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Abstract

In the largest sample studied to date, white matter microstructural trajectories and

their relation to persistent symptoms were examined after pediatric mild traumatic

brain injury (mTBI). This prospective, longitudinal cohort study recruited children aged

8–16.99 years with mTBI or mild orthopedic injury (OI) from five pediatric emergency
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departments. Children's pre-injury and 1-month post-injury symptom ratings were

used to classify mTBI with or without persistent symptoms. Children completed

diffusion-weighted imaging at post-acute (2–33 days post-injury) and chronic (3 or

6 months via random assignment) post-injury assessments. Mean diffusivity (MD) and

fractional anisotropy (FA) were derived for 18 white matter tracts in 560 children

(362 mTBI/198 OI), 407 with longitudinal data. Superior longitudinal fasciculus FA

was higher in mTBI without persistent symptoms relative to OI, d (95% confidence

interval) = 0.31 to 0.37 (0.02, 0.68), across time. In younger children, MD of the ante-

rior thalamic radiations was higher in mTBI with persistent symptoms relative to both

mTBI without persistent symptoms, 1.43 (0.59, 2.27), and OI, 1.94 (1.07, 2.81). MD

of the arcuate fasciculus, �0.58 (�1.04, �0.11), and superior longitudinal fasciculus,

�0.49 (�0.90, �0.09) was lower in mTBI without persistent symptoms relative to OI

at 6 months post-injury. White matter microstructural changes suggesting neu-

roinflammation and axonal swelling occurred chronically and continued 6 months

post injury in children with mTBI, especially in younger children with persistent symp-

toms, relative to OI. White matter microstructure appears more organized in children

without persistent symptoms, consistent with their better clinical outcomes.
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1 | INTRODUCTION

Mild traumatic brain injury (mTBI) affects millions of children annually

and is a major global public health concern (Nguyen et al., 2016). No

evidence-based standard of care exists for pediatric mTBI diagnosis or

prognostication, largely because no objective clinical test or biomarker

can accurately detect mTBI or predict outcomes to date (Ledoux

et al., 2019; Mayer et al., 2018; Yeates et al., 2017).

Although mTBI often eludes detection on routine clinical neuro-

imaging, growing evidence points to the potential utility of diffusion

tensor imaging (DTI) metrics, including fractional anisotropy (FA) and

mean diffusivity (MD), for assessing mTBI (Lindsey et al., 2021; Mayer

et al., 2018; Schmidt et al., 2018; Ware et al., 2020). Reduced MD has

been found post-acutely and up to 6 months post-injury, whereas FA

changes appear to be more dynamic, with cumulative evidence of

higher early FA but lower FA several months after pediatric mTBI

(Lindsey et al., 2021; MacDonald et al., 2019; Ware et al., 2020; Wilde

et al., 2018) However, DTI metrics are not always altered (Ware

et al., 2020), and both higher and lower FA have been reported early

after pediatric mTBI (Lindsey et al., 2021; MacDonald et al., 2019;

Mayer et al., 2018). FA measures restricted diffusion and is highest

along highly organized, well-myelinated white matter tracts (Basser &

Pierpaoli, 1996). Thus, a pattern of higher followed by lower FA sug-

gests pediatric mTBI may cause an initial neuroinflammatory response

(e.g., edema), leading to persistent axonal swelling and ultimately to

demyelination and degeneration (Mayer et al., 2018). However, DTI

research in pediatric mTBI is still plagued by limitations (Lindsey

et al., 2021; Mayer et al., 2018)

A particular need exists for longitudinal prospective studies that

are well-powered, include appropriate comparison groups, examine a

broad age range, and delineate clearly defined post-injury phases

(Mayer et al., 2018). Research on early post-injury periods is limited,

and altered white matter structure is not always demonstrated post-

acutely after mTBI (Lindsey et al., 2021; MacDonald et al., 2019;

Ware et al., 2020; Wilde et al., 2018). Less is known about longitudi-

nal trajectories of change, which have only been investigated in a few

studies with small samples (i.e., n <30) (Lindsey et al., 2021; Mayer

et al., 2018). Accounting for the variability in white matter microstruc-

ture associated with age and biological sex also is important

(Guenette et al., 2018). Age and sex may moderate outcomes in pedi-

atric mTBI, but most published studies are characterized by small sam-

ples (i.e., are underpowered), restricted age ranges, and/or skewed

male to female ratios, precluding comprehensive investigation of

these moderators (Goodrich-Hunsaker et al., 2018; Gupte et al., 2019;

Manning et al., 2017; Mayer et al., 2018).

The relation of white matter microstructure to symptom recovery

following pediatric mTBI is another important knowledge gap with

both scientific and clinical significance. Pediatric mTBI results in highly

heterogeneous outcomes, with variability observed in clinical presen-

tation, symptom severity, and symptom duration (Ayr et al., 2009;

Ledoux et al., 2019; Taylor et al., 2010). Symptom severity is typically

worst during the first 2 weeks post-injury, with full recovery occurring

by 4 weeks after mTBI in approximately 75–85% of children (Ledoux

et al., 2019; Mayer et al., 2020). However, no biomarker of prolonged

recovery is currently available. Few studies have investigated the

prognostic utility of DTI in pediatric mTBI and they have produced
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mixed results (Mayer et al., 2018) with associations between DTI met-

rics and symptom severity or duration found only in some of the stud-

ies (Lima Santos et al., 2021; Manning et al., 2017; Ware et al., 2020;

Wilde et al., 2008). Because the neurophysiological effects of mTBI

may persist after symptoms have resolved (Manning et al., 2017;

Murdaugh et al., 2018) research addressing this knowledge gap is cru-

cial for both understanding the neurobiology of mTBI and identifying

objective neuroimaging biomarkers of prolonged recovery in affected

children.

