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Abstract: Two-dimensional triangulated surface models for membranes and their three-dimensional
(3D) extensions are proposed and studied to understand the strain-induced crystallization (SIC) of
rubbers. It is well known that SIC is an origin of stress relaxation, which appears as a plateau in the
intermediate strain region of stress–strain curves. However, this SIC is very hard to implement in
models because SIC is directly connected to a solid state, which is mechanically very different from the
amorphous state. In this paper, we show that the crystalline state can be quite simply implemented
in the Gaussian elastic bond model, which is a straightforward extension of the Gaussian chain
model for polymers, by replacing bonds with rigid bodies or eliminating bonds. We find that the
results of Monte Carlo simulations for stress–strain curves are in good agreement with the reported
experimental data of large strains of up to 1200%. This approach allows us to intuitively understand
the stress relaxation caused by SIC.

Keywords: rubber elasticity; strain-induced crystallization; stress relaxation; Monte Carlo; stress–strain
curves; statistical mechanics

1. Introduction

Natural rubbers undergo strain-induced crystallization (SIC), which attracts a lot of attention
and has been studied extensively [1–4]. When the rubbers are stretched by an external tensile force,
the entangled polymers partly change into an aligned state, and, then, this aligned state gradually
converts into a crystalline state (Figure 1a,b). Moreover, if the stress is released after stretching or
loading, one can also observe that the crystallized part immediately starts to melt. In this recovery
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or unloading process, hysteresis can be observed in the stress–strain curve and crystallization ratio
(Figure 1c). This hysteresis indicates that the stress decreases due to the so-called crystallization-induced
strain relaxation [3], which can be called stress relaxation. Such a stress relaxation is considered to be
an equilibrium property because the stress–strain curve during the unloading process is close to the
equilibrium curve. However, the stress relaxation is contradictory to our intuitive understanding that
the mechanical strength is expected to be increased by the crystalline part of polymers, of which the
mechanical strength is very large compared to the amorphous part, at least for intermediate strain
region. Therefore, the stress relaxation by SIC should be studied in more detail to clarify how it can be
understood by a simple modeling technique on the basis of statistical mechanics.
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Figure 1. (a) The h state of rubber, where the polymer directions are isotropic, (b) extended or elongated
state of rubber, where the polymer directions align along the tensile force direction and strain-induced
crystallization (SIC) starts to appear, and (c) an illustration of stress–strain curves and crystallization ratio χ
for loading and unloading processes influenced by SIC. Small circles in (a,b) represent cross-linkers. In (c),
the letter A (B) denotes the point where crystallization starts (terminates) in the loading (unloading) process.
The stress τ(MPa) and the crystallization ratio χ(%) in (c) are taken from experimental data in [5].

It is also interesting to see that the changes in state observed in the SIC process share the universal
property with the first-order transition between gas and liquid; for example, [3]. From this first-order nature
of SIC, we understand that the plateau behavior in the stress–strain curve for the unloading process has
the same origin as that of the plateau in the pressure–density curve of the gas–liquid transition. On the
other hand, the difference between SIC and the gas–liquid transition is that the crystallization is seen only
partly in the case of rubbers, and this partial crystallization seems to occur due to the fact that the entangled
polymers cannot be disentangled by the simple loading process from the topological constraint.

Therefore, in general, the effect of SIC on the stress–strain curves is very difficult to implement in
the model [6]. In fact, it is easy to understand that the amorphous state is mechanically very different
from the crystalline state [7–12]. Since the stress and strain of the crystalline state are expected to be
completely different from those of the amorphous state, the mechanical response to external force is
also completely different between the two states. For this reason, the tensile energy or Hamiltonian of
the amorphous state cannot be shared by the crystalline state. This is one of the reasons why SIC is
hard to study from the viewpoint of statistical mechanical modeling, where the Hamiltonian for each
microscopic state should be defined explicitly.

In this paper, we use the tensile energy of the amorphous state of polymers simply by discarding
the implementation of energy for the crystalline state. The tensile energy of the amorphous state is the
so-called Gaussian bond potential, of which the one-dimensional version was originally assumed in the
Gaussian chain model for polymers, where “bond” corresponds to the segment of the linear chain [13].
The two-dimensional (2D) version of the Gaussian bond potential is used for the triangulated surface
models of membranes [14–17], and the 3D extension is straightforward with a tetrahedral lattice. In this
paper, 2D and 3D versions of the Gaussian bond potential are assumed for our new SIC modeling.
For these potential energies, the crystalline state can also be implemented simply by replacing elastic
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bonds with rigid bonds or empty bonds, where the rigid bond is a three-dimensional rigid body of
fixed length and has no tensile energy, and the empty bond also has no tensile energy; these models
are called the “rigid bond model” and “empty bond model”, respectively, in this paper. These two
models are close to each other in the sense that no tensile energy is defined on the bond corresponding
to the crystalline state.

It is well known from the thermodynamics of rubbers that rubber elasticity comes mainly from
entropy [18,19]. Since this entropy contribution is a major part of the elasticity, the rubber elasticity is called
entropy elasticity. However, we study rubber elasticity by statistical mechanical models in which two
different microscopic variables are assumed, and we will not go into the details of thermodynamic theory.

2. Models

2.1. 2D Lattice

A 2D triangulated lattice was originally constructed for the surface model of membranes [14–17].
Here, we use cylindrical lattices for the calculation of surface tension by fixing the boundary of the
cylinder, which will be shown in the following subsection. The lattice size N, which is the total number
of vertices including the boundary vertices, is given by N=L1(L2−1), where L1 and L2 are the total
number of vertices on the edges of the rectangular plate (Figure 2a). The height H0 and the diameter D
of the cylinder are assumed to be the same such that

H0 = D = (
√

3/2)(L1 − 1)a, (1)

where a is the lattice spacing or can be called the edge (or bond) length of the initial lattice. The lattice
spacing is fixed to a = 1 and eliminated from the expressions of bond length henceforth; however,
this spacing is restored if the units of surface tension are changed from the simulation units to the
physical units in a later section. The diameter D is given by πD=(L2−1)a. Therefore, from D=H0,
the relation L2 = (

√
3π/2)(L1−1)+1 is the condition for the triangles to be the regular triangle.

