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Leptin and the Leptin Receptor

Discovery of the obese (ob) gene in 1994 via positional 
cloning techniques enabled insight into the physiological 
system that controls body weight and energy expenditure 
[1]. Subsequent investigations identified the ob gene product 
as a 16 kDa protein that reduced food intake and increased 
energy expenditure in genetically obese (ob/ob) rodent mod-
els, indicating a pivotal role in regulating energy homeosta-
sis. This protein was termed leptin [2, 3].

Leptin is primarily produced and secreted by white adi-
pose tissue and circulates in proportion to adipose mass [3]. 
The leptin receptor (Ob-R) is encoded by the diabetes (db) 
gene [4]. Leptin gains access to the hypothalamus to regulate 
energy homeostasis via a saturable transport mechanism or 
by binding to receptors at the blood–brain barrier interface 
[5]. However recent evidence suggests that leptin can also 
be made locally within the CNS as leptin mRNA and protein 
has been detected within the brain [6].

At least six different isoforms (Ob-Ra–f) of Ob-R exist 
(Fig. 1) as a result of alternative splicing of the db gene [7, 
8]. Each isoform has an identical N-terminal ligand-bind-
ing domain but a differential C-terminal region required for 
signalling. Each isoform gives rise to a single membrane-
spanning receptor with the exception of Ob-Re which is 
thought to circulate as a soluble leptin binding protein. The 
remaining Ob-R isoforms have either a short intracellular 
domain containing 30–40 cytoplasmic residues (Ob-Ra,c,d,f) 
or a large intracellular domain consisting of 302 residues 
(known as the long form of the receptor (Ob-Rb), which is 
the most signalling competent form of the receptor [9].
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Leptin Receptor Signalling

Significant homology exists between Ob-R and the class I 
cytokine receptor superfamily [4] suggesting possible simi-
larities in the intracellular pathways activated by Ob-R and 

class I cytokine receptors (Fig. 2). Indeed, like cytokines 
that signal via interaction with janus tyrosine kinases 
(JAKs), binding of leptin to Ob-R promotes the recruitment 
and activation of JAK2 leading to phosphorylation of mul-
tiple tyrosine residues (Y985, Y1077 and Y1138) within 
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Fig. 1   Topology of leptin receptor (Ob-R) isoforms. There are six 
different isoforms of Ob-R denoted Ob-Ra–f. Each receptor isoform 
consists of two cytokine-binding homology regions (CHR1 and 
CHR2), an IgG-like domain, and two fibronectin type 3 domains 
(FN3) within its N-terminal. All the isoforms have transmembrane 
regions, except ObRe which circulates as a soluble leptin binding 

receptor. The long isoform, Ob-Rb is the signalling competent form 
of the receptor and it contains three intracellular domains (Box 1–3) 
that are required for downstream signalling. Conversely, the short iso-
forms, Oba,c,d,f have only one intracellular domain (Box 1) and have 
limited signalling capacity
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Fig. 2   Leptin receptor signalling pathways influence hippocampal 
excitatory synaptic transmission. Schematic representation of the key 
Ob-Rb-driven signalling cascades that are activated following leptin 
binding to Ob-Rb. Following leptin binding, phosphorylation of janus 
activated kinase (JAK2) occurs which leads to dimerization and trans-
location of signal transducers and activators of transcription (STAT3) 
to the nucleus. In addition, phosphoinositide 3-kinase (PI 3-kinase)/
Akt and ERK signalling cascades are activated following JAK2 phos-

