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Abstract: A theoretical solution of the problem of thick-walled shell optimization by varying the
mechanical characteristics of the material over the thickness of the structure is proposed, taking
into account its rheological properties. The optimization technique is considered by the example
of a cylindrical shell made of high-density polyethylene with hydroxyapatite subjected to internal
pressure. Radial heterogeneity can be created by centrifugation during the curing of the polymer
mixed with the additive. The nonlinear Maxwell–Gurevich equation is used as the law describing
polymer creep. The relationship of the change in the additive content along with the radius r, at
which the structure is equally stressed following the four classical criteria of fracture, is determined
in an elastic formulation. Moreover, it is shown that a cylinder with equal stress at the beginning of
the creep process ceases to be equally stressed during creep. Finally, an algorithm for defining the
relationship of the additive mass content on coordinate r, at which the structure is equally stressed at
the end of the creep process, is proposed. The developed algorithm, implemented in the MATLAB
software, allows modeling both equally stressed and equally strength structures.

Keywords: polymers; heterogeneity; creep; stress–strain state; equal-strength structures; equally
stressed structures; thick-walled shells; optimization; high-density polyethylene; hydroxyapatite;
centrifugation

1. Introduction

Thick-walled cylindrical shells are widely used in the gas, oil refining, chemical,
petrochemical, and food industries, in the form of pipes, tanks, high-pressure vessels,
and others. From the solution of the Lamé problem, it is known that for a homogeneous
thick-walled cylinder under internal pressure, the maximum circumferential stresses are at
the inner surface. Thus, in this case, the strength of the material is not fully implemented
in these types of structures.

When creating an artificial inhomogeneity of the material, the stress–strain state
in thick-walled cylindrical shells subjected to internal pressure can change significantly.
The analysis of the stress–strain state of radially inhomogeneous thick-walled cylinders
with different laws of variation in the modulus of elasticity along the radius, including
exponential, power-law, etc., was carried out in [1–5]. This analysis showed that in contrast
to homogeneous structures, maximum stresses do not necessarily occur at the inner surface
of the shell.

For optimal use of the material strength, it is necessary to ensure that the limiting
state occurs simultaneously at all points, that is, to create an equal-strength structure.
For example, if the elastic modulus is reduced at the points of a thick-walled cylinder
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with higher stresses, then the stresses in them decrease, and vice versa [6–8]. Thus, when
changing the modulus of elasticity of the material in the structure’s thickness according
to a specific law, it is possible to achieve the constant equivalent stress according to any
failure criterion. In this case, the structure is equally stressed. An equally stressed structure
can be of equal strength if the strength of the material does not change when the elastic
modulus changes.

The described idea is based on the inverse method of structure optimization. The
essence of the approach is to find such laws of variation in material characteristics, in which
the stress–strain state of the structure is given [9]. In [10], a technique for achieving constant
hoop stress throughout the thickness of a cylinder subjected to hydrostatic boundary loads
is proposed. In [9,11,12], solutions are presented for the problem of finding the law of
change in the modulus of elasticity of a material, in which thick-walled cylinders and
spheres subjected to the action of internal pressure are equally stressed according to the
criterion of maximum shear stresses and the maximum elastic distortional energy criterion.
In [13], the solution to this problem is presented based on Mohr’s failure criterion. It is
shown that from the solution based on Mohr’s theory, it is possible to obtain, as special
cases, solutions based on three classical failure criteria: the criterion of maximum normal
stresses, the criterion of maximum deformations, and the criterion of maximum shear
stresses. The works [14,15] consider the model of an equally stressed cylinder based on the
Balandin failure criterion.

In [16], the plane strain problem for a functionally graded cylinder subjected to
both normal and tangential nonuniform external pressure is solved. Both the power and
exponential laws of the shear modulus were considered. In addition, the authors managed
to identify a radial variation pattern in which the linear combination of the radial and the
hoop stress can follow a given distribution.

In articles [17,18], in addition to concentrated loads, temperature effects are taken
into account when solving optimization problems. In [19,20], the technique of varying the
material’s mechanical characteristics is considered to create equal-strength bar structures.

