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Background: Exosomes have been reported to mediate activation of the inflammatory response by 
secretion of inflammasome products such as IL-1β or IL-18 and that changes in exosomes production 
or secretion may be a therapeutic target for treatment of a variety of different chronic diseases. The 
present study tested the hypothesis that exosome-mediated release of NLRP3 inflammasome 
products instigates the inflammatory response in the lung during emphysema, a type of chronic 
obstructive pulmonary disease (COPD) and that electroacupuncture (EA) may attenuate emphysema 
by inhibition of NLRP3 inflammasome activation and consequent inflammation.
Methods: The COPD mice model was developed by injecting porcine pancreatic elastase 
(PPE) via puncture tracheotomy and instillation. EA (4 Hz/20 Hz, 1 to 3 mA) was applied to 
the bilateral BL13 and ST36 for 30 min, once every other day for 2 weeks. Micro computed 
tomography (micro-CT) was performed to measure lung function. Histopathological changes 
in the lungs were displayed by HE staining.
Results: In a mouse model of porcine pancreatic elastase (PPE)-induced emphysema, the lung 
tissue was found to display several key features of emphysema, including alveolar septal thicken-
ing, enlarged alveoli, interstitial edema, and inflammatory cells infiltration. Lungs of mice receiv-
ing PPE exhibited substantially increased low attenuation area (LAA) in micro-CT images. The 
colocalization of NLRP3 vs ASC or caspase-1 detected by confocal microscopy was shown to 
increase in both bronchial and alveolar walls, indicating the increased formation of NLRP3 
inflammasomes. IL-1β, a prototype NLRP3 inflammasome activating product, was also found to 
have increased in the lung during emphysema, which was colocalized with CD63 (an exosome 
marker), an indicative of inflammatory exosome formation. By nanoparticle tracking analysis 
(NTA), IL-1β-containing exosomes were shown to significantly increase in the bronchoalveolar 
lavage (BAL) from mice with emphysema. Therapeutically, IL-1β production in the lung during 
emphysema was significantly reduced by EA at the acupoint Feishu (BL13) and Zusanli (ST36), 
accompanied by decreased colocalization of NLRP3 vs ASC or caspase-1. Increased exosome 
release into BAL during emphysema was shown to be significantly attenuated in EA-treated mice 
compared to their controls. However, EA of non-specific BL23 together with ST36 acupoint had no 
effects on NLRP3 inflammasome activation, exosome release and associated lung pathology 
during emphysema.
Conclusion: NLRP3 inflammasome activation in concert with increased release of 
exosomes containing IL-1β or other inflammasome products contributes to the devel-
opment of lung inflammation and injury during PPE-induced emphysema and that EA 
of lung-specific acupoints attenuates inflammasome activation and exosome release, 
thereby reducing inflammatory response in the lung of mice with emphysema.
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Introduction
Extracellular vehicles (EVs) are spherical bilayered pro-
teolipids with a diameter of 20–1000 nm, which are cur-
rently classified as microvesicles (MVs), exosomes and 
apoptotic bodies.1 Exosomes (30–150 nm or 40–120 nm 
in diameter) as the most studied EVs have been indicated 
to have many functions, in particular, mediating intercel-
lular and interorgan communication.2 Exosome-mediated 
cell-to-cell or organ-to-organ communications have been 
reported to regulate cell functions or cellular activities 
such as cell apoptosis,3 autophagy,4 proliferation,5 

aging,6 inflammation,7 and immune response.1 There is 
evidence that exosomes not only serve as biomarkers for 
noninvasive diagnosis and prognosis of diseases but also 
as a means for delivery of vaccines, chemotherapeutics, 
drugs, and siRNAs as well as mRNAs or miRNAs.8 In 
inflammatory disorders of the lung, EVs/exosomes were 
shown to increase with pro-inflammatory properties, 
which activate the innate immune system (eg alveolar 
macrophages) and promote lung inflammation.9 However, 
the specific mechanism by which exosomes mediate 
inflammatory response in the lung is largely unclear.