phorylation culminating in changes in nuclear gene transcription and/
or regulation of ion channel function. Ob-Rb signalling is inhibited by 
activation of suppressor of cytokine signalling (SOCS3) and protein-
tyrosine phosphatase 1B (PTP1B). Activation of hippocampal Ob-Rb 
facilitates NMDA receptor function, resulting in alterations in AMPA 
receptor trafficking which in turn promotes persistent changes in hip-
pocampal excitatory synaptic strength
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the cytoplasmic domain of the receptor. JAK2 is constitu-
tively bound to the membrane-proximal part of Ob-R via 
Box 1 and Box 2 motifs [10]. JAK2 phosphorylation causes 
transphosphorylation of both JAK2 and Ob-R leading to 
recruitment of several downstream signalling cascades. 
Phosphorylation of the tyrosine residue (Y1138) of Ob-R 
allows binding of the transcription factor, signal transducers 
and activators of transcription (STAT3) leading to STAT3 
dimerization and translocation to the nucleus to regulate 
gene transcription [11, 12]. In addition to STAT3 activa-
tion, insulin receptor substrate (IRS) proteins can be acti-
vated as a consequence of cytokine-mediated JAK signal-
ling. One common downstream target of IRS proteins is the 
p85 subunit of phosphoinositide 3-kinase (PI 3-kinase) [13]. 
Furthermore, phosphorylation of tyrosine residue (Y985) 
of Ob-R allows recruitment of tyrosine-protein phosphatase 
non-receptor type II (SHP-2) which interacts with growth 
factor receptor-bound protein 2 (Grb2) and Son-of sevenless 
(Sos) exchange protein. Interaction of Sos with Ras acti-
vates a serine signalling cascade whereby Ras–Raf–MEK 
and mitogen-activated protein kinase (MAPK) are activated, 
as part of the ERK signalling cascade [14, 15]. In addition 
cytokine signalling inhibitors, including cytokine inducible 
sequence (CIS), suppressor of cytokine signalling (SOCS3) 
and protein tyrosine phosphatase 1B (PTP1B), inhibit leptin 
signalling by binding to phosphorylated JAK2 [16, 17].

Extra Hypothalamic Actions of Leptin

In addition to its role in energy homeostasis, leptin is also 
implicated in the hypothalamic control of bone formation, 
reproduction and immune function [18–23]. Several lines of 
evidence indicate a key role for leptin in neuro developmen-
tal processes, as significant reductions in brain weight and 
morphological abnormalities have been observed in leptin 
deficient (ob/ob) and insensitive (db/db) mice: an effect that 
can be reversed by leptin treatment in ob/ob mice [24]. In 
support of a developmental role, a significant surge in leptin 
occurs during the first two postnatal weeks of development 
[24], and leptin deficiency delays formation of projections 
from the arcuate nucleus, thereby implicating leptin in the 
maturation of hypothalamic circuits during the critical 
period of development [25].

Although the most well established target for leptin is the 
hypothalamus, Ob-Rbs are also widely distributed in sev-
eral extra-hypothalamic regions with high levels of recep-
tor expression detected in the cerebellum and hippocampus 
[26–28]. In situ hybridisation studies have identified Ob-Rb 
expression throughout the hippocampal formation [26], as 
well as in key cortical areas, including the entorhinal cortex, 
that directly innervates hippocampal CA1 neurons [26, 29]. 
In addition, hippocampal SC-CA1 synapses express high 

levels of Ob-Rbs [28] and growing evidence suggests that, 
in addition to controlling energy expenditure, leptin may 
regulate hippocampal synaptic function.

A Role for Leptin in Regulating Hippocampal 
Excitatory Synaptic Transmission

Our understanding of leptin signalling and its effects on 
energy homeostasis has been significantly advanced by 
studying genetically obese rodent models. The identifica-
tion of spontaneous autosomal recessive mutations within 
the db and ob genes has enabled greater insight into the 
extra-hypothalamic actions of leptin. Zucker fa/fa rats and 
db/db mice have mutations in Ob-R resulting in insensitiv-
ity to leptin [30, 31], whereas ob/ob mice have mutations in 
the gene that encodes leptin creating a truncated version of 
the hormone which cannot bind to Ob-R [32]. Rodents pos-
sessing these rare mutations develop acute obesity, hyper-
phagia, heightened metabolic efficiency and develop insulin 
resistance [31, 32]. Intraperitoneal injection of either mouse 
or human recombinant leptin can correct the ob/ob pheno-
type in rodents, restoring body weight, reducing food intake 
and increasing energy expenditure [2]. However, neither 
peripheral nor central administration of leptin reverses the 
obese phenotype in leptin-insensitive db/db mice or Zucker 
fa/fa rats [2]. Recent studies indicate that genetically obese 
rodents (db/db mice, fa/fa rats) also display impairments 
in hippocampal-dependent memory processes as marked 
deficits in spatial memory tasks are observed in the Morris 
water maze [33, 34]. Furthermore administration of leptin 
can enhance spatial learning and behavioural performance 
in wild-type rodents [34, 35]. Moreover, leptin treatment 
reinstated body weight and neurocognitive performance in a 
young boy with congenital leptin deficiency [36], suggesting 
that leptin plays a key role in regulating cognitive function.