A snapshot of cylinders of size L2=14, L1=6, and N=78 is shown in Figure 2b, where the condition
L2=(

√
3π/2)(L1−1)+1 is not always exactly satisfied because the right-hand side is not an integer.
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Figure 2. (a) A cylindrical surface is made of a rectangular surface of size L1×L2, where L1 and L2 are
integers, and (b) a triangulated cylinder of size N=78, where the total number of boundary vertices
is Nbnd = 2(L2−1)=26. Small numbers L1(=6) and L2(=14) are assumed here to visualize triangles
clearly. The height H0 and the diameter D are given by Equation (1) with the edge length a.
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2.2. Rigid Bond Model and Empty Bond Model

Let ~ri(∈ R3), (i=1, · · · , N) be the vertex position of the lattice (Figure 3a), `i j= |~ri−~r j| be the bond
length (Figure 3b), and ~ni be the unit normal vector of the triangle (Figure 3c). These variables ~ri are
integrated into the partition function Z for 2D models (here, we discuss 2D surface models), and Z is
given by

Z(`0) =
∑
σ

∫ N−Nbnd∏
i=1

d~ri

Nbnd∏
i=1

d~ri exp(−S(~r, σ)), (2)

where the symbol `0 in Z(`0) indicates that the model implicitly depends on a constant `0, which will
be used to define the crystalline bond below. The symbol

∫ ∏N−Nbnd
i=1 d~ri denotes the 3D integration for

the internal vertices. The other
∫ ∏Nbnd

i=1 d~ri denotes 2D integration for the boundary vertices on the
upper and lower boundaries with a periodic boundary condition such that

ZU
i = ZL

i + H, X2
i + Y2

i = D2/4, (3)

where ZU
i and ZL

i denote the Z component of the vertex position ~ri = (Xi, Yi, Zi) on the upper and
lower boundaries (no confusion is expected for the symbol of the partition function and that of the
coordinate symbol). The second equation in Equation (3) denotes a constraint that the diameter of the
boundary circle is given by D (Figure 2a). The reason why

∫ ∏Nbnd
i=1 d~ri becomes a 2D integration is

that the boundary vertices are allowed to move not only along the boundary circle of fixed diameter
D, but also along the Z direction due to the periodic boundary condition. For the 3D thick cylinder
model,

∫ ∏Nbnd
i=1 d~ri becomes a one-dimensional integration because no periodic boundary condition

is imposed.
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Figure 3. (a) A triangular mesh or lattice and the vertex position~ri, (b) a triangle with vertices 1, 2, 3 and
edge lengths `12, `23, `31, and (c) the unit normal vectors ~n0 of the triangle 123, and those ~ni, (i=1, 2, 3)
of its neighboring triangles, where the suffix i denotes the corresponding triangle.

The symbol σ in Equation (2), which has values in {0, 1}, is another dynamical variable defined on
the bond i. The value of σ represents whether the bond i is rigid or amorphous:

σi =

{
0 (⇔ bond i = amorphous)
1 (⇔ bond i = rigid)

, (rigid bond model). (4)

The rigid bond is a rigid body, which is allowed to move by 3D rotation and translation.
In other words, two vertices i and j, which are connected by a rigid bond, move with a constraint
`i j(= |~ri−~r j|)=`

c
i j, where `c

i j is described in the following paragraph. In contrast, this constraint on `i j is
not imposed on any two vertices connected by an amorphous bond. Another model is the “empty
bond” model, which is defined by replacing “rigid” with “empty” in Equation (4) such that

σi =

{
0 (⇔ bond i = amorphous)
1 (⇔ bond i = empty)

, (empty bond model). (5)
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The variable σi in Equations (4) and (5) can be changed from σi=0 to σi=1 when the bond length
`i is `i>`0 using the constant `0 in Z(`0) according to the Monte Carlo update procedure described in a
later section. If σi is changed from σi=0 to σi=1, then the bond length `i is fixed to the length `c

i , which
is the length of bond i just before the change in σi in the rigid model. In the case of the empty bond
model, the length `i of the crystalline bond is changeable to a new length `′i if `′i < `

c
i , and this `c

i is also
changeable depending on the update of σi, which is the same as in the case of the rigid bond model.
The constraint `c

i > `0 is always satisfied in both models. The empty bond is almost close to the rigid
bond except that the length `i is changeable to `′i < `

c
i . This fact implies that the empty bond length `i

is also prohibited from extending to `′i >`
c
i . The bond configurations for amorphous, rigid, and empty

bonds are illustrated in Figure 4a–c.
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Figure 4. Illustration of the bond i for (a) σi = 0 corresponding to the amorphous bond, (b) σi = 1
corresponding to the rigid bond, and (c) σi =1 corresponding to the empty bond.

We should comment that the total number of degrees of freedom of variable ~r is slightly reduced
by crystallization. Indeed, in the rigid bond model, a crystalline bond is allowed to move by
three-dimensional translation and two-dimensional rotation, where the rotational degrees of freedom
are given as 2 because the bond is a one-dimensional object. Therefore, the 6 degrees of freedom, which
is the sum of the degrees of freedom for translations of the terminal vertices of the bond, is reduced
to 5 by crystallization. Thus, the total number of degrees of freedom is reduced by Ncr, which is the
total number of crystalline bonds, in the rigid bond model. In the case of the empty bond model, the
total number of reductions in the degrees of freedom of variable ~r is effectively considered to be Ncr/2
because the crystalline bond length is allowed to shrink even though the extension is not allowed, and,
for this reason, the reduction per crystalline bond is roughly estimated to be 1/2.