The practical implementation of an equally stressed cylinder manufacture can be
performed according to the method proposed in [21]. First, the polymer mass is mixed
with a finely dispersed mineral filler. Then the composite is placed into a cylindrical shape
that rotates as the polymer cures. In this case, the solid phase is displaced to the periphery
under the action of inertial forces, nonuniformly distributed along the cylinder radius. As
a result, the modulus of elasticity is changed. By changing the type of filler, its percentage,
and the speed of rotation of the centrifuge, it is possible to bring the function of variating
the modulus of elasticity closer to the required one. This method is widely used in the
production of centrifuged concrete [22–25].

The mechanical properties of some polymers can also be modified by exposing them
to light of different intensities [26]. For example, for a fiber-reinforced composite, the
volume fraction of the fibers and their orientation in the direction of thickness can vary to
obtain a suitable modulus gradation [27].

In all the works above, the solution of optimization problems is performed in a linear
setting. There are few publications on the analysis of heterogeneous thick-walled shells
taking into account nonlinearity. In [28], the analysis of dilatation deformations of a
functionally graded material (FGM) second-order elastic thick-walled spherical shell is
carried out. The material is assumed to be isotropic and incompressible. In [29], a closed-
form solution for a hollow multilayer sphere made of transversally isotropic and hyper
elastic FGM is obtained. The axisymmetric problem for a nonlinear elastic hollow sphere is
also considered in [30]. In [31], the same methods of a similar problem for a thick-walled
cylinder are used. In [32], a nonlinear finite element analysis of thermo-elasticity of a
thick-walled FGM cylinder is carried out, taking into account the dependence of material
properties on temperature. In [33], the analysis of thermal loads of a thick-walled cylinder
is carried out, taking into account nonlinear kinematic hardening. The load is represented
by constant internal pressure and cyclic temperature gradient loading.
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An essential aspect in the calculations of radially inhomogeneous cylinders is the
experimental verification of deformation models. The paper [34] presents experimental
tests of hollow bamboo cylinders for the action of internal pressure. Bamboo is a natural
material with radial inhomogeneity. The results presented in [34] confirm the reliability
of the theoretical solutions considered above. Additionally, in [35], experimental studies
of radially inhomogeneous cylinders made of epoxy resin with a diabase flour filler were
carried out, which showed a good agreement between the experiment and theory.

Many materials are characterized by the phenomenon of creep, which can significantly
affect the stress–strain state. However, there are relatively few works in the literature on
the analysis of the creep of inhomogeneous structures in the form of thick-walled cylinders
and spheres [36,37], and optimization problems with the creep taken into account have
not been considered previously. Therefore, the aim of this work is to solve the problem of
optimizing a thick-walled cylinder taking into account the material creep.

2. Materials and Methods

The optimization algorithm using the example of a thick-walled cylinder made of
high-density polyethylene (HDPE) with the addition of hydroxyapatite is considered below.
A cylinder with an inner radius a and an outer radius b under the action of an internal
pressure pa is in the condition of plane strain (Figure 1).
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For many types of polymers, the generalized Maxwell–Gurevich equation shows good
agreement with the experimental data [38], which in the case of a triaxial stress state has
the form:

∂ε∗ij
∂t =

f ∗ij
η∗ , i = r, θ, z; j = r, θ, z;

f ∗ij =
3
2
(
σij − pδij

)
− E∞ε∗ij;

η∗ = η∗0 exp
(
− | f

∗
max |
m∗

)
; f ∗max =

∣∣∣∣32 (σrr − p )− E∞ε∗rr

∣∣∣∣
max

(1)

where ε∗ij is the creep strain, E∞—high elasticity deformations modulus, η∗0 —initial
relaxation viscosity, δij—Kronecker symbol, p = (σr + σθ + σz)/3—the average stress,
m∗—velocity modulus, and index rr corresponds to the directions of principal stresses.

A detailed study of a hydroxyapatite additive (HA) effect on HDPE properties was
presented in [39]. In [38], the creep curves of the modified HDPE are processed to obtain
the dependence of the physical and mechanical parameters of the material on the various
percentages of HA additives:

E(HA) = 694 + 1251·HA [MPa];

E∞(HA) = 228.9 + 1093·HA [MPa]
(2)



Polymers 2021, 13, 2408 4 of 13

where HA is the hydroxyapatite (wt. %).
Thus, when 30% hydroxyapatite is added into high-density polyethylene, the elastic

modulus can increase up to 1.5 times.
The optimization algorithm in the elastic setting is as follows:

• At the first stage, a homogeneous structure is calculated numerically, by the finite
difference method or by the finite element method, at E = const, and equivalent stresses
are determined according to a given strength theory. Using the finite-difference
method to determine the stress–strain state of the cylinder, Equation (3) [38] can
be used:

σ
′′
r + ϕ(r)σ′r + ψ(r)σr = 0 (3)

where ϕ(r) = 3
r −

E′
E ; ψ(r) = − 1

r

[
1−2ν
1−ν

E′
E

]
.