It is well established that the strength of communica-
tion between excitatory synapses can readily be altered by 
dynamic changes in the level of neuronal excitation [37]. A 
persistent increase or decrease in synaptic efficacy is termed 
long-term potentiation (LTP) or long-term depression (LTD) 
respectively, and these phenomena are thought to be the key 
cellular events underlying learning and memory [38–40]. 
The main excitatory neurotransmitter within the mamma-
lian brain is glutamate which acts on ionotropic α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), 
N-methyl-d-aspartate (NMDA) and kainate receptors or 
metabotropic glutamate receptors (mGluRs) [41].

Increasing evidence indicates that leptin potently regu-
lates excitatory synaptic transmission at SC-CA1 synapses 
(Fig. 3). Initial studies found that exposure of acute juve-
nile (3–5 week old) hippocampal slices to leptin leads to 
an enhancement in NMDA receptor function and also the 
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conversion of short term potentiation (STP) into LTP [42]. 
The leptin-driven facilitation of NMDA receptor function 
requires the activation of PI 3-kinase, ERK and Src tyros-
ine kinase signalling pathways [42]. In accordance with the 
potential cognitive enhancing action of leptin, impairments 
in LTP and LTD have also been detected in hippocam-
pal slices from Zucker fa/fa rats and db/db mice [33, 34]. 
Moreover these synaptic deficits coincide with impaired per-
formance in spatial memory tasks in the leptin-insensitive 
rodents [33, 35]. Additionally, under conditions of enhanced 
excitability leptin can induce a novel form of hippocampal 
LTD in juvenile hippocampal slices. [42]. Leptin-induced 
LTD requires NMDA receptor, but not mGluR, activation 
and it occludes low frequency stimulation (LFS)-induced 
LTD [43] which provides further evidence of a role for leptin 
in regulating NMDA receptor-dependent synaptic plasticity 
at SC-CA1 synapses.

In addition, leptin can also reverse (depotentiate) LTP 
via a process involving activation of NMDA receptors and 
the calcium/calmodulin-dependent protein phosphatase, 
calcineurin [44]. It is well known that AMPA receptor traf-
ficking is crucial for activity-dependent synaptic plasticity at 
hippocampal synapses, such that AMPA receptor insertion 
into synapses underlies LTP, whereas LTD is associated with 
AMPA receptor removal from synapses [40, 45]. Increasing 
evidence indicates that leptin also directly regulates traffick-
ing of AMPA receptors to and from hippocampal synapses 
[46]. Indeed, leptin-driven depotentiation of hippocampal 
CA1 synapses involves internalisation of GluA2-lacking 
AMPA receptors [44]. In contrast, leptin-induced LTP 
evoked at adult hippocampal SC-CA1 synapses is dependent 
on the synaptic insertion of GluA2-lacking AMPA receptors 
[47]. In cultured hippocampal neurons treatment with leptin 

has distinct effects on different AMPA receptor subunits 
[48]. At physiological concentrations, leptin preferentially 
increases the cell surface expression of GluA1, via a process 
involving NMDA receptor activation. This effect of leptin is 
associated with phosphorylation and subsequent inhibition 
of the phosphatase and tensin homolog (PTEN), leading to 
an increase in intracellular phosphatidylinositol (3,4,5)-tri-
sphosphate (PtdIns(3,4,5)P3) levels [47]. Moreover, phar-
macological inhibition of PTEN with BpV not only mirrors, 
but also occludes the effects of leptin on GluA1 trafficking 
to synapses suggesting a common mechanism of action [47].

Recent studies indicate that the ability of leptin to alter 
excitatory synaptic transmission at hippocampal SC-CA1 
synapses occurs in an age-dependent manner. During the 
early stages of postnatal development, leptin evokes a tran-
sient (P11-18) or persistent (P5-8) synaptic depression that 
is GluN2B-containing NMDA receptor-dependent and 
involves activation ERK signalling [49]. This form of LTD 
induced by leptin at P5-8 occludes LFS-induced LTD, sug-
gesting similar expression mechanisms. Conversely in adult-
hood, leptin induces a persistent increase in hippocampal 
synaptic transmission in slices from both adult (12–16 week 
old) and aged (12–14 month old) animals. Leptin-induced 
LTP requires activation of GluN2A-containing NMDA 
receptors and PI 3-kinase signalling and it is also occluded 
by high frequency stimulation (HFS)-induced LTP [49]. 
Therefore, not only does leptin play an important role in 
early postnatal development, but leptin is also a potent regu-
lator of excitatory synaptic function in the adult and ageing 
hippocampus (Fig. 2).