The Hamiltonian for the rigid and empty bond models is given by

S = S1 + bS2 + κS3 + U1 + U2,

S1 =
1
2

∑
∆

S1∆, S1∆ = `2
12 + `2

23 + `2
31,

S2 =
1
2

∑
∆

(
S(1)

2∆ + S(2)
2∆

)
, S(1)

2∆ = `4
12 + `4

23 + `4
31, S(2)

2∆ = 2
(
`2

12`
2
13 + `2

21`
2
23 + `2

32`
2
31

)
,

`i j =

{
|~r j −~ri| (σ = 0)
0 (σ = 1)

,

S3 =
1
2

∑
∆

(S3∆,1 + S3∆,2 + S3∆,3) , S3∆,i =

{
1− ~n0 · ~ni (σ = 0)
1− ~n0 · ~ni (rigid) or 0 (empty) (σ = 1)

,

(6)
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and

U1 =
∑

bond i

U1i(~r, σ), U1i(~r, σ) =
{
∞ (σi = 1 & `i , `

c
i : rigid) or (σi = 1 & `i > `

c
i : empty)

0 (otherwise)
,

U2 =
∑

bond i

U2i(~r, σ), U2i(~r, σ) =
{
∞ (σi = σ j = 1 & i and j are connected)
0 (otherwise)

,

(7)

where the first two terms S1+bS2 and the third term κS3 correspond to the tensile energy and the
bending energy, respectively, and the final two terms U1+U2 are constraint potentials. The symbol σ in
the definition of `i j is the variable σ on the bond connecting the vertices i and j. No difference between
the rigid and empty bond models is in the definition of `i j except that the length `i j of crystalline bond
i j is allowed to be `i j<`

c
i j in the case of the empty bond model. In contrast, the length of bond i j is

prohibited from being `i j>`
c
i j for σi j=1 in both models. In this sense, this definition of `i j is specific

to the models for SIC in this paper. In the bending energy S3∆,i(i=1, 2, 3), σ is defined on the bond
shared by triangles 0 and i (see Figure 3c). This definition of the bending energy is also specific to the
models for SIC in this paper. These specific definitions of `i j and 1−~ni · ~n j come from the fact that the
crystalline state is implemented in the context of the Gaussian bond model for polymers [13].

Due to the factor 1/2, the Gaussian bond potential S1 is identical to S1=
∑

bond i `
2
i , which is given

by the sum of bond length squares `2
i . The reason why the sum

∑
∆ is used for S1 instead of

∑
bond i is

because the discrete form of the quadratic term S2 is naturally given by
∑
∆, and the same summation

convention is used for S1. The numerical factor 1/2 in S2 is determined such that it is identical to the
factor in S1.

Note that U1 is the constraint potential for `i in both models. From this constraint U1, the length `i
of the empty bond is only allowed to be `i≤`

c
i , as mentioned above; however, this is strictly prohibited

for the rigid bond because `i should always satisfy `i=`
c
i from the definition of `i. The second constraint

U2 prohibits the crystalline bond i from being consecutively connected (Figure 5a), or, in other words,
every crystalline bond i must be isolated or linked to the amorphous bond j (Figure 5b). This constraint
U2 also plays a role in the constraint on the total number of crystalline bonds because the maximum
number of crystalline bonds is limited by a lattice geometric (or topological) reason.

As a consequence of the constraint U2, no constraint is imposed on the upper limit for the
crystallization ratio χ such that χ≤χmax, where χ is defined by

χ = (1/NB)
∑

bond i

σi, (8)

where
∑

i σi is the total number of crystalline bonds and NB(=
∑

i 1) is the total number of bonds.
The value of χmax depends on the dimension of the lattice, that is, whether it is a 2D or 3D lattice;
however, in both cases, χmax is reasonable in the sense that it is close to the experimental value, such as
χmax(Exp)' 0.1[1–4], which will be shown in the presentation section.

The mean value 〈Q〉 of physical quantity Q(~r, σ) (where the symbol Q denotes an arbitrary
quantity) is given by

〈Q〉 =
∑
σ

∫ N−Nbnd∏
i=1

d~ri

Nbnd∏
i=1

d~riQ(~r, σ) exp(−S(~r, σ))/Z. (9)

We simply write the mean value Q by removing the symbol 〈·〉 henceforth. To calculate these
multiple integrations and the sum

∑
σ over all possible configurations of σ, we use Metropolis Monte

Carlo (MC) simulations, which are described in the following section. Note that all physical quantities
are calculated with the dynamical variables ~r and σ, which are the vertex position ~r= {~r1, · · · ,~rN} and
the spin variable at the vertices σ= {σ1, · · · , σN}, respectively.
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Figure 5. (a) A configuration that is not allowed because the two bonds of σ=1 are connected, and (b)
a configuration that is allowed because the two bonds of σ=1 are separated. The maximal value χmax

of the crystallization ratio of Equation (8) is not given as an input parameter in the simulations, but it is
automatically determined by the constraint illustrated in the figure.

The 2D continuous forms of the Hamiltonian corresponding to the discrete S1 and S2 in Equation (6)
are given by

S1 =

∫
√

gd2xgab ∂~r
∂xa ·

∂~r
∂xb

, S2 =

∫
√

gd2x
(
gab ∂~r
∂xa ·

∂~r
∂xb

)2

, (10)

where gab is the inverse of a metric tensor gab given by the 2 × 2 matrix, and g is the determinant.
To obtain the discrete Hamiltonian, we simply assume that gab = δab, which is called the Euclidean
metric. By the replacements ∂1~r(= ∂~r/∂x1) → ~r2 −~r1 and ∂2~r → ~r3 −~r1 (see Figure 3b), and by the
symmetrization of the obtained expression of the Hamiltonian due to the three possible local coordinate
origins in a triangle, we have the discrete S1 and S2 in Equation (6). More detailed information on the
discretization is given in Ref. [20].