This study compared longitudinal changes in white matter micro-

structure in the largest cohort to date (N = 560) of children with mTBI

versus orthopedic injury (OI) to better understand the time course of

neurobiological recovery following pediatric mTBI (Mayer

et al., 2018). To examine the association of DTI metrics with persis-

tent symptom status in mTBI, longitudinal white matter trajectories

were compared among children with mTBI with and without persis-

tent symptoms 1-month post-injury and with OI. Age and sex were

assessed as moderators of group differences. Based on current evi-

dence, time post-injury was expected to moderate differences in DTI

metrics between children with mTBI and OI, with minimal group dif-

ferences post-acutely but lower FA and MD in chronic mTBI

(MacDonald et al., 2019; Manning et al., 2017; Mayer et al., 2018;

Ware et al., 2020; Wilde et al., 2018; Wu et al., 2018). Pediatric mTBI

with persistent symptoms 1-month post-injury was expected to result

in the largest alterations as compared with mTBI without persistent

symptoms and OI.

2 | MATERIALS AND METHODS

2.1 | Study design and procedure

Data were drawn from the Advancing Concussion Assessment in

Pediatrics (A-CAP) study (Yeates et al., 2017). This multisite study

used a prospective, concurrent cohort design to study outcomes lon-

gitudinally in pediatric mTBI versus OI. Children with OI were chosen

for comparison because they are similar to those with mild TBI, both

demographically and in terms of risk factors that predispose to injury,

and to help control for the general effects of trauma (Ware

et al., 2020; Wilde et al., 2018; Yeates et al., 2017). A-CAP recruited

children between 8–16.99 years of age who presented within 48 h of

sustaining an mTBI or OI to the emergency department (ED) of five

children's hospitals across Canada, of which all are members of the

Pediatric Emergency Research Canada (PERC) network: Alberta Chil-

dren's Hospital (Calgary), Children's Hospital of Eastern Ontario

(Ottawa), Centre Hospitalier Universitaire Sainte-Justine (Montreal),

Stollery Children's Hospital (Edmonton), and British Columbia Chil-

dren's Hospital (Vancouver) (Bialy et al., 2018; Yeates et al., 2017).

Information about acute clinical presentation was collected during the

initial ED visit, and information on mechanism of injury and a demo-

graphic questionnaire was collected at the post-acute follow-up

(Yeates et al., 2017). Enrolled participants at each site returned for

three additional follow-up assessments: a post-acute assessment

(i.e., targeted for 10 days post-injury; range 2–33 days) and two

chronic assessments, at 3 and 6 months post-injury. Study attrition

rates did not differ between groups, and were 15, 25, and 28% for the

post-acute, 3-, and 6-month assessments, respectively, across groups.

This is similar to other studies of pediatric mTBI (Yeates et al., 2017).

All eligible participants (i.e., without MRI contraindication; see details

below) completed 3 T MRI at the post-acute assessment and were

randomly assigned to complete a second MRI scan at 3 or 6 months

post-injury.

The study was conducted with the approval of the research ethics

board at each study site. All participants provided written informed

assent and parents/guardians provided written informed consent.

2.2 | Participants

2.2.1 | Mild TBI

Children in the mTBI group sustained a blunt head trauma resulting in

at least one of the following three criteria, consistent with the World

Health Organization (WHO) definition of mTBI: (i) observed loss of

consciousness, (ii) glasgow coma scale score of 13–14, or (iii) at least

one acute sign or symptom of concussion as noted by ED medical per-

sonnel on a standard case report form, including posttraumatic amne-

sia, focal neurological deficits, vomiting, headache, dizziness, or other

mental status changes (Carroll et al., 2004). Children were excluded if

they demonstrated prolonged neurological deterioration (e.g., glasgow

coma scale <13), required neurosurgical intervention, had loss of con-

sciousness >30 min, or posttraumatic amnesia >24 h (Yeates

et al., 2017).

2.2.2 | Mild OI

Children with mild OI sustained an upper or lower extremity fracture,

sprain, or strain due to blunt force trauma, associated with abbrevi-

ated injury scale (AIS) score ≤4 (Committee on Injury Scaling, 1998).

Children were excluded from the OI group if they had head trauma,

symptoms of concussion, or any injury requiring surgical intervention

or procedural sedation (Yeates et al., 2017).

2.2.3 | Exclusion criteria

Both injury groups were subject to the following exclusion criteria:

any other severe injury as defined by an AIS score > 4; hypoxia, hypo-

tension, or shock during or following the injury; previous concussion

within 3 months prior or any prior TBI requiring hospitalization;

premorbid neurological disorder or severe neurodevelopmental dis-

ability; injury resulting from nonaccidental trauma; or severe psychiat-

ric disorder requiring hospitalization within the past year (Yeates

et al., 2017). This study also excluded any children with contraindica-

tions to MRI (e.g., metallic implants, orthodontia).
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2.2.4 | Symptoms

The Health and Behavior Inventory was used to assess cognitive and

somatic symptoms. This measure has good internal consistency and

test–retest reliability, and has been adopted as a core measure in the

common data elements for pediatric TBI (Adelson et al., 2012;

McCauley et al., 2012; O'Brien et al., 2021). Total premorbid (pre-

injury) symptoms were rated by parents during the post-acute visit,

and total post-injury symptoms were rated by both parents and chil-

dren weekly and also at each follow-up assessment (Ayr et al., 2009).