Previous studies examining the modulatory actions of 
insulin on synaptic efficacy at SC-CA1 synapses have identi-
fied that the ability of insulin to induce either LTP or LTD is 
highly dependent on the frequency of stimulation [50]. Thus, 
insulin induces LTD at a stimulation frequency of 0.033 Hz, 
whereas LTP was induced by insulin when the frequency 
of stimulation was increased to 10 Hz [50], suggesting that 
insulin alters the frequency response curve of activity-
dependent synaptic plasticity. In contrast, the bi-directional 
effects of leptin on excitatory synaptic strength appear to be 
independent of stimulation frequency as the ability of leptin 
to induce LTD at P5-8 or LTP at adult SC-CA1 synapses 
occurs during low frequency simulation (0.033 Hz).

Leptin Regulation of Neuronal Morphology

Marked changes in the structure and density of hippocampal 
dendrites and spines accompany activity-dependent synaptic 
plasticity and these alterations are thought to play a role 
in maintaining the resulting changes in synaptic efficacy. 
Several hormones can induce rapid structural changes in 
neuronal morphology which provides an additional route 
for regulating neuronal connectivity and excitatory synaptic 
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Fig. 3   Two anatomically distinct inputs innervate hippocampal CA1 
pyramidal neurons. Schematic illustration of neural circuitry of the 
rodent hippocampus. In the classical tri-synaptic pathway, projections 
from layer II of the entorhinal cortex (EC) synapse with the dentate 
gyrus (DG) via the perforant path. Apical dendrites within the stra-
tum radiatum (SR) of the CA1 are then innervated by the Schaffer-
collateral (SC) fibres which extend from the CA3 region. In contrast, 
projections from layer III of the EC directly innervate distal dendrites 
within the stratum lacunosum-moleculare (SLM) and this forms the 
direct temporoammonic (TA) input to CA1 neurons
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strength. Leptin is also implicated in regulating neuronal 
morphology as reductions in hippocampal spine density are 
evident in leptin-insensitive (db/db) mice compared to wild 
type littermates [51]. The ability of leptin to promote spine 
formation involves activation of the CaM kinase signalling 
pathway and subsequent trafficking of TrpC channels to the 
plasma membrane [52]. Moreover, in cellular studies expo-
sure of hippocampal neurons to leptin results in rapid and 
significant alterations in the number and motility of dendritic 
filopodia, which mirrors the initial stages in spine formation 
[53]. Blockade of NMDA receptors with D-AP5 or synaptic 
activity with TTX prevents the effects of leptin, suggesting 
that synaptic activation of NMDA receptors underlies the 
leptin-driven changes in hippocampal dendritic morphol-
ogy [53]. Alterations in hippocampal neuron morphology 
have also been reported in vivo following dietary changes 
in leptin levels. Indeed, mice subjected to a high fat diet 
displayed not only elevated leptin levels, but also an increase 
in dendritic spine density in hippocampal CA1 neurons [54].

The Temporoammonic (TA)‑CA1 Synapse

Although extensive evidence indicates that leptin regulates 
hippocampal synaptic function, most studies have focused 
on its modulatory actions at SC-CA1 synapses. However, 
it is known that pyramidal neurons within the hippocampal 
CA1 region receive two distinct inputs from the entorhi-
nal cortex (EC; Fig. 3). The classical tri-synaptic pathway 
originates in layer II of the EC and projects to the dentate 
gyrus (DG) and the CA3 region via the perforant path. The 
stratum radiatum contains the SC pathway which originates 
in the CA3 region and is the indirect input into the CA1 
region. However, the temporoammonic (TA) input originates 
from layer III of the EC and directly innervates the stratum 
lacunosum-moleculare of the CA1 region [55, 56]. These 
two inputs to CA1 neurons not only differ in receptor and 
ion channel composition but also in the mechanisms under-
lying activity-dependent synaptic plasticity evoked at these 
synapses [56]. Indeed, the stratum lacunosum-moleculare 
where TA-CA1 synapses terminate, express higher levels 
of dopamine receptors and a larger glutamatergic NMDA 
component than the SC input [57, 58]. Furthermore, mono-
amines such as dopamine, strongly depress excitatory syn-
aptic transmission at TA-CA1 synapses, with little effect at 
SC-CA1 synapses [57, 59, 60]. In addition, distinct presyn-
aptic release mechanisms have been reported for TA-CA1 
compared to SC-CA1 synapses [61]. Indeed, functional 
imaging of presynaptic release kinetics has identified that 
TA-CA1 synapses have a lower efficacy of vesicle release 
than SC-CA1 synapses, and consistent with this, TA-CA1 
synapses also display a much larger paired pulse ratio than 
SC-CA1 synapses [61]. Differences in the contribution of 

N-type voltage gated Ca2+ channels to vesicle release mech-
anisms has been identified as a key factor underlying the 
differing efficacies of release at the two inputs onto CA1 
neurons [61].