2.3. 3D Model

The three-dimensional (3D) continuous Hamiltonian is obtained from the 2D version in
Equation (10) simply by replacing the 2D integration

∫ √
gd2x with the 3D integration

∫ √
gd3x.

In the 3D case, the metric tensor gab is also replaced by a 3× 3 matrix. Thus, these 3D continuous S1

and S2 can also be converted to discrete forms on the 3D lattice, which is a thick cylinder (Figure 6a)
discretized by tetrahedrons (Figure 6b). On this thick cylinder, the vertices of tetrahedrons are
distributed only on the inner and outer surfaces, and, therefore, the thickness is negligible compared
with the diameter. Note also that in the 3D case, only the empty bond model is studied. The reason is
that, as we will see in the presentation section, there is almost no difference between the results of the
2D empty and rigid models, or the 2D empty model is slightly better for the stress relaxation behavior,
and, moreover, the empty model is more simple than the rigid model in its definition.
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Figure 6. (a) A cylinder for the 3D model, (b) a tetrahedron with vertices 1, 2, 3, 4 and the corresponding
edge length `i j, (i, j= 1,· · ·, 4), and (c) an internal angle φ1 of the triangle 123, where 1(1) and 2(1)
are the edges, of which the internal angle is φ1.
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The 3D version of the constraint potentials U1 and U2 has the same expressions as those in
Equation (7), and, hence, their expressions are not written below.

S = S1 + bS2 + κS3 + U1 + U2,

S1 =
1
N̄

∑
tet

S1 tet, S1 tet = `2
12 + `2

13 + `2
14 + `2

23 + `2
24 + `2

34,

S2 =
1
N̄

∑
tet

(
S(1)

2 tet + S(2)
2 tet

)
, S(1)

2 tet = `4
12 + `4

13 + `4
14 + `4

23 + `4
24 + `4

34,

S(2)
2 tet = 2

(
`2

12`
2
13 + `2

12`
2
14 + `2

13`
2
14 + `2

21`
2
23 + `2

21`
2
24 + `2

23`
2
24

+`2
31`

2
32 + `2

31`
2
34 + `2

32`
2
34 + `2

41`
2
42 + `2

41`
2
43 + `2

42`
2
43

)
,

`i j =

{
|~r j −~ri| (σ = 0)
0 (σ = 1)

,

S3 =
∑

triangle i

S3,i,

S3,i =

{
1− cos(φi −π/3) (σ1(i)=0 and σ2(i)=0, or empty)
0 (otherwise)

,

(11)

where
∑

tet in S1 and S2 denotes the sum over the tetrahedrons (Figure 6a). The symbol N̄ is the mean
value of the total number of tetrahedrons around a bond and is given by

N̄ = (1/NB)
∑

bond i

∑
tet(i)

1, (12)

where tet(i) is the total number of tetrahedrons around bond i, and NB is the total number of bonds.
Due to this factor 1/N̄, the term S1 is identical to S1=

∑
i j `

2
i j, which is given by the sum of bond length

squares `2
i j. The reason why the summation convention (1/N̄)

∑
tet is used instead of the simple form∑

i j for S1 is that the discrete S2 is naturally given by the sum over tetrahedrons as in the 2D case
described above, and the same summation convention is also assumed for S1. The symbol φi in S3,i is
the internal angle of the triangle (Figure 6c),

∑
i in S3 is the sum over all internal angles i, and σ1(i) and

σ2(i) in the definition of S3,i are σ at the bonds {1(i), 2(i)} in which the internal angle is φi (Figure 6c).
The symbol κ for the coefficient of S3 is the same as the bending rigidity κ for S3 of the 2D model in
Equation (6); however, no confusion is expected. In the case of the 2D model, S3 only resists pure
bending. In contrast, S3 of the 3D model in Equation (11) resists all deformations of the tetrahedron
except the homologous deformation.

2.4. Simulation Technique

The standard Metropolis technique is used to update the variables ~r and σ [21,22]. For the update
of ~ri at vertex i, a new position ~ri

′ is generated by three uniform random numbers δ~r inside a sphere of
fixed radius r0 such that ~ri

′=~ri+r0δ~r, where r0 is a positive number. The new ~ri
′ is accepted with the

probability Min[1, exp−δS], where δS is the change in the Hamiltonian due to the update of ~ri such
that δS=S(new)−S(old) under the constraints U1 and U2 on the bond length `i j and σi, respectively.
The constraint U2 is explicitly imposed on the update of σ, and this U2 also implicitly imposes a
constraint on the bond length `i j. Indeed, the constraint U2 on `i j in Equation (6) or Equation (11) for
σi j=1 together with U1 allows the bond length `i j to have only `i j=`

c
i j for the rigid bond model and

`i j<`
c
i j for the empty bond model. The rate of acceptance for the update of ~r depends on the number r0,

which is fixed so that the acceptance rate is approximately in the range between 50% and 80%.
The update of σi to the new σ′i is performed independently of the old σi with the probability

Min[1, exp−δS], which is the same expression for the update of ~r. In this update of σi, the change
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from σi=0 to σi=1, which is called crystallization, is allowed only when `i > `0. This crystallization
process, from σ =0 to σ = 1, causes a sudden decrease in Si(i=1, 2) for both rigid and empty models.
The energy S3 also discontinuously decreases in the empty model, while it remains unchanged in the
rigid bond model. Therefore, the crystallization process is determined only by Ui(i = 1, 2) in both
rigid and empty bond models. In contrast, the melting process, from σ = 1 to σ = 0, is not constrained
by Ui(i = 1, 2); therefore, this process is determined only by the energies Si(i = 1, 2, 3) in both rigid
and empty bond models. Indeed, in the rigid bond model, a sudden increase is expected in Si(i = 1, 2)
for the melting process, and in the case of the empty bond model, a sudden increase is also expected
in Si(i = 1, 2, 3) for this process. Therefore, the melting process is determined only by the change in
energy in both rigid and empty bond models according to the probability Min[1, exp−δS].