The dash here denotes the derivative with respect to r. When E = const, E’ is equal to
zero. The boundary conditions are:

σr(a) = −pa; σr(b) = 0 (4)

Stresses σθ can be defined as

σθ(r) = rσ′r + σr (5)

• The modulus of elasticity is corrected at each node by the formula:

Ei := Ei
1 + σeqv,i/σ0

2
(6)

where σeqv,i—equivalent stress at the i-th node and σ0 is the equivalent stress on the
inner surface at r = a.

In this case, the elastic modulus at the inner surface remains constant.

• The calculation is performed with the corrected values of the modulus of elasticity
using Equation (3), or the finite element method, and the equivalent stresses are
also determined.

Steps 2–3 are repeated until the difference between the elastic modulus values at the
outer surface at the previous, and the next steps become less than a predetermined error.

Taking the creep into account, minor adjustments are made to the optimization algo-
rithm, which is discussed below.

3. Results
3.1. Optimization Results in Linear Elastic Setting

The calculation with the following initial data is performed: a = 15 cm, b = 22 cm,
ν = 0.3, pa = 1 MPa. The initial value of the elastic modulus of HDPE without additives is
E0 = 694 MPa.

Figure 2 shows the dependencies of the modulus of elasticity on the radius for an
equally stressed cylinder at the initial moment. Four classical failure criteria were used:
maximum stress criterion, maximum strain criterion, the Tresca criterion of maximum
shear stress, and the von Mises criterion of maximum elastic distortional energy.

A comparison was made with the analytical solutions presented in [9,11,12,40] for
all the curves obtained. The discrepancy between the results is insignificant. It can be
seen from the presented graphs that the most significant difference between the elastic
moduli on the inner and outer surfaces is obtained according to the maximum shear
stress criterion, and the smallest is according to the maximum stress criterion. Thus, the
criteria of maximum shear stress and maximum elastic distortional energy give relatively
close results.
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If the dependence of the elasticity modulus on the hydroxyapatite content is known,
the content of hydroxyapatite can be found by the formula:

HA, % =
E− 694 MPa

1251 MPa
· 100% (7)

Figure 3 shows the dependencies of the hydroxyapatite content on the radius for an
equally stressed cylinder, corresponding to four failure criteria. It can be seen from the
presented graphs that, except for the maximum stress criterion, in other cases, the content
of hydroxyapatite is beyond the limits of experimental data [9,11,12] (exceeding 30% on
the outer surface).

A minor difference between the modulus of elasticity on the inner and outer surfaces
will be required with a thinner shell, but the effect of creating artificial inhomogeneity will
be more negligible.

As a result of creating an artificial inhomogeneity, there is a noticeable decrease in the
maximum stresses. Figure 4 shows the graphs of the distribution of hoop stresses σθ along
the radius for a homogeneous cylinder and equally stressed according to the maximum
stress failure criterion one. The maximum stresses decreased from 2.73 to 2.14 MPa, i.e.,
1.28 times.

The change of the stress–strain state during creep in a cylinder that initially has an
equal stress state is discussed below.

In a homogeneous cylinder, under the action of only a static load during creep, the
stresses σθ first relax, and then return to the elastic solution (Figure 5). There is the following
explanation for this. In [41], it is shown that to obtain a solution at the end of the creep
process using the one-term version of the Maxwell–Gurevich equation, the instantaneous
constants E and ν can be replaced in the elastic solution with long-term ones determined
by the formulas:

Ẽ =
E · E∞

E + E∞
; ν̃ = ν

1 + E/(2νE∞)

1 + E/E∞
(8)
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Since the stress distribution in the solution of the Lamé problem does not depend on
the elastic constants, at the end of the creep process, it will be the same as at the beginning.