Long Term Potentiation (LTP) at TA‑CA1 
Synapses

In addition to the reported differences in synaptic plasticity 
at TA- and SC-CA1 synapses, the TA input also regulates 
activity-dependent synaptic plasticity at SC-CA1 synapses. 
Indeed, time-dependent bursts of TA activity modulates 
the probability of SC-CA1 evoked spikes and significantly 
reduces the magnitude of potentiation at SC-CA1 synapses 
[62]. NMDA receptor dependent-LTP is readily evoked at 
TA-CA1 synapses using a high-frequency stimulation para-
digm (100 Hz, 1 s), and TA-CA1 LTP occurs independently 
of changes to SC-CA1 plasticity but requires severance of 
the hippocampal CA3 region to isolate the TA input [60, 
62]. Studies using hippocampal slices obtained from 6 to 7 
week old animals demonstrate that HFS induces both early- 
and late-phase LTP which requires activation of voltage-
gated Ca2+ channels (VGCC) and NMDA receptors [63]. 
The same study found that TA-CA1 LTP was insensitive to 
GABAA receptor blockade but was dependent on GABAB 
receptor activation [63]. In slices from adult mice, VGCCs 
and NMDA receptors are also implicated in the induction 
of activity-dependent LTP at TA-CA1 synapses [61]. How-
ever, in contrast to SC-CA1 synapses, LTP at TA-CA1 syn-
apses involves a presynaptic mechanism that depends on 
an increase in release efficacy due to recruitment of N-type 
VGCCs [61]. Conversely, in juvenile (P11-18) hippocampal 
slices, HFS-induced LTP at TA-CA1 synapses requires acti-
vation of postsynaptic NMDA receptors and is dependent 
on ERK, but not PI 3-kinase, signalling [60]. Furthermore, 
GluA2-lacking AMPA receptors are required for the main-
tenance, but not induction of HFS-induced LTP at juvenile 
TA-CA1 synapses [59]. Recent in vivo studies demonstrate 
that LTP that lasts in excess of 24 h can be evoked by tetanic 
stimulation in freely behaving rats [56, 64]. Further inves-
tigation found that this form of in vivo LTP is dependent on 
NMDA receptor activation [64]. Moreover, in hippocampal 
slices (P30-50), stimulation of proximal TA inputs induces 
LTP at distal SC-CA1 synapses when the two inputs are 
paired at a precise time interval [65]. This form of heter-
osynaptic plasticity requires activation of NMDA receptors 
and inositol triphosphate (IP3) receptor-dependent release 
of intracellular Ca2+ [65]. In addition, distinct differences 
in short-term facilitation have been observed at TA-CA1 
synapses and SC-CA1 synapses, which provides further 
evidence that there are key differences in presynaptic func-
tion at the two synaptic inputs to CA1 neurons [66]. Thus, 
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although both the TA and SC inputs have distinct synaptic 
plasticity mechanisms, the anatomically distinct inputs are 
likely to act in concert to regulate hippocampal synaptic 
function. However, as activity-dependent synaptic plastic-
ity can be readily and independently induced at TA-CA1 
synapses this suggests that this pathway also plays a funda-
mental role in hippocampal information processing.