One more point on the update of σ that should be emphasized is that this update is performed
only once every 100 Monte Carlo sweeps (MCSs), where one MCS is composed of N consecutive
updates of ~r. The reason why the variables ~r and σ are updated in such an asymmetrical manner is
because a symmetrical or almost symmetrical update of σ causes a configuration with a nonuniform
distribution of crystalline bonds, where “symmetrical” means that the total number of updates of ~r
and σ in one MCS is the same. As a consequence of this nonuniform distribution of crystalline bonds,
χ for the large strain region becomes lower than that for the intermediate strain region. This effect will
be described in further detail in the presentation section.

2.5. Frame Tension as Tensile Stress

Detailed information on how to calculate the tensile stress is given in Ref. [20], and, here, we start
with the formula. The formula for the stress in the 2D models is given by

τsim =
2〈S1〉+ 4b〈S2〉 − (3N′ −Nbnd)

2A
kBT
a3 = τ

kBT
a3 (Pa), (13)

where kB and T are the Boltzmann constant and the temperature, respectively, A(=πDH) corresponds
to the true area of the cylinder, and τ is the simulated frame tension. We should note that 3N′ −Nbnd on
the left-hand side should be replaced by 3N′ − 2Nbnd for the 3D model because the integration for the
boundary vertices in Z of Equation (2) is the two-dimensional (one-dimensional) integration for the 2D
(3D) model. The total number of degrees of freedom 3N′ is given by 3N′=3N−Ncr (rigid bond model)
and 3N′=3N−Ncr/2 (empty bond model). As mentioned in Section 2.2, the total number of degrees of
freedom for the vertex move is slightly reduced by crystallization. For this reason, the number 3N in
Equation (13) is replaced by 3N′.

We briefly describe how to calculate the tensile stress τsim in Equation (13) and how to change the
unit from (N/m) to (Pa). The tensile stress is not directly calculated in our models because the materials
represented by 2D or 3D lattices are very thin. Indeed, the 2D lattice is a cylindrical surface, and the 3D
lattice is also regarded as a surface because its thickness is almost negligible compared to the diameter.
In contrast, the frame tension τ is calculable as a response to a mechanical constraint, which is imposed
by fixing the height H of the cylindrical surface (Figure 7a,b). For these reasons, τ is used to obtain τsim.
The calculation formula of τ is actually obtained by a property of the partition function Z in Equation (2)
under the scale change such as ~r→α~r (α>0), which is a change of variables in the multiple-integration
of Z. This property in Z is called scale invariance [23], and is expressed by Z(αr)=Z(r) for any α>0.
From this, we have dZ(αr)/dα|α→1=0. This derivative of Z is directly calculated from the expression
Z(αr) = α3N−Nbnd

∑
σ

∫ ∏N−Nbnd
i=1 d~ri

∏Nbnd
i=1 d~ri exp(−S(α~r, σ)), which is from the 2D model partition

function in Equation (2), where the periodic boundary condition is assumed on the boundary vertices.
Hence, the factor of α is calculated by 3(N−Nbnd)+2Nbnd=3N−Nbnd from the fact that the boundary
integration is two-dimensional. Note also that the total number of degrees of freedom 3N should be
replaced by 3N′, as mentioned above. Except for the total number of degrees of freedom and difference
in the symbols for energies, the calculation of dZ(αr)/dα|α→1 is exactly the same as those written in
Ref. [20]. Thus, we obtain the surface tension τ=(2〈S1〉+4b〈S2〉−(3N′−Nbnd))/2A. By multiplying
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kBT/a3 to this τ, we have the stress τsim in Equation (13) in the unit of (Pa). The reason for the
multiplication of kBT/a3 is as follows: First, we should note that the simulation unit is determined
by fixing kBT=1 (Nm) and a=1 (m), and, for this reason, all quantities with length units should be
multiplied by the lattice spacing a in the physical unit. For this reason, by replacing the area A in the
denominator of τ by Aa2, we obtain τ/a2 with the unit of (1/m2). Multiplying kBT to this τ/a2, we have
τkBT/a2 with the unit of (N/m). This the physical unit of the frame tension τ. Finally, to obtain the
quantity that has the unit of (N/m2), we have to multiply 1/a to this quantity once again, and this
leads to the expression of τsim in Equation (13).

������������������������ �������������������������������������

�

�

�

Figure 7. (a) Frame or projected area to be fixed to measure the surface tension τ, which can be called
frame tension, in the case of a square surface, and (b) projected area A=πDH is fixed to calculate τ in
the case of a cylindrical surface.

By assuming room temperature for T, we have

τsim =
(
4× 10−21

) τ
a3 (Pa). (14)

The symbol a(m) is the lattice spacing or the bond length, which corresponds to the coarse-grained
distance between polymer segments, and, hence, it can be fixed to an arbitrary number larger than
the van der Waals distance (∼10−10 (m)). This implies that the magnitude of the calculated τ can be
controlled arbitrarily such that τsim is comparable to experimental data τexp by using this parameter
a(>10−10).

The diameter D, which is equal to the initial height H0, is fixed such that the height strain

ε = H/H0 − 1 (15)

is zero for H=H0. For this purpose, MC simulations should be performed to obtain the correct value of H0,
which depends on the other parameters, such as b and κ, before the start of the production simulations.