A reliable change index (z-score) score comparing total 1-month post-

injury symptom scores to premorbid scores was calculated using the

following formulas based on regression analyses using data from the

OI group for child ratings (O'Brien et al., 2021):

z¼ postinjury score� 3:44þ 0:50�premorbid scoreð Þ½ �f g=6:89

and parent ratings:

z¼ postinjury score� 2:32þ 0:52�premorbid scoreð Þ½ �f g=6:683

Results were used to classify children with mTBI into two groups

using a critical z-score >1.65 (one-tailed p <.05): (i) children with mTBI

and persistent symptoms (significant increase at 1-month post-injury

relative to premorbid) and (ii) without persistent symptoms

(no significant increase at 1-month post-injury relative to premorbid)

(Ledoux et al., 2019; Mayer et al., 2020).

2.3 | Diffusion MRI

Eligible participants completed at least one 3 T MRI scan without

sedation. Thirty diffusion-weighted images with different diffusion

gradient encoding directions were acquired at b = 900 s/mm2, along

with five images at b = 0 s/mm2, with 2.2 mm isotropic resolution at

all sites (General Electric: TR/TE = 6, 12 s/70, 90 ms; Siemens: 6.3,

7.8 s/55, 90 ms) (Yeates et al., 2017).

2.3.1 | Quality assurance

Visual checks of all raw images were conducted to identify and

exclude scans with structural abnormalities/incidental findings, scan-

ner artifacts (e.g., warping), incomplete acquisition, or not collected

using the standardized scan parameters. Most DTI data from the

CHEO site was inadvertently collected using acquisition parameters

that differed from the study protocol, precluding analysis of many

otherwise eligible participants. Data that passed the initial quality

assessment were subsequently rated for motion by at least two

trained analysts (Ashley L. Ware, Ayushi Shukla, Adrian I. Onicas). Dis-

crepancies were resolved through a third reviewer blind to initial rat-

ings. Diffusion-weighted volumes with severe motion artifact were

removed. Datasets with >7 volumes with severe motion artifact were

excluded from subsequent analysis (Ware et al., 2021).

2.3.2 | Image preprocessing

Diffusion-weighted DICOM data were converted into NIfTI format

using the dcm2niix tool in MRIcron (https://github.com/rordenlab/

dcm2niix). Images were preprocessed (corrected for eddy currents

and head motion, skull-stripped, and tensor fitted) using the dtiInit

preprocessing pipeline wrapper from VISTASOFT package v1.0

(https://github.com/vistalab/vistasoft) running on MATLAB v8.6.0

(R2018a; MathWorks Inc., Natick, MA).

2.3.3 | Diffusion tensor imaging

Automated deterministic tractography was performed using the

open-source Automated Fiber Quantification software package

v1.2 (https://github.com/yeatmanlab/AFQ) with default parame-

ters (Yeatman et al., 2012). Nonlinear transformation was used to

apply a waypoint region of interest template to individual images in

native (diffusion-weighted) space to identify the forceps major

(splenium) and forceps minor (genu) of the corpus callosum, along

with eight major white matter tracts in each hemisphere:

corticospinal tract, inferior longitudinal fasciculus, inferior fronto-

occipital fasciculus, uncinate fasciculus, anterior thalamic radiation,

cingulum cingulate gyrus (cingulum bundle), superior longitudinal

fasciculus, and arcuate fasciculus. Identified tracts were visually

inspected for accuracy. FA and MD were extracted along 100 seg-

ments of each identified tract and averaged to provide one value

per tract per individual.

2.3.4 | DTI metric harmonization

Prior to statistical analysis, the averaged DTI metrics of each tract

were harmonized for scanner differences using ComBAT in RStudio

v1.1.383 (R v4.0.3) (Fortin et al., 2017; R Core Team, 2017; RStudio

Team, 2020). ComBAT is a validated technique for removing non-

biological variance attributable to multiple site (i.e., scanners) effects

while preserving sources of variance from biological effects of interest

(e.g., group, age, and sex) in DTI data (Fortin et al., 2017). As rec-

ommended by the developers, harmonization was applied to unilateral

tracts and DTI metrics separately without the use of empirical Bayes

(i.e., eb = FALSE) because the number of features was fewer than the

sample size, and a matrix of biological covariates of interest was

included to aid in preserving the effects of group, time (days) post-

injury, age at injury, and sex as fixed generalized additive mixed model

(GAMM) predictors and participant as a random effect. The resulting

harmonized DTI metrics were then subject to linear mixed effects

(LME) modeling, as described below.
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2.4 | Statistical analyses

Demographic data were analyzed using t-tests for continuous vari-

ables and χ2 techniques for categorical variables.