Long Term Depression at TA‑CA1 Synapses

In addition to LTP, activity-dependent LTD has also been 
observed at the TA input to CA1 neurons [67]. Thus, in 
slices from 6 to 7 week old animals, LFS (1 Hz, 10 min) 
readily induces robust LTD which lasts over 1 h. Induction 
of TA-CA1 LTD requires NMDA receptor activation but is 
unaffected following blockade of either GABAA or GABAB 
receptors [67]. In contrast, a distinct form of activity-depend-
ent LTD has been reported in slices from 3 to 4 month old 
rats that is dependent on GABAB and kainate receptor acti-
vation [68]. Furthermore, recent studies indicate that LFS 
(1 Hz, 15 min) induces NMDA receptor-dependent LTD 
at TA-CA1 synapses in slices from 3 to 6 month old adult 
animals [69]. TA-CA1 LTD is independent of PI 3-kinase 
or ERK signalling but requires activation of the canonical 
JAK2–STAT3 signalling cascade and rapid gene transcrip-
tion [69]. Furthermore in parallel studies, chemical (NMDA; 
20 μM; 10 min) induction of LTD in cultured hippocampal 
neurons reduces the cell surface expression of GluA1-con-
taining AMPA receptors; an effect that is accompanied by a 
simultaneous increase in the phosphorylation of JAK2 and 
STAT3 [69], indicating involvement of JAK–STAT signal-
ling in AMPA receptor internalisation and LTD. JAK–STAT 
signalling is also implicated in NMDA receptor-dependent 
LTD at juvenile SC-CA1 synapses, however in contrast to 
TA-CA1 synapses, LTD evoked at SC-CA1 synapses does 
not require gene transcriptional changes [70].

Leptin Regulates Excitatory TA‑CA1 Synapses

Increasing evidence indicates that the TA input plays a 
fundamental role not only in activity-dependent synaptic 
plasticity at CA1 synapses, but also hippocampal depend-
ent memory processes [62, 71–74]. Recent studies indicate 
that leptin also modulates excitatory synaptic transmission at 
TA-CA1 synapses [60], however there are clear differences 
in the regulatory actions of leptin at TA-CA1 and SC-CA1 
synapses. Indeed, application of leptin induces a novel form 
of LTP at juvenile TA-CA1 synapses [60], which contrasts 
with the synaptic depression induced by leptin at SC-CA1 
synapses at the same age [49]. Leptin-induced LTP at juve-
nile TA-CA1 synapses is NMDA receptor-dependent and 

requires selective activation of GluN2B subunits. Further-
more, activation of PI 3kinase, but not ERK, signalling and 
subsequent insertion of GluA2-lacking AMPA receptors is 
required for leptin-induced LTP at TA-CA1 synapses [60]. 
Moreover, HFS-induced LTP occludes leptin-evoked LTP 
at the TA-CA1 synapses and vice versa suggesting com-
mon expression mechanisms underlie both forms of synaptic 
plasticity [60].

Collectively, these data indicate not only that leptin has 
opposing effects on excitatory synaptic transmission at 
SC-CA1 and TA-CA1 synapses, but also that distinct cel-
lular mechanisms underlie the ability of leptin to modulate 
synaptic efficacy at these anatomically distinct synaptic 
connections [49, 60]. Previous studies have demonstrated 
that at SC-CA1 synapses, the polarity of synaptic modula-
tion by leptin varies significantly with age and is also highly 
dependent on the molecular composition of NMDA recep-
tors [49]. Indeed, the role of different NMDA receptor subu-
nits in mediating the age-dependent effects of leptin parallels 
the developmental switch that occurs in the expression of 
NMDA receptor subunits from predominantly GluN2B-con-
taining to GluN2A-containing subunits in the hippocampus 
[75, 76]. This has led to the suggestion that activation of 
molecularly distinct NMDA receptor subunits that cou-
ple to specific signalling pathways is required for leptin-
driven alterations in excitatory synaptic strength at SC-CA1 
synapses [49]. However, although leptin-induced LTD 
at SC-CA1 synapses and leptin-induced LTP at TA-CA1 
synapses both involve GluN2B activation, divergent signal-
ling cascades are implicated in these leptin-driven events 
[49, 60]. As there are clear differences in the expression of 
ion channels and receptors, including NMDA receptors at 
TA-CA1 and SC-CA1 synapses [61, 63, 65, 66, 77], it is 
likely that the localisation and/or molecular composition of 
NMDA receptors is a key factor in determining not only the 
signalling pathways that are activated, but also the polarity 
of leptin’s effects on synaptic function.

Although the effects of leptin on excitatory synaptic 
transmission at adult TA-CA1 synapses has not yet been 
examined, in view of the reported bi-directional actions 
of leptin in juvenile hippocampus [49], it is feasible that 
opposing actions of leptin will also occur at the anatomically 
distinct CA1 synapses in adult hippocampus (see Table 1). 
Thus, in contrast to LTP induced by leptin at adult SC-CA1 
synapses, it is possible that application of leptin results in 
the induction of LTD at TA-CA1 synapses in adulthood. 
Moreover, as the sensitivity of SC-CA1 synapses to leptin 
declines with age [49], a similar reduction in leptin sensitiv-
ity may also occur at TA-CA1 synapses, such that the mag-
nitude of LTD evoked by leptin at aged TA-CA1 synapses is 
markedly attenuated. As PI 3-kinase activation underlies lep-
tin-induced LTP at both juvenile TA-CA1 and adult SC-CA1 
synapses, respectively (see Table 1), it is also possible that 
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analogous signalling cascades underlie leptin-induced LTD 
at both synapses. Thus, as ERK signalling is implicated in 
leptin-induced LTD at juvenile SC-CA1 synapses, ERK may 
also play a prominent role in leptin-induced LTD at adult 
TA-CA1 synapses.