Once H0 is obtained, the next task that should be done before the production simulations is to fix
the constant `0 in U1 of Equation (7). Using the value of H0, we fix `0 to

`0=H0/10 (16)

for both the 2D lattice of size N=10,230 and the 3D lattice of size N=9760. This value of `0 is crucial to
the shape of the crystallization ratio χ vs. strain, which influences the final result of the stress–strain
diagram. However, the results are almost independent of a small variation of this value of `0. The factor
1/10 in `0=H0/10 is expected to be dependent on the size N in general because H0 depends on L1 as
in Equation (1), and this L1 determines N such that L1 = 15 for the 2D lattice of size N=10,230 and
L1 =8 for the 3D lattice of size N= 9760. We should note that the value of `0 or H0 depends on the
experimental data of stress–strain curves to be fitted and on whether the model is 2D or 3D. In this
paper, we assume Equation (16) for `0 because the experimental data of stress–strain curves are well
reproduced, as we see in the following section.
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3. Monte Carlo Results

3.1. Snapshots

Snapshots for the 2D and 3D empty models are shown in Figure 8a–f, respectively. Small red
lines denote the crystalline bonds corresponding to σ=1. The crystallization ratio χ for the 2D empty
model in Figure 8a–c is χ ' 0.0035, χ'0.060, and χ ' 0.12, respectively, and χ for the 3D model in
Figure 8d–f is χ ' 0.0016, χ ' 0.026, and χ ' 0.083, respectively. The value of χ ' 0.12 in Figure 8c
for the 2D model is close to χmax ' 0.15, and χ ' 0.083 in Figure 8f for the 3D model is also close to
χmax ' 0.09. We should note that the crystalline bonds are uniformly distributed in both the outer and
inner surfaces in the case of the 3D model.

���������������������� ���������������������� ��� ������������������������������������������������������	�

Figure 8. Snapshots of the (a–c) 2D empty model and (d–f) 3D model, where small red lines denote the
crystalline bonds. The crystallization ratio is (a) χ ' 0.0035, (b) χ ' 0.060, (c) χ ' 0.12, (d) χ ' 0.0016,
(e) χ'0.026, and (f) χ ' 0.083.

3.2. Results of 2D Models

Pradhan et al. [24] synthesized elastomer nanocomposites with nanoparticle dispersion and
studied their mechanical properties. The strain of the carboxylated nitrile rubber (XNBR) with layered
double hydroxide (LDH) is reported to be very large (∼1000% or more), and the stress–strain data are
influenced by SIC; hence, XNBR/LDH is similar to natural rubber. For this reason, we compare our
simulation results with the experimental data of these materials denoted by XL5 and XL10 in Ref. [24].
The numbers 5 and 10 denote the LDH content with the units of phr, parts per hundred rubber.

The reason why these experimental data, reported in [24], are compared with the simulation data
is that these reported data are considered to be of an equilibrium state. In contrast, experimental data
of natural rubber such as those plotted in Figure 1c are not of equilibrium state, although the data
obtained in the unloading process are almost close to those of the equilibrium state.

As described in the introduction, SIC causes a plateau in the intermediate strain region of
stress–strain curves, and, moreover, an upturn of the curve or hardening is observed in the large
strain region where the plateau terminates. This upturn is also due to the limitation of extensibility
of the polymer chains [24]. For this reason, the authors in Ref. [24] used a modified Mooney–Rivlin
equation [25,26] to see whether SIC truly influences the stress–strain curves, and found that XL5 and
XL10 are influenced by SIC. Here, we should note that, as mentioned in the introduction, we focus
on the stress relaxation in this paper. For this reason, the upturn in the large strain region is simply
implemented in the models by the term S2, which is quadratic with respect to the bond length `i j,
and, therefore, it is almost independent of crystalline bonds.
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In Figure 9a, the experimental data (×:Exp) of XL5 and the simulation results (© and 4) of the 2D
rigid bond model are plotted. The parameters b and κ are fixed to b = 0.003 and κ = 0.85, respectively.
The coefficient b of S2, which is the quadratic part of tensile energy, is fixed to a nonzero value, though it
is very small compared to the coefficient 1 of S1. This small but nonzero b plays a role in the large strain
region to increase τsim in both models, as mentioned above. The assumed value of `0 in Equation (16)
for 2D models is given by

`0 = 2.43a (2D rigid, XL5), `0 = 2.45a (2D empty, XL5). (17)

The simulation data (©) correspond to χ = 0, which implies that no crystalline bond is included.
We find that no plateau region is included in the data of χ = 0. In contrast, the curve of data (4) is
clearly different from (©) and has a small plateau at the region 2<ε<4, where χ plotted in Figure 9b
increases from χ = 0 to χmax('0.15). This result implies that τ decreases with increasing χ, and, hence,
this corresponds to the stress relaxation induced by SIC. The reason why τ (4) becomes lower than
τ (©) is very simple to understand because the crystalline bond is defined to have no tensile energy,
and, therefore, 〈S1〉, 〈S2〉, and 3N′ in τsim of Equation (13) decrease with increasing χ. The results of
the 2D empty bond model are plotted in Figure 9c,d, which are almost the same as those of the 2D
rigid bond model shown in Figure 9a,b. The parameters b and κ in the 2D empty model are fixed to
b = 0.002 and κ = 0.85, respectively, which are almost the same as those fixed in the 2D rigid model.

Thus, the stress relaxation is understood to be a result of the fact that the total tensile energy
accumulated in the amorphous part is simply decreased by crystallization in real materials. Indeed,
the total number of segments of the amorphous part that shares the tensile energy is decreased by
SIC in the models. Moreover, in real materials, at the small strain region where the crystallization
starts to increase, almost no accumulation of the tensile energy is expected in the crystalline part. This
property in real materials is shared by the models in this paper. However, the tensile energy shared
by the crystalline part cannot be neglected for the large strain region, where the amorphous part is
almost maximally extended and has no room for the accumulation of tensile energy. This property is
not shared by the models in this paper, and, for this reason, the sudden upturn by SIC at the large
strain region is not reproduced.
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Figure 9. (a) The stress τsim vs. strain ε obtained by the 2D rigid model for the experimental data
XL5 (×) and (b) the corresponding χ vs. ε; (c) τsim vs. ε obtained by the 2D empty model and (d)
the corresponding χ vs. ε. In both (a) and (c), the symbol (©) denotes the data without crystallization
obtained by assuming the same values of parameters b and κ assumed for the data (4).
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We consider that a part of the difference between the curves (©) and (4) corresponds to the
entropy change. The temperature in the recovery process is also expected to be lower than that in
the extension process in real experiments, and this temperature difference is due to the decrease in
entropy from the thermodynamics viewpoint. The decrease in entropy from the microscopic viewpoint
is naturally expected from our models because the crystalline bond of σ = 1 effectively decreases the
total number of degrees of freedom for the variables ~ri, as mentioned in Section 2.2.