Multiple linear mixed effects models were computed in RStudio

using the lmerTest package to investigate the relations of group (mTBI,

OI), the linear and quadratic effects of time (days) post-injury, age at

injury, sex, and group by time by age, and group by time by sex interac-

tions on harmonized FA and MD values of each examined white matter

tract, controlling for the random effect of participant (Bates

et al., 2015; Kuznetsova et al., 2017; R Core Team, 2017; RStudio

Team, 2020). Hemisphere did not moderate group differences in pre-

liminary analyses. Therefore, only the main effect of hemisphere was

included in each model. This approach was repeated to compare DTI

metrics among symptom status groups (i.e., mTBI with persistent symp-

toms, mTBI without persistent symptoms, and OI). The final model was:

HarmonizedDTIMetric�Group�poly time,2ð Þ� AgeþSexð Þ
þHemisphereþ 1jParticipantð Þ

False discovery rate (FDR) was used to correct for multiple compari-

sons (Benjamini & Hochberg, 1995). Standardized effect size was

assessed for group differences within the context of the final model for

each white matter metric using model estimates for Cohen's d, with

small effect size = j0.20j ≤ d<j0.50j, medium effect size = j0.50j ≤

d<j0.80j, and large effect size = d ≥ j0.80j (Cohen, 1988). Only the

effects with a 95% confidence interval range that excluded 0 were

considered to be robust and are described below.

3 | RESULTS

3.1 | Sample

Information about the overall A-CAP study sample and derivation of

the current sample is provided in Figure 1. The final data set included

892 scans from 560 children (362 mTBI/198 OI). A total of 407 chil-

dren (73%) had usable longitudinal DTI data at post-acute and

3 months (135 mTBI/66 OI) or 6 months (129 mTBI/77 OI) assess-

ments. A total of 241 (21%; 170 mTBI/71 OI) scans were excluded

during initial quality assessment for the following reasons: incorrect

acquisition parameters (e.g., <30 diffusion gradients; 104 mTBI/40

OI), severe motion artifact (33 mTBI/13 OI), incomplete acquisition

(23 mTBI/6 OI), scanner artifacts (5 mTBI/4 OI), or structural abnor-

malities/incidental findings (2 mTBI/4 OI). Eleven scans (7 mTBI/4 OI)

failed AFQ processing. A subset of the post-acute neuroimaging data

was analyzed as part of a study comparing DTI and neurite orientation

dispersion and density imaging (NODDI) metrics (Shukla et al., 2021).

3.2 | Demographic and injury characteristics

The mTBI and OI groups did not differ significantly in age at injury,

sex, race, parental education, days post-injury for post-acute or

chronic MRI scans, or whether the injury occurred during sport/recre-

ation, but differed in injury mechanism (Table 1).

3.3 | White matter microstructure

The group differences in DTI metrics that survived correction for multi-

ple comparisons are summarized in Figure 2 and the model and follow-

up statistics are reported in Table 2 and Table S2. Time post-injury

moderated group differences in MD of the arcuate fasciculus and ante-

rior thalamic radiations, across hemispheres (Figure 2b, c). Follow-up

analyses examined group differences at the average day post-injury of

each MRI scan (see Figure 1). Relative to OI, the mTBI group had higher

MD in the anterior thalamic radiations at 3 months post-injury, but

lower MD in the arcuate fasciculus at 6 months post-injury.

3.4 | Symptom status

Persistent symptom status based on child and parent report was avail-

able for 275 (76%) and 286 (79%) children with mTBI (see Table S1).

Children with persistent symptoms (child n = 68; parent n = 54) did not

differ from those without persistent symptoms in terms of study site,

age, maternal education, race, mechanism of injury, or whether the injury

was sport related. Sex did not differ by symptom status based on parent

ratings, but there were less males (41%) with persistent symptoms than

without persistent symptoms (72%) based on child ratings (p < .001).

DTI metrics differed among symptom groups derived based on

child and parent report (see Figure 3). The model results are reported

in Tables 3 and 4 respectively for analyses based on child and parent

report, and follow-up statistics are provided in Table S3. In groups

based on child report, superior longitudinal fasciculus FA was consis-

tently higher in mTBI without persistent symptoms relative to OI

across time (Figure 3b). Age at injury also moderated differences

between groups based on child report in anterior thalamic radiations

MD (Figure 3c). In younger children (i.e., 10th percentile of age at

injury; �9.40 years), MD of the anterior thalamic radiation was higher

in mTBI with persistent symptoms relative to mTBI without persistent

symptoms and relative to OI, across time post-injury.

Superior longitudinal fasciculus FA also differed among groups

derived based on parent report (Figure 3d), whereby FA was higher in

children with mTBI without persistent symptoms relative to OI, across

time post-injury. Time post-injury moderated differences in MD of the

anterior thalamic radiations, arcuate fasciculus, and superior longitudinal

fasciculus among groups derived based on parent report (Figure 3e–g).

MD was lowest in children with mTBI without persistent symptoms rel-

ative to OI; this effect was more robust for the arcuate and superior lon-

gitudinal fasciculi then for the anterior thalamic radiations.

4 | DISCUSSION

These results from the largest longitudinal DTI study of pediatric mTBI

to date suggest that mTBI can cause subtle, long-term changes to
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white matter microstructure as compared to extracranial traumatic

injury, and that both time post-injury and symptom status are impor-

tant moderators of those effects in children. Importantly, altered

white matter microstructure was not apparent globally, but appeared

only in three of the examined tracts, consistent with the subtle nature

of pediatric mTBI compared to more severe injuries (Lindsey

et al., 2021; Mayer et al., 2018).