A Link Between Leptin and Alzheimer’s Disease (AD)

It is well-established that neurodegenerative diseases like 
Alzheimer’s disease (AD) result in impairments in cognitive 
function, information processing and subsequent memory 
loss. Although there are some genetic risk factors for AD, 
most cases are sporadic with the underlying etiology of the 
disease unknown [78]. However evidence suggests that diet 
and lifestyle markedly influence the risk of developing AD 
[79]. Recent studies support a link between leptin levels and 
AD. Indeed, clinical evidence has identified that the risk of 
AD is significantly increased with mid-life obesity. Resist-
ance to leptin and/or dysfunctions in the leptin system may 
contribute to this risk as it is well established that obesity 
is due to development of leptin resistance. Clinical studies 
have found good correlation between weight loss and AD 
progression and eventual mortality [80]. Moreover signifi-
cant reductions in the serum leptin levels have been detected 

in AD patients [81, 82]. A prospective study by Leib et al. 
[83] also found a link between leptin and the incidence of 
AD as individuals that had high plasma levels of leptin but 
were not obese, had a significantly lower incidence of AD 
than those with low leptin levels.

Although most rodent models of AD do not fully rep-
licate the pathological and behavioural characteristics of 
human AD, attenuated circulating leptin levels have also 
been detected in various AD models [84, 85]. Moreover, a 
transgenic AD mouse model (APP/PS1) with elevated toxic 
amyloid-β (Aβ) plaques and memory loss, displays a reduc-
tion in Ob-R levels as well as key components of Ob-R sig-
nalling, including STAT3 and SOCS3 [86].

It is well known that age is a key risk factor for AD, and 
that dysfunctions in metabolic systems occur during normal 
ageing. In accordance with this, age-related alterations in 
the leptin system have been widely reported. Indeed, aged 
wild-type rats exhibit a reduction in Ob-R expression and 
an increase in SOCS3 and PTP1B [86–92]. The sensitivity 
of hippocampal SC-CA1 synapses to leptin is also markedly 
reduced with age [49]. This suggests that impairments in 
the leptin system may occur prior to Aβ plaque formation. 
Indeed, application of leptin restricts Aβ production and 
reduces the toxic burden of Aβ in AD-transgenic rodents 
models [91]. Consequently, impairment or age-related 
changes in the leptin system are likely to limit these protec-
tive actions of leptin and boost Aβ production. In addition, 
alterations in key Ob-R-related signalling pathways have 
been identified in various AD models. Thus, the levels of 
phosphorylated STAT3 are age-dependently reduced in a 
rodent model of AD whereas inhibition of JAK2–STAT3 
signalling by Aβ induces a significant loss in spatial working 
memory [93, 94]. Together this suggests that dysfunctions in 
the leptin system are associated with AD, and that boosting 
the central actions of leptin may have therapeutic benefit.

In support of the therapeutic potential of leptin, increas-
ing evidence indicates that exposure to leptin prevents both 
the acute and chronic actions of Aβ. A number of studies 
have shown that acute exposure of hippocampal slices to 
Aβ results in impairments in activity-dependent hippocam-
pal synaptic plasticity, such that Aβ blocks the induction 
of LTP, but enhances LTD [95, 96]. In addition, Aβ inter-
feres with glutamate receptor trafficking processes such that 
internalisation of GluA1 and GluA2 occurs after treatment 
of hippocampal neurons with Aβ [97–99]. Recent studies 
indicate that leptin prevents the detrimental effects of Aβ on 
hippocampal synaptic plasticity and glutamate receptor traf-
ficking. Thus, application of leptin rescues Aβ-induced inhi-
bition of LTP and facilitation of LTD [98, 99]. Furthermore, 
treatment with leptin prevents Aβ-driven internalisation of 
the AMPA receptor subunit, GluA1 [98, 99]. In addition 
to preventing the acute effects of Aβ, leptin also protects 
against the chronic actions of Aβ that result in neuronal 

