, in terms of cytoplas-

mic CP, an additional protein segment might be important
for mediating high affinity capping of actin filaments. Based
on the crystal structure of Cap32/34, the molecule comprises
a dynamic loop region located between S7 and S8 within its
β-subunit, denoted here as “linker βS7–S8”, which has re-
cently been reported to be important for the association of
cytoplasmic CP with actin [48]. This observation is in
marked contrast to CapZ, in which the corresponding region
has been found to be well ordered [32]. Since “linker
βS7–S8” provides a positively charged surface close to the
basic patch on CP, it might participate in the initial electro-
static binding to acidic regions on the barbed end of actin
filaments.
Finally, to date information about potential interaction

sites of CapZ with the Z-disc of the sarcomere is not avail-
able. By comparing the structures of the two CP variants,
we were able to detect a solvent-exposed region within
the CapZ α-subunit (residues Leu-101 – Leu-117 located
in the α-globule), greatly differing in both conformation
and flexibility from that of Cap32/34. We therefore
hypothesize that this protein segment might be involved
in the binding of CapZ to the Z-disc in muscle cells.
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