Relative to OI, children with mTBI demonstrated no post-acute

alterations in white matter microstructure, although changes were

apparent across time, including modest elevations in MD of the

anterior thalamic radiations 3 months post-injury with robust reduc-

tions in MD of the arcuate fasciculus at 6 months post-injury. How-

ever, further examination of DTI metrics revealed different white

matter microstructural trajectories among children with mTBI with

versus without persistent symptoms (1-month post-injury) compared

to those with OI. FA was higher across time and MD was lower at

6 months post-injury in mTBI without persistent symptoms relative to

OI. Further, MD was generally higher in mTBI with persistent symp-

toms compared with mTBI without persistent symptoms and OI in

younger children, across time post-injury. Thus, the neurobiological

F IGURE 1 Summary data for the overall A-CAP study sample and the derivation of the current sample. Of 3075 eligible children with mTBI
or mild OI, 967 consented to participate in A-CAP, and 846 returned for at least one assessment. Children who returned at post-acute, 3 months,
and/or 6 months did not differ from those who did not return in terms of age, sex, race, or parental education, with one exception: Children who
returned at 6 months had higher parental education than those who did not return. Children completed a post-acute MRI scan and were
randomly assigned to complete a second MRI scan 3 or 6 months post-injury. New MRI contraindications (after recruitment, e.g., orthodontia
treatment) and scheduling difficulties were the most common reasons that MRI was not completed. Overall, 671 children completed at least one
MRI, with a total of 1144 scans completed (758 mTBI/386 OI). Children who completed MRI were younger (M = 12.23, SD = 2.38 years;
t = 5.29, p <.001) and more often male (402 male/266 female, χ2 = 6.22, p = .013) than children who did not complete MRI (age M = 13.29,
SD = 2.37 years; 88 male/90 female), but did not differ in race or parental education. The final sample included a total of 892 DTI scans from
560 children (see Table 1), of which 407 (73%) had longitudinal data. *Excluded 241 (21%, 170 mTBI/71 OI) scans during initial quality
assessment and an additional 11 scans that failed the DTI processing pipeline. A-CAP, Advancing Concussion Assessment in Pediatrics; mTBI,
mild traumatic brain injury; OI, orthopedic injury
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heterogeneity associated with discrete clinical outcomes was initially

blurred by collapsing across symptom status. This pattern of results

may explain the inconsistencies across published studies of mostly

smaller samples that had variable post-injury assessment times and

restricted age ranges and did not always take symptom status into

account (Guenette et al., 2018; Manning et al., 2017; Mayer

et al., 2018; Ware et al., 2020). In particular, previous inconsistencies

in DTI metrics in pediatric mTBI could reflect differences in the timing

TABLE 1 Demographic and injury
characteristics for the sample of children Variable

mTBI OI
p*

n = 362 n = 198

Study site [n(%)] .002

Calgary 103 (28.5) 45 (22.7)

Edmonton 87 (24.0) 45 (22.7)

Montreal 45 (12.0) 12 (6.0)

Ottawa 42 (11.6) 19 (9.6)

Vancouver 85 (23.5) 77 (38.9)

Age [mean (SD) years] 12.30 (2.45) 12.44 (2.23) .501

Sex [n (%) male] 224 (61.9) 110 (55.6) .171

Parental education [n (%)] .911

No certificate, diploma or degree 11 (3.2) 4 (2.2)

High school diploma or equivalent 50 (14.7) 24 (13.2)

Trades certificate or diploma 35 (10.3) 16 (8.8)

2-year college diploma 66 (19.4) 41 (22.5)

4-year bachelor's degree 125 (36.8) 63 (34.6)

Master's degree 38 (11.2) 24 (13.2)

Doctoral degree (PhD or similar) 10 (2.9) 6 (3.3)

Medical degree 5 (1.5) 4 (2.2)

Race [n (%)] .698

White 246 (68.0) 132 (66.7)

Asian 30 (8.3) 13 (6.6)

Black 15 (4.1) 6 (3.0)

Latinx 8 (2.2) 8 (4.0)

Indigenous 6 (1.7) 3 (1.5)

Other/mixed 50 (13.8) 29 (14.6)

Unknown 7 (1.9) 7 (3.5)

Mechanism of injury [n (%)] <.001

Bicycle related 6 (1.9) 10 (5.6)

Fall 138 (44.5) 90 (50.8)

Motor vehicle collision 4 (1.3) 0 (0.0)

Struck object 92 (29.7) 34 (19.2)

Struck person 60 (19.4) 20 (11.3)

Other 4 (1.3) 12 (6.8)

Unknown 6 (1.9) 11 (6.2)

Sport-related injury [n (%) sport/recreational play] 260 (84.1) 147 (83.1) .852

Symptom ratings

Premorbid (parent) 12.36 (10.02) 8.72 (8.17) <.001

Child 1-month post-injury 13.50 (11.99) 7.72 (7.90) <.001

Parent 1-month post-injury 12.60 (10.29) 6.61 (7.52) <.001

Note: *Uncorrected p-values reported.

Abbreviations: mTBI, mild traumatic brain injury; OI, orthopedic injury.
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of acquisition or clinical outcomes of children with mTBI (Mayer

et al., 2018; Ware et al., 2020).