Chronic obstructive pulmonary disease (COPD) is 
characterized by lung structure degenerative pathology, 
inflammation and fibrosis,10 which usually results from 
chronic bronchitis, mucus hypersecretion, chronic airway 
obstruction, airway remodeling, and emphysema.11 

Development of the chronic inflammatory pathological 
process in COPD is mainly caused by inhalation of nox-
ious particles or gas, most commonly cigarette smoke12 

and potential chronic infection, which breaks the epithelial 
barrier, induce airway remodeling and cause airway 
inflammation. Thus, anti-inflammatory strategies may 
help restrain the development of COPD.13 In recent stu-
dies, the NOD-like receptor protein 3 (NLRP3) inflamma-
some formed by aggregation or assembling of NLRP3, 
caspase-1, and the adaptor molecule, apoptosis-associated 
speck-like protein containing a caspase recruitment 
domain (ASC)14 mediates pro-IL-1β cleavage into mature 
IL-1β, which is secreted out of cells, triggering tissue 
inflammatory response and ultimately leading to chronic 
inflammatory diseases. It has been reported that the 
NLRP3 inflammasome activation contributes to the devel-
opment of many different chronic degenerative diseases 
such as atherosclerosis,15 glomerular sclerosis,16 diabetic 
complications,17 and Alzheimer’s disease.18 There is also 
evidence that NLRP3 inflammasome activation is involved 

in the pathogenesis or development of COPD.19 In this 
regard, it was shown that NLRP3 inflammasomes are 
activated during the pathological process. This activation 
of NLRP3 inflammasomes in lung tissue importantly con-
tributes to the development or progression of COPD, in 
particular, to the inflammatory injury during 
emphysema20–22 However, it remains poorly understood 
how a critical step, namely, the release of inflammasome 
products occurs to trigger inflammatory response thereby 
leading to chronic lung injury. Answering this question is 
critical because NLRP3 inflammasomes are activated in 
the cytosol, but not in the endoplasmic reticulum, and thus 
their products may not be secreted out of cells via 
a classical Golgi apparatus-mediated protein delivery path-
way. Given that increased exosome release from different 
cells including lung cells has been shown to not only serve 
as a biomarker of COPD but also as a pathogenic factor in 
the lung diseases23 through its cell-to-cell 
communication,24 the present study hypothesized that an 
exosome secretory mechanism mediated by lysosomal acid 
sphingomyelinase (ASM)-ceramide signaling pathway 
may control the release of inflammasome products to 
trigger or promote local inflammatory response in the 
lung during emphysema. Such exosomes containing 
NLRP3 inflammasome products are referred to as inflam-
matory exosomes in recent studies.25–27 We have used 
different approaches to test this hypothesis in a well- 
established animal model of emphysema.

Therapeutically, although several NLRP3 inflamma-
some inhibitors have been reported to exert beneficial 
action via inhibition of NLRP3 inflammasome activation, 
there are no accomplished clinical trials showing that these 
NLRP3 inhibitors or exosome secretion inhibition alone or 
in combination can be used for treatment of COPD. Since 
acupuncture has been shown to have strong anti- 
inflammatory effects and thereby relieve COPD-related 
symptoms clinically,19,28–30 the present study also tested 
whether NLRP3 inflammasome activation and associated 
exosome release can be a therapeutic target for acupunc-
ture to exert its beneficial action on emphysema by 
attenuation of lung inflammation and related pathological 
changes.