In Figure 10a–f, χ vs. MCS are plotted, and the convergence of MC simulations for 2D rigid
and empty bond models are shown. We find that in both models, the convergence at the transition
region (Figure 10b,e), where χ has an intermediate value between 0 and χmax, is relatively slower than
those at small (Figure 10a,d) and large strain regions (Figure 10c,f). The slow speed of convergence at
the intermediate strain region is reasonable because crystallization is understood to be a first-order
transition. One more point to note is that χ has an intermediate value between χ= 0 and χmax in
Figure 10b,e. This observation indicates that χ smoothly changes with respect to strain ε even though
SIC is a first-order transition. We will not go into detail on this first-order transition because our focus
in this paper is not on the first-order nature of the crystallization.

Finally, in this subsection, we should comment on the reason for why the MC update of σ is
performed only once every 100 MCSs. As mentioned in Section 2.4, the crystallization ratio χ at the
large strain region becomes slightly smaller than χmax if the MC update is performed more frequently.
This result comes from the fact that the convergence speed of the variable ~r is very slow compared with
that of σ. In other words, if σ is updated more frequently before the lattice configuration is equilibrated,
then the crystalline bonds of σ = 1 are expected to be distributed non-uniformly, and χ will be smaller
than χmax at the large strain region.
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Figure 10. The crystallization ratio χ vs. Monte Carlo sweep (MCS) of the 2D rigid model obtained at
(a) ε'2.65, (b) ε'3.47, and (c) ε'7.58, and the ratio χ vs. MCS of the 2D empty model at (d) ε'2.63,
(e) ε'3.45, and (f) ε'5.90.

3.3. Results of the 3D Model

Now, we show the simulation results of the 3D empty bond model. The main difference between
3D and 2D models is that the Hamiltonian depends on the dimension D, and this difference in
dimension is a huge difference in general from the modeling view point, and, therefore, it is interesting
to see whether or how the results change depending on the dimension D. The reason for why only the
empty bond model is simulated in the 3D case is because no specific difference is found between the
two models, rigid and empty, in the 2D case. The obtained results τsim and χ are plotted in Figure 11a–d
together with the reported experimental data. The symbols (×:Exp) in Figure 11a,c correspond to
the experimental data denoted by XL5 and XL10, respectively [24]. The parameters (b,κ) are fixed
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to (b,κ) = (0.0015, 0.3) and (b,κ) = (0.003, 0) for the experimental data XL5 and XL10, respectively.
The value of `0 in Equation (16) for the 3D model is given by

`0 = 2.69a (3D empty, XL5), `0 = 2.84a (3D empty, XL10). (18)

We find that the simulation results by the 3D empty model are in good agreement with the
experimental data, just as in the case of the 2D models.

We plot χ vs. MCS obtained at the small, intermediate, and large strain regions in Figure 12a–c to
see the convergence of the MC simulations. It is clear that the convergence speed in the intermediate
strain region is also slower than that in the small and large strain regions, as in the 2D models. Note also
that the convergence speed of the 3D model is relatively faster than that of the 2D models. We consider
that this result comes from the fact that the surface or lattice fluctuation of the 3D models is relatively
smaller than that of the 2D model, or, in other words, the phase space volume for the MC update of
the polymer position ri is expected to be relatively smaller in the 3D model than in the 2D models.
Indeed, the 2D lattice is composed of triangles, and, hence, the vertex position easily moves even when
κ is fixed to κ = 0.85. In contrast, the 3D lattice is composed of tetrahedrons, and, hence, the vertices
hardly move compared to those on the 2D lattice.

0 5 10
0

4

8

ε

b=0.0015
κ=0.3

(a)

:χ=0
:3D empt
:Exp

τsim

(100%)

(MPa)

XL5

0 5 10
0

0.05

0.1

ε

b=0.0015
κ=0.3

(b)

χ

3D empt

(100%)

0 5 10
0

10

20

ε

b=0.003
κ=0

(c)

:χ=0
:3D empt
:Exp

τsim

(100%)

(MPa)

XL10

0 5 10
0

0.05

0.1

ε

b=0.003
κ=0

(d)

χ

3D empt

(100%)

Figure 11. (a) The stress τsim vs. strain ε obtained by the 3D empty model for the experimental data
XL5 (×) and (b) the corresponding χ vs. ε; (c) τsim vs. ε obtained by the 3D empty model for the
experimental data XL10 (×) and (d) the corresponding χ vs. ε. In both (a) and (c), the symbol (©)
denotes the data without crystallization obtained by assuming the same values of parameters b and κ.
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Figure 12. The crystallization ratio χ vs. MCS of the 3D empty model obtained at (a) ε'1.37, (b) ε'2.49,
and (c) ε'8.43.
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Next, we calculate the assumed lattice spacing a to calculate τ, as plotted in Figures 9 and 10.
The results are shown in Table 1. The lattice spacing is considered to be the unit of distance between
two neighboring vertices, which are understood to be coarse-grained lengths of polymer segments
(see Equations (17) and (18)). Therefore, the value of a should be at least larger than the van der
Waals distance ('10−10 [m]). From Table 1, we find that all assumed a values are larger than 10−10 [m],
and, therefore, lattice modeling is meaningful as a coarse-grained technique for polymer networks.