Higher anterior thalamic radiation MD chronically in children with

mTBI, and across time in younger children with persistent symptoms,

relative to OI could reflect vasogenic edema, accumulation of extra-

cellular liquid, or demyelination and axonal loss following the break-

down of the blood–brain barrier and degradation of the axonal

membrane (Mayer et al., 2018; Parekh et al., 2015). Other common

pathologies that can alter water diffusion include vascular changes,

the disintegration of axonal microfilaments of neurons, and demyelin-

ation (Mayer et al., 2018; Parekh et al., 2015). Whether early and per-

sistently high MD promotes remyelination and protection against

degeneration or, in contrast, acts as a precursor to damaged micro-

structure (e.g., demyelination or axonal injury associated with

Wallerian-type degeneration) is unclear (Mayer et al., 2018; Parekh

et al., 2015; Yano et al., 2018). Differentiating these effects in pediat-

ric mTBI is a critical research goal because identifying a feasible neu-

roprotective strategy to limit axonal damage and neurodegeneration

could lead to clinical interventions that prevent demyelination or pro-

mote remyelination. This goal is perhaps particularly important for the

clinical management of children who have prolonged symptom recov-

ery. The lack of FA differences between children with persistent

symptoms and OI was surprising and could reflect pre-existing differ-

ences between the groups with and without persistent symptoms, the

severity of the systemic injury, or potentially transient brain effects

such as edema.

In contrast, children who had more favorable clinical outcomes

(i.e., with mTBI without persistent symptoms) demonstrated higher

superior longitudinal fasciculus FA and lower MD in the thalamic radi-

ations and superior longitudinal fasciculus. This is indicative of more

restricted water diffusion. Recent research similarly demonstrated

higher FA in long association fibers in adolescents and young adults

with short time to recovery and improved cognition following mTBI

(Fakhran et al., 2014; Lima Santos et al., 2021; Mustafi et al., 2018).

Higher FA is associated with greater resiliency during adolescence in

typical development (Galinowski et al., 2015). Current findings there-

fore could reflect resilience of more organized white matter micro-

structure to the effects of pediatric mTBI, whereby better brain

reserve leads to better outcomes in children. However, neuroimaging

research in resiliency is scarce and superior longitudinal fasciculus FA

was not investigated in current studies (Feder et al., 2019).

The current findings are clinically relevant in signaling persistent

neurophysiological changes after pediatric mTBI. Some emerging evi-

dence has indicated that DTI parameters could ultimately be used to

F IGURE 2 Significant group effects and interactions on DTI metrics. (a) Three of the examined tracts survived FDR correction for multiple
comparisons. Box plots illustrating the group differences and summarizing effect magnitudes for (b) MD of the arcuate fasciculus (group-by-time
interaction), and (c) MD of the anterior thalamic radiation (group-by-time interaction). Follow-up analyses examined group differences within the
context of the final model and for average days post-injury at each post-injury assessment (see Figure 1). Standardized effect size was computed
for group (mTBI—OI) differences using model estimates for Cohen's d. effects sizes with 95% confidence interval range excluding zero are
illustrated using * and for small and medium effect magnitudes. Complete results are provided in Table S2.
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enhance clinical management in affected children with mTBI (Taylor

et al., 2015). Inclusion of post-acute DTI metrics can increase the sen-

sitivity and specificity of clinical prediction model for pediatric mTBI

(Lima Santos et al., 2021) and FA values, specifically, were more pre-

dictive of recovery time than initial symptom burden in children and

young adult (i.e., age 10–38 years) with mTBI in other studies

(Fakhran et al., 2014). Previous findings also show that post-acute DTI

is related to symptom burden in chronic periods after pediatric mTBI,

but not differentially for children with mTBI as compared with mild OI

(Ware et al., 2020). Here, DTI metrics showed little evidence of pro-

viding a biomarker for prolonged brain injury or recovery given the

findings regarding persistent symptom status, although less robust

findings suggest that higher FA (across time) with lower MD post-

acutely may signal short recovery time post-injury. The prognostic

utility of the findings remains to be fully established. However, the

minor and regionally specific post-acute differences between mTBI

and OI detected here indicate that using DTI metrics in individual

patients early post-injury is not likely to aid clinical diagnosis or detec-

tion of mTBI in children.

White matter regions appeared to be differentially vulnerable to

the biomechanical forces that disrupt brain tissue in mTBI

(e.g., through straining and deformation) (Mayer et al., 2018; Okamoto

et al., 2019; Schmidt et al., 2018). Significant group differences were

limited to only the superior longitudinal fasciculus, arcuate fasciculus,

and anterior thalamic radiation. Prior evidence suggests that pediatric

mTBI alters the microstructure of these regions (Manning et al., 2017;

Mayer et al., 2018; Wu et al., 2018). The superior longitudinal fascicu-

lus connects parietal, prefrontal, and temporal cortex, while the arcu-

ate is an adjacent frontal-temporal connection. The anterior thalamic

radiations connect the prefrontal cortex, regions of the limbic system,

and thalamus (Grodd et al., 2020). Alterations in these pathways could

have implications for specific symptoms of pediatric mTBI, such as

problems with attention, executive functioning, memory, mood, and

motivation (Grodd et al., 2020; MacDonald et al., 2019).