To test our hypotheses, we first investigated whether 
the formation and activation of NLRP3 inflammasome as 
well as associated exosome-release increase in the lung 
using a well-established mouse emphysema model, 
namely, porcine pancreatic elastase (PPE)-induced 
emphysema.31–33 Next, we tested whether acid 
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sphingomyelinase, a confirmed lysosomal ceramide produ-
cing enzyme that contributes to exosome release34,35 is 
implicated in NLRP3 inflammasome activation and release 
of inflammatory exosomes during emphysema. Finally, we 
determined whether acupuncture inhibits NLRP3 inflam-
masome formation and activation to produce IL-1β, sup-
presses release of inflammatory exosomes and thereby 
improves lung inflammation and chronic injury during 
PPE-induced emphysema. Our findings provide new evi-
dence that NLRP3 inflammasome activation together with 
exosome-mediated release of NLRP3 inflammasome pro-
ducts instigates the inflammatory response in the lung 
during emphysema and that EA may exert its beneficial 
action during emphysema by targeting inflammasome acti-
vation and associated exosome release that mediate the 
inflammatory response in the lung.

Materials and Methods
Animals
Wild type (WT) mice, ASM (Acid Sphingomyelinase) 
gene knockout mice (6–8 weeks of age, male or female) 
and their littermates were used in the present study.36 

All protocols were approved by the Institutional Animal 
Care and Use Committee (IACUC) of the Virginia 
Commonwealth University (VCU) (protocol No. 
AM10174), and all experiments were performed in 
accordance with Written Policies and Procedures 
(WPPs) of VCU IACUC (https://policy.vcu.edu/media/ 
po l icy /po l ic ies / IACUC_Wri t ten_Pol ic ies_and_  
Procedures.pdf). Characterization of mice was per-
formed by genotyping. All mice were randomly divided 
into six groups for each mouse strain, including WT 
mice treated with porcine pancreatic elastase (PPE) 
(Cat. No. E134, Elastin products, USA) or PBS (Cat. 
No. S390-500, Fisher Scientific, USA), WT mice treated 
with PPE or PBS receiving acupuncture, and ASM 
knockout mice (ASM−/- mice treated with PPE or 
PBS). To produce the mouse emphysema model, PPE 
at 0.75 units/g/bw or matched vehicle (PBS) was admi-
nistrated by puncture tracheotomy and instillation as 
described previously37 when mice were anesthetized 
with 2% isoflurane that was provided through a nose 
cone and a small animal anesthesia system. Mice after 
instillation were under observation for 60 min to make 
sure that the instillation was successful by observing if 
the mouse behaved as it did before the procedure. After 
recovery, the mice were brought back to the Animal 

Care Center and maintained on normal chow and water-
ing system for 28 days. During the experimental day, 
mice were again sedated with 2% isoflurane. Blood 
samples and bronchoalveolar lavage were collected, 
and plasma was isolated and stored at −80°C. Mice 
were then sacrificed, and the lung was collected with 
a portion stored in 10% buffered formalin for histo-
pathological analysis and immunostaining. Other parts 
of the lung were frozen in liquid nitrogen and stored at 
−80°C for dual-fluorescence staining and confocal ana-
lysis by making frozen tissue slides.

Micro Computed Tomography 
(Micro-CT) of Lung Function
Micro-CT was performed using an Inveon micro-CT sys-
tem (Siemens, Knoxville, USA) that has a 165 mm X-ray 
detector and a variable X-ray source at the VCU 
Molecular Imaging Core laboratory. In brief, mice were 
anesthetized with 2% isoflurane in oxygen (2 LPM) deliv-
ered through a nose cone and then imaged in prone posi-
tion in the CT scanner. Three-dimensional images were 
acquired with 360-degree rotation around a 98×98 mm 
field of view (FOV), with 80 kV voltages and 500 µA 
current to yield an effective pixel size of 96 µm and a scan 
time of 9 minutes. A tube containing water was scanned 
using the same parameters and was used for Hounsfield 
unit (HU) calculation. Micro-CT images were recon-
structed using a modified Feldkamp algorithm using man-
ufacturer provided software. Image segmentation, analysis 
and volume rendering were done using Inveon Research 
Workplace 4.2 (Siemens, USA). The low attenuation area 
(LAA) was defined as Hounsfield units (HU), which was 
derived arbitrarily by comparing the lungs of PBS treated 
and elastase treated mice, which was used for calculation 
of the volume of the LAA in the entire mouse lung, and 
a 3D colormap was used to empirically define the lung 
parenchyma as HU between −278 and −429 identified in 
white color and the LAA was marked as green color in the 
HU between −650 and –580.38