As a result of the cylinder calculation, the hydroxyapatite content changes following
Figure 3 (maximum stress criterion). It was found that a cylinder with equal stress at
the initial moment ceases to be equally stressed during creep. The graphs of the stresses
σθ distribution along the radius at the beginning and at the end of the creep process
are shown in Figure 6. At the inner surface, the stresses decrease over time, and at the
outer surface, they increase, as shown in Figure 7. This is explained by the fact that the
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modulus of elasticity and the modulus of high elasticity are differently dependent on
hydroxyapatite content.
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3.2. Optimization of the Cylinder Considering Creep

The optimization problem can be set as follows: it is required to find a distribution
of the additive content in the structure thickness to be equally stressed at the end of the
creep process. The optimization algorithm is similar to the one outlined above, but there
are some differences. Instead of the values E and ν, it should be operated with long-term
constants Ẽ and ν̃. At the first stage, a homogeneous structure is calculated with Ẽ = const,
ν̃ = const. Further, the long-term modulus is adjusted according to the formula in (6). The
corrected values of Ẽ are used to determine the required hydroxyapatite content. Based on
the formulas given earlier and (8):

Ẽ =
E · E∞

E + E∞
=

(694 + 1251·HA)(228.9 + 1093·HA)

922.9 + 2344 · HA
(9)

With a known value of Ẽ, this formula represents a quadratic equation relative to the
value of HA, from which it is easy to find the content of hydroxyapatite.

Then, using the known values of E and E∞, the long-term Poisson’s ratio at each node
is determined by the second formula in (8).

Thus, at the second and subsequent optimization steps, the long-term modulus of
elasticity and the long-term Poisson’s ratio can be considered as a variable along the radius.
To determine the stress–strain state the Equation (3) can be used, but the formula should
calculate the functions ϕ(r) and ψ(r):

ϕ(r) =
3
r
− E′

E
− 2νν′

1− ν2 ; ψ(r) = −1
r

[
1− 2ν

1− ν

E′

E
+

(1 + 4ν)ν′

1− ν2

]
(10)

The finite element method can also be used to calculate the stress–strain state of an
inhomogeneous cylinder.

Figure 8 shows the dependence of the hydroxyapatite content along the radius for a
cylinder equally stressed according to the maximum stress failure criterion at the end of
the creep process. It can be seen from this graph that, in contrast to Figure 3, the maximum
additive content is significantly lower.
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The distribution of stresses σθ along the radius at the beginning and at the end of
the creep process is shown in Figure 9. Figure 10 shows graphs of the hoop stresses at the
variation of the inner and outer surface in time. It can be seen from these graphs that at
the initial moment, the stresses at the inner surface are higher than at the outer, and in the
process of creep at r = a the stresses decrease, at r = b they increase, which corresponds to
an equal stress state.
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4. Discussion

Figure 11 shows that cylinders equally stressed at the end of the creep process ac-
cording to all the considered failure criteria can be created practically without exceeding
30% hydroxyapatite content. The difference between the results based on maximum shear
stress and maximum elastic distortional energy failure criteria is insignificant. This can be
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explained by the fact that the long-term Poisson’s ratio is close to 0.5, and at ν = 0.5, the
indicated theories lead to the same result in the case of plane strain.

It should be noted that the proposed models of equally stressed structures, in general,
are not of equal strength since the strength of the resulting composite changes with the
additives. The algorithm developed in this article, after a minor refinement, allows us to
model structures of equal strength. However, it is necessary to know how the strength
depends on the content of the additive.

Additionally, the proposed technique allows taking into account the discreteness of the
spectrum of polymer relaxation time. This requires experimental data on the dependence
of the rheological parameters of the material on the content of additives for two or more
members of the spectrum.

For further research, it is of practical interest to construct models of equal strength
and equally stressed reinforced concrete structures, taking into account the material’s
rheological properties.

5. Conclusions

The iterative algorithm is proposed for constructing models of equally stressed poly-
mer cylinders with a finely dispersed mineral filler, taking into account the material’s
rheological properties. The optimization problem is theoretically solved by varying the
content of the additive along the radius on the basis of four classical failure criteria: the
criterion of the maximum stresses, the criterion of the maximum deformations, the crite-
rion of the maximum shear stresses, and the maximum elastic distortional energy (von
Mises) criterion. It was found that a cylinder with equal stress in the elastic stage ceases
to be uniformly stressed during creep. Furthermore, it is shown that the maximum shear
stresses and von Mises criteria lead to practically identical results. The creation of ar-
tificial heterogeneity can noticeably decrease the maximum stresses in the thickness of
the structure.
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