The expected age-related increases of FA and decreases of MD

were found across groups (Lebel et al., 2019). In typical development,

frontal-temporal white matter pathways and the superior longitudinal

fasciculus continue to develop into the second decade of life (peak FA

TABLE 2 Statistical results for linear mixed effects models with significant effects of group that survived FDR correction on DTI metrics of
examined white matter tracts

Predictors
Arcuate fasciculus MD Anterior thalamic radiation MD

Estimates 95% CI Statistic p* Estimates 95% CI Statistic p*

Intercept 0.74 0.73 to 0.74 371.90 <.001 0.76 0.76 to 0.76 443.88 <.001

Group (OI—mTBI) 2.46e�3 -3.71e�2 to 0.01 0.79 .432 -1.74e�3 �0.01 to 3.53e�3 �0.65 .517

Time (days) post-injury �0.15 �0.22 to �0.08 �4.38 <.001 �0.12 �0.19 to �0.06 �3.58 <.001

Time2 �0.08 �0.15 to �0.01 �2.16 .030 �0.02 �0.09 to 0.05 �0.48 .629

Age at injury (centered) �0.01 �0.01 to �0.01 �9.83 <.001 �3.92e�3 �0.01 to �1.92e�3 �3.83 <.001

Sex (female—male) 0.01 0.01 to 0.02 4.42 <.001 0.01 4.19e�3 to 0.01 3.92 <.001

Hemisphere (left—right) 3.41e�3 2.15e�3 to 7.83e�3 5.31 <.001 0.02 0.01 to 0.02 25.59 <.001

Group � time 0.12 0.03 to 0.22 2.56 .011 0.15 0.06 to 0.25 3.15 .002

Group � time2 0.16 0.05 to 0.28 2.86 .004 0.15 0.04 to 0.26 2.67 .008

Group � age 3.59e�3 �6.50e�4 to 0.01 1.66 .097 1.70e�3 �1.91e�3 to 0.01 0.93 .354

Group � sex �5.40e�4 �0.01 to 0.01 �0.13 .898 �4.10e�4 �0.01 to 0.01 �0.12 .908

Time � age 3.92e�3 �0.03 to 0.04 0.21 .833 �0.04 �0.07 to �5.10e�4 �1.99 .047

Time2 � age �1.76e�3 �0.04 to 0.04 �0.08 .933 �0.02 �0.06 to 0.03 �0.76 .447

Time � sex 0.12 0.04 to 0.20 2.88 .004 0.12 0.04 to 0.20 2.84 .005

Time2 � sex 0.07 �0.02 to 0.15 1.51 .130 0.01 �0.08 to 0.10 0.28 .783

Group � time � age 0.03 �0.04 to 0.09 0.86 .390 0.03 �0.03 to 0.09 0.97 .333

Group � time2 � age �0.01 �0.08 to 0.07 �0.13 .895 �0.06 �0.14 to 0.01 �1.71 .087

Group � time � sex �0.08 �0.21 to 0.05 �1.22 .224 �0.12 �0.25 to 0.01 �1.88 .061

Group � time2 � sex �0.20 �0.35 to �0.05 �2.55 .011 �0.12 �0.27 to 0.02 �1.66 .096

Random effects

ICC 0.76 0.69

Observations 1594 1784

Marginal R2/conditional R2 0.193/0.803 0.157/0.735

Note: Effect sizes, that is, Cohen's d (95% CI), for the pairwise comparisons between the mTBI and OI groups are reported in Table S2. *Uncorrected p-

values reported. Bolded = uncorrected p <.05; bolded/italic = FDR corrected p <.05.

Abbreviations: CI, confidence interval; mTBI, mild traumatic brain injury; OI, orthopedic injury.
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occurs at age 24–25 years), a more protracted development than

other regions (Lebel et al., 2019). This may increase the susceptibility

of these regions to the effects of pediatric mTBI. Sex was not a robust

moderator of group differences, but was associated with MD, which

was higher in females as compared with males in the anterior thalamic

radiations. Studies of typically developing children have not consis-

tently reported sex differences, although some evidence suggests dif-

ferences in DTI metrics (i.e., FA and MD) (Lebel et al., 2019). In

F IGURE 3 Significant effects involving symptom status group based on child repot on DTI metrics. Graphs illustrating differences and their
effect magnitudes in (a) regional tract metrics among symptoms status groups based on child report for (b) FA of the superior longitudinal
fasciculus (main effect of group) and (c) MD of the anterior thalamic radiation (group by age at injury interaction), and among symptoms status
groups based on parent report for (d) FA of the superior longitudinal fasciculus (main effect of group) and MD of the (e) anterior thalamic
radiations, (f) arcuate fasciculus, and (g) superior longitudinal fasciculus (group by time interaction). Follow-up analyses examined group
differences within the context of the final model and for the 10th and 90th percentile of age at injury. Standardized effect size was computed for
group (mTBI—OI) differences using model estimates for Cohen's d effects sizes with 95% confidence interval range excluding zero are illustrated
using *, **, and *** for small, medium, and large effect magnitudes. Complete results are provided in Table S3.
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pediatric mTBI, sex differences are not well understood and warrant

further study (Gupte et al., 2019; Mayer et al., 2018).

This study has limitations. The sample was recruited from the ED

of several children's hospitals and may not represent children with

injuries who receive clinical care in other settings or who do not seek

medical attention. The sample mostly comprised children who were

White and of higher socioeconomic status, and the results may not be

generalizable to the broader population. We cannot be certain

whether white matter microstructural differences existed pre-injury

between children with mTBI versus OI, although the emergence of

group differences over time suggests this is unlikely. White matter

microstructure was measured using deterministic tractography, which

offers better sensitivity than voxel-wise approaches to alterations in

pediatric mTBI (Goodrich-Hunsaker et al., 2018) but could limit repro-

ducibility given the additional processing steps required to generate

tract-specific measures (Schilling et al., 2021). More advanced water

diffusion models (e.g., multiple diffusion-weighted b-values; increased

angular resolution) could potentially increase understanding of the

specific neuropathology (e.g., cytotoxic vs. vasogenic edema, as well

as axonal and myelin deformation) that follows pediatric mTBI (Mayer

et al., 2018). Moreover, advanced computational approaches to inves-

tigate brain networks (e.g., structural connectome, graph theory) may

be more sensitive than region-based analyses to the nature of pediat-

ric mTBI. Parents completed the premorbid symptoms questionnaire

retrospectively at the post-acute assessment, which may introduce

recall bias (Brooks et al., 2014). Finally, we examined whether MRI

metrics were related to symptom persistence at 1-month post-injury

in the children with mTBI relative to premorbid symptoms (Ledoux

et al., 2019). Future research should investigate the relationship of

MRI metrics to more specific symptoms and to symptom status trajec-

tories across time post-injury.