Masson Trichrome Staining
Lung tissue sections were stained using Masson’s tri-
chrome staining kit following manufacturer’s instructions 
(Cat No. ab150686, Abcam, Cambridge, MA, USA) and 
HE staining of these tissues slides were made and then 
stained by the VCU pathology laboratory.
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Confocal Microscopic Analysis
Confocal microscopic analysis was performed as described 
previously.39 Lung slides from different groups of mice 
were first fixed, blocked for non-specific staining and then 
incubated with primary antibodies against NLRP3 (1:200, 
Cat. No. ab4207, Abcam, Cambridge, MA, USA), ASC 
(1:200, Cat. No. SAB4501314, Santa Cruz Biotechnology, 
Dallas, TX, United States), cleaved-caspase-1 (1:200, Cat. 
No. 67314, Santa Cruz Biotechnology, Dallas, TX, USA), 
IL-1beta (1:400, Sigma), or EpCAM (1:200, Cat. 
No. 21050-1-AP, Thermo Fisher Scientific, USA) at 4°C 
overnight. Then, slides were incubated with the corre-
sponding secondary antibodies with either Alexa-488 
(1:200, Cat. No. A11055) or Alexa-555 (1:200, Cat. No. 
A31572) conjugation (Invitrogen, Carlsbad, CA, USA). 
After that, slides were observed with a laser scanning 
confocal microscope (Fluoview FV1000, Olympus, 
Japan). Co-localization coefficient was calculated with 
Image Pro Plus 6.0 software and presented by Pearson’s 
correlation coefficient (PCC).

Immunohistochemistry
Immunohistochemistry (IHC) was performed as we 
described previously.40 The paraffin sections were heated 
for 10 min at 65°C, and deparaffinization was performed 
in 100% xylene for 10 min, twice. Hydration was carried 
out in a series of graded ethanol (100%, 95%, 75%) for 5 
min at room temperature. Then, 10 mM of sodium citrate 
buffer (pH 6.0) was used to retrieve the antigen at over 
95°C for 15 min, and 3% H2O2 in methanol was used to 
quench the endogenous peroxidase activity. Non-specific 
proteins were blocked with 2.5% horse serum for 1 h at 
room temperature. The sections were incubated with pri-
mary antibodies as requested in specific experiments for 2 
h or overnight at 4°C, and these primary antibodies used 
include goat anti-IL-1β antibody (1:200, Cat. No. AF-401- 
NA,R&D Systems, USA), rabbit anti-CD63 (1:200, Cat. 
No. NBP2-32830, NOVUS, USA) and rabbit anti- 
Annexin 2 (1:200, Cat. No. SC-9061, Santa Cruz, USA). 
The sections were then incubated with biotinylated Pan- 
Specific universal antibody and streptavidin/peroxidase 
complex (Cat. No. PK-7800, Vector labs, USA) each for 
20 min, then developed with 3, 3ʹ-Diaminobenzidine 
(DAB) solution for 5 min. Finally, the sections were 
counterstained with hematoxylin (Sigma, Cat. 
No. 51275, USA) for 5 min, dehydrated in graded ethanol 
(75%, 95%, and 100%), and mounted with a permount 

medium (Fisher scientific, Cat. No. SP15-100, United 
States). Negative controls were prepared without the pri-
mary antibodies. The area percentage of the positive stain-
ing was calculated using Image-Pro Plus 6.0 software 
(Media Cybernetics, USA). To calculate the percentage 
of IL-1β, CD63 and Annexin 2 positive area, nucleus 
stain (purple color), IHC stain (brown color), and back-
ground (white color) were manually selected for calcula-
tion. An equation used was: positive area percentage of 
any detected protein such as IL-1β = (IL-1β positive 
stained area (brown)/total areas of tissue slices including 
nucleus staining, IL-1β staining and unstained areas) 
x 100%. Such area percentages of brown color were 
used to quantify the level of IL-1β, CD63 and Annexin 2 
detected in the lung.27