Table 1. The lattice spacing a used for τsim (in Equation (14)) plotted in Figures 9 and 11.

Figures Model a[m] for Data (©) a[m] for Data (4)

Figure 9a 2D rigid 1.305× 10−9 1.307× 10−9

Figure 9c 2D empty 1.329× 10−9 1.365× 10−9

Figure 11a 3D empty 1.265× 10−9 1.269× 10−9

Figure 11c 3D empty 1.654× 10−9 1.629× 10−9

Finally, in this subsection, we plot the mean length `cr for crystalline bonds in Figure 13a,b. This `cr

is not always identical to `c
i in Equation (7) because of the constraint `cr < `c

i for the crystalline bond
length in the empty bond model. However, as described in Section 2.2, `c

i is dynamically changeable,
and, hence, `cr is also dynamically changeable and depends on the strain ε. The sudden jump of `c

i in
Figure 13a for the 2D models implies that there are no crystalline bonds in the small strain region close
to ε'0, and the nonzero `c

i in Figure 13b implies that there is more than one crystalline bond even in
the small strain region in the case of the 3D model. We find that `c

i increases with increasing ε, and this
behavior is consistent with that observed in real materials [3].
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Figure 13. The mean length `cr of crystalline bonds corresponding to (a) 2D rigid and empty models
and (b) the 3D empty model for the experimental data XL5 and XL10.

3.4. Dependence on Stiffness κ

In the preceding subsection, two different experimental data, XL5 and XL10, are simulated and
plotted in Figure 11a,c, where the stiffness κ = 0.3 and κ = 0 are assumed, respectively. However,
the dependence of the results on κ is not so clear. Therefore, in this subsection, we should discuss the
effect of stiffness κ on the stress–strain curve and clarify that the effect of κ is different from the effect of
SIC. First, we plot in Figure 14a the results of 3D model with the crystalline state (©) (⇔ χ > 0) and
those without the crystalline state (4, O) (⇔ χ= 0), where κ is fixed to κ= 1 and κ= 0, respectively.
In Figure 14a, the values of τ are given by Equation (13) without the factor kBT/a3, and these are raw
simulation data expressed by the simulation unit. It is clear from Figure 14a that the data (©) decrease
in the intermediate strain region and are smaller than the other two data (4, O) of χ=0, except in the
smaller strain region. This decrement of τ (©) is understood to be due to the crystalline states.

To see the effect of κmore clearly, the stress τsim, which includes the factor kBT/a3 in Equation (13),
is plotted in Figure 14b with the experimental data (×). Inside Figure 14b, the data in the small strain
region are drawn by solid and dashed lines. We find from these solid and dashed lines that the
increment of κ increases the stress only at the region ε≤ 2.5. On the other hand, SIC has no effect
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on the stress in the small strain region in general, because SIC is effective only at the large strain
region, such as ε≥2.5, for example. Thus, we find from these numerical data that the stress relaxation
by SIC is independent of the effect of κ. In other words, the stress relaxation by SIC, observed in
experimental data, is unable to be understood without the crystalline states, such as the rigid or empty
bond introduced in Section 2.2, at least in the framework of standard Gaussian chain models.

We also find that the results of the 2D models without crystalline states are completely inconsistent
with the experimental data even when κ is increased to be sufficiently large. This means that, in the
case of 2D models, experimental data can only be reproduced with the crystalline states, which are
introduced by rigid bonds or empty bonds in Equations (4) and (5).
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Figure 14. (a) The stress τ vs. ε obtained by the 3D model with the crystalline state (©) and without
the crystalline state (4, O), and (b) the stress τsim vs. ε obtained without the crystalline state. The stress
τ in (a) has the simulation unit, which corresponds to kBT=1 and is not modified by the factor kBT/a3

in Equation (13), while the stress τsim in (b) has the real physical unit (MPa) and is modified by the
factor kBT/a3. Experimental data denoted by Exp (×) in (b) are XL5, the same as in Figure 11c.

4. Summary and Conclusions

We have studied the equilibrium property of stress relaxation observed in rubbers undergoing
strain-induced crystallization (SIC) by Monte Carlo (MC) simulations for simple models constructed by
extending the Gaussian chain model. Two types of new models, rigid and empty, are introduced and
studied. In these models, a new variable σ is introduced, and it is defined on the bond to distinguish
the amorphous and crystalline states. The crystalline state is simply defined to have no tensile energy,
where the tensile energy is given by a spring potential or the so-called Gaussian bond potential and is
defined only on the amorphous state.

We find that the obtained MC results for the stress–strain curves are in good agreement with the
existing experimental data of composite materials, of which the mechanical property was reported
to be close to that of natural rubber, and the corresponding stress–strain curves are influenced by
SIC [24]. Here, we have to emphasize that these experimental data are not time-dependent ones,
which can be considered the equilibrium ones, and, hence, can be close to unloading stress–strain
curves. In the simulation data, stress relaxation is clearly observed in the intermediate strain region,
where the crystallization ratio χ starts to increase. The fact that no tensile energy is accumulated in the
crystalline bonds in our models indicates that the stress relaxation is simply due to the decrease in
the tensile energy of the amorphous state, where this decrease in energy is in the sense that the total
energy is decreased due to the change in state from amorphous to crystalline. No contribution to the
tensile energy is expected from the crystalline state, at least in the intermediate strain region.

In this paper, we focus only on stress relaxation, and the upturn of the stress–strain curve or
hardening at the large strain region is implemented simply by including a quadratic term in the tensile
energy, which is not directly connected to the crystalline state. This upturn of the stress–strain curve
is another interesting phenomenon associated with SIC, and, hence, it remains to be studied more
intuitively from a microscopic viewpoint.
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