Table 1   Summary of the age-dependent and bi-directional effects of 
leptin on synaptic efficacy at TA- and SC-CA1 synapses

Summary table highlighting the divergent actions of leptin at hip-
pocampal TA-CA1 and SC-CA1 synapses. In juvenile hippocampus, 
a novel form of LTD is induced by leptin that requires GluN2B acti-
vation and involves ERK-dependent signalling. Conversely, at juve-
nile TA-CA1 synapses, leptin induces LTP that involves activation of 
GluN2B-containing NMDA receptors and PI 3-kinase. In contrast to 
its actions in juvenile tissue, leptin induces LTP at adult SC-CA1 syn-
apses; a process that is GluN2A-dependent and involves PI 3-kinase 
driven insertion of GluA2-lacking AMPA receptors. Although not 
yet determined, it is speculated that leptin will induce a novel form of 
LTD at adult TA-CA1 synapses, that is likely to be GluN2A depend-
ent and may involve ERK-driven removal of GluA2 from synapses

TA-CA1 synapse SC-CA1 synapse

Juvenile (P11-18) hippocampus
 Leptin-induced LTP Leptin-induced LTD
 GluN2B-dependent GluN2B-dependent
 PI 3-kinase signalling ERK signalling
 Insertion of GluA2-lacking AMPA receptors Removal of GluA2 

lacking AMPA 
receptors

Adult (3–6 month) hippocampus
 Leptin-induced LTD Leptin-induced LTP
 GluN2A dependent? GluN2A dependent
 ERK signalling? PI-3K signalling
 Removal of GluA2 lacking AMPA receptors Insertion of GluA2-

lacking AMPA 
receptors
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cell death. In cortical neurons, leptin reduces neuronal cell 
death induced by either Aβ or Cu2+ ions, and it attenuates 
Aβ-driven upregulation of endophilin 1 and phosphoryl-
ated tau [98]. The levels of endophilin 1 and phosphoryl-
ated tau are also regulated by leptin as the levels of both 
proteins are significantly enhanced in cortical tissue from 
leptin-insensitive Zucker fa/fa rats [98]. Moreover, crossing 
leptin deficient or insensitive mice (ob/ob or db/db) with AD 
transgenic mouse models (APP23 or tauP301L) exacerbates 
AD-related pathology thereby providing further evidence 
that impairments in the leptin system may accelerate AD 
neurodegeneration [100, 101].

It is well established that the EC and hippocampus are 
two of the most severely affected brain regions, with intra-
neuronal changes occurring in the earliest stage of AD [102]. 
Histological studies indicate that the TA input undergoes 
significant morphological changes as a consequence of 
ageing but also in AD [103]. Indeed, reductions in mye-
lin staining and loss of synapses in this region have been 
observed in two pre-clinical models of tauopathy (tauP301L 
and tauP301L co-expressing GSK3β) [104]. Moreover, in an 
AD mouse model overexpressing mutant human tau, defi-
cits in synaptic plasticity at TA-CA1 synapses have been 
detected [105]. TA-CA1 synapses are thought to play a key 
role in spatial novelty detection, intermediate-term work-
ing memory as well as memory consolidation and remote 
memory retrieval [71, 72, 74, 106]. The TA input to CA1 
neurons is also implicated in integrating cortical and place 
cell information, thereby contributing to the formation of 
episodic memories [73]. Therefore, as TA-CA1 synapses 
are a target for the early pathological changes as well as the 
synaptic impairments that occur in AD, it is feasible that 
degeneration within the TA pathway contributes to episodic 
memory deficits occurring in the early stages of AD. Thus, 
as leptin levels are linked to AD risk, it is vital that there is 
greater understanding of how the ability of leptin to regulate 
TA-CA1 synapses alters with age and also in AD models.

Conclusions

In conclusion, it is now well established that the endocrine 
hormone leptin plays a pivotal role in regulating excitatory 
synaptic transmission at SC-CA1 synapses. However recent 
studies indicate that the anatomically distinct TA input to 
CA1 synapses, which is an early site for degeneration in AD, 
is also tightly regulated by leptin. As accumulating evidence 
links leptin levels to the risk of AD, and leptin has reported 
therapeutic benefit in AD models, the ability of leptin to 
regulate TA-CA1 synapses has important implications for 
the role of leptin in health and neurodegenerative disorders 
like AD.
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