4.1 | Conclusions and future directions

This is the largest prospective, longitudinal study of DTI in pediatric

mTBI to date. We found differences in white matter microstructure

that emerged chronically after mTBI, with different trajectories as a

function of symptom status at 1-month post-injury. Overall, the results

highlight the importance of a framework that considers both time post-

injury and clinical outcomes (i.e., symptom status) when examining the

neurobiological effects of pediatric mTBI. The next step in our research

is to link these microstructural changes to other clinical and functional

outcomes, to continue to help identify biomarkers for pediatric mTBI.

TABLE 3 Statistical results for linear mixed effects models with significant effects of symptom groups based on child report that survived
FDR correction on DTI metrics of examined white matter tracts

Predictors
Superior longitudinal fasciculus FA Anterior thalamic radiations MD

Estimates CI Statistic p* Estimates CI Statistic p*

(Intercept) 0.44 0.43 to 0.45 85.61 <.001 0.77 0.76 to 0.77 238.81 <.001

Groupa - - 6.43 .002 - - 3.05 .293

Time 0.04 �0.29 to 0.38 0.25 .805 �0.13 �0.27 to 0.02 �1.74 .081

Time2 0.03 �0.25 to 0.31 0.20 .845 0.02 �0.11 to 0.14 0.25 .805

Age at injury (centered) 0.01 1.00e-3 to 0.02 2.77 .006 �0.01 �0.01 to �0.01 �4.84 <.001

Sex (female–male) 3.02e�3 �0.01 to 0.02 0.40 .688 4.96e�3 �4.56e�3 to 0.01 1.02 .307

Hemisphere (left–right) 0.03 0.02 to 0.03 16.81 <.001 0.01 0.01 to 0.02 23.51 <.001

Group � (time + time2)b - - 0.42 .794 - - 2.81 .024

Group � agea - - 2.12 .122 - - 6.75 .001

Group � sexa - - 0.41 .661 - - 0.34 .714

Time � age 0.06 �0.12 to 0.23 0.61 .543 0.01 �0.06 to 0.09 0.38 .704

Time2 � age �0.07 �0.25 to 0.10 �0.80 .425 �4.50e�3 �0.08 to 0.07 �0.12 .907

Time � sex �0.06 �0.47 to 0.36 �0.26 .793 0.20 0.03 to 0.38 2.32 .020

Time2 � sex 3.00e�3 �0.39 to 0.40 0.01 .988 �0.07 �0.24 to 0.10 �0.78 .433

Group � (time + time2) � ageb - - 0.61 .659 - - 1.72 .142

Group � (time + time2) � sexb - - 0.68 .609 - - 2.42 .047

Random effects

ICC 0.36 0.68

Observations 1534 1538

Marginal R2/conditional R2 0.176/0.468 0.177/0.734

Note: Effect sizes, that is, Cohen's d (95% CI), for the pairwise comparisons between the symptom's groups are reported in Table S3. *Uncorrected p-values

reported. Bolded = uncorrected p <.05; bolded/italic = FDR corrected p <.05.
adf = 2.
bdf = 4.
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APPENDIX A

A.1 | PEDIATRIC EMERGENCY RESEARCH CANADA A-CAP

STUDY GROUP CO-INVESTIGATORS

Carolyn Emery, PhD: University of Calgary, Calgary, AB, Canada; Site

co-investigator, Assisted in design of parent study. Lianne Tomfohr,

PhD: University of Calgary, Calgary, AB, Canada; Site co-investigator,

Assisted in design of parent study. Tyler Williamson, PhD: University

of Calgary, Calgary, AB, Canada; Site co-investigator, Assisted in

design of parent study. Karen Barlow, PhD: university of Calgary, Cal-

gary, AB, Canada; Site co-investigator, Assisted in design of parent

study. Francois Bernier, PhD: University of Calgary, Calgary, AB,

Canada; Site co-investigator, Assisted in design of parent study. Brian

Brooks, PhD: University of Calgary, Calgary, AB, Canada; Site co-

investigator, Assisted in design of parent study. Ashley Harris, PhD:

University of Calgary, Calgary, AB, Canada; Site co-investigator,

Assisted in design of parent study. Ryan Lamont, MD: University of

Calgary, Calgary, AB, Canada; Site co-investigator, Assisted in design

of parent study. Kathryn Schneider, PhD: University of Calgary, Cal-

gary, AB, Canada; Site co-investigator, Assisted in design of parent

study. Kelly Mrklas, PhD: University of Calgary, Calgary, AB, Canada;

Site co-investigator, Assisted in design of parent study. Angelo

Mikrogianakis, PhD: University of Calgary, Calgary, AB, Canada; Site

co-investigator, Assisted in design of parent study, coordinated

recruitment at site.
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