Bronchoalveolar Lavage (BAL) Collection
The mice were laid on their backs on a surgical plate and 
70% ethanol was used on the neck to disinfect. An inci-
sion in the neck skin near the trachea was made using 
a scalpel and the skin was open to expose the muscle 
layer around the trachea, which was separated to expose 
by trachea. After the insertion of a 26 G needle, a catheter 
of about 0.5 cm was inserted into the trachea, which was 
stabilized by ligating the trachea around the catheter 
using the cotton thread. A 1-mL syringe with sterile 
balanced PBS was used to gently inject the PBS into the 
lung. Then, the solution was gently collected by with-
drawing the syringe plunger while massaging mouse 
thorax and chest if necessary. The syringe was then 
removed from the needle and lavage fluid (BAL) was 
recovered and injected into a 1.5 mL Eppendorf tube 
immersed in ice. Normally, 700–900 µL of BAL could 
be recovered from 1 mL of injected solution. To collocate 
more BAL, all steps for flushing trachea were repeated 
twice.

Nanoparticle Tracking Analysis (NTA)
Nanoparticle tracking analysis (NTA) was used to analyze 
exosomes using the light scattering mode of the NanoSight 
LM10 (NanoSight Ltd., Amesbury, United Kingdom).41 

BAL samples were diluted in filtered PBS and went 
through 0.2 μm filtration column to remove large vesicles. 
The NanoSight LM10 was set to capture 5 frames (30 s 
each) for each sample with background level at 10, camera 
level at 12 and shutter speed at 30. Captured nanoparticles 
in 3D distribution images were analyzed using NTA 
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software (Version 3.2 Build 16). Particles sized between 
50 and 120 nm were calculated for quantitative 
comparison.

Western Blot Analysis
Western blot analysis was performed as described 
previously.39 In brief, an equal amount of protein was loaded 
into the wells of SDS-PAGE gels along with the molecular 
weight marker and then resolved by electrophoresis. The 
proteins separated by electrophoresis were then transferred 
to PVDF membrane. The membrane was blocked, followed 
by incubation with primary antibodies rabbit polyclonal to 
NLRP3 (1:10,000, Cat. No. ab263899, Abcam, USA), 
Rabbit polyclonal to ASC (1:10,000, Cat. No. 
SAB4501314, Abcam, USA), Rabbit polyclonal to cas-
pase-1 (1:1000, Cat. No. 67314, Abcam, USA), Rabbit 
polyclonal to ASC (1:1000, Cat. No. SAB4501314, 
Abcam, USA) and rabbit anti-β-actin (1:10,000, Cat. No. 
sc-47778, Santa Cruz Biotechnology, USA) overnight at 4°C 
followed by an incubation with donkey anti-rabbit-HRP IgG 
(1:5000, Cat. No. sc-2313, Santa Cruz Biotechnology, USA) 
for 1 hour at room temperature. Finally, protein bands were 
detected by chemiluminescence technique using LI-COR 
Odyssey Fc and their intensity of target proteins were nor-
malized to β-actin and calculated with Image J software 
version 1.44p (NIH, USA).

Electroacupuncture (EA) Intervention
For EA, mouse Zusanli (ST36) and Feishu (BL13) acu-
points were used for potential effects on NRLP3 inflamma-
some activation and associated exosome release, which 
were often used together for treatment of chronic lung dis-
ease or COPD.42 BL13 was confirmed as a lung-specific 
acupoint in a clinical setting and also in animals. In parti-
cular, it was confirmed to attenuate the inflammatory 
response, as shown by reduction of IL-8 and TNF-α produc-
tion – the downstream products of NLRP3 inflammasome 
activation, by enhancing the expression of mRNA and pro-
tein of histone deacetylase 2 (HDAC2).43 In addition, we 
chose Shenshu (BL23) acupoint as lung non-specific acu-
point in combination with ST36 as comparison. Mice in 
control group were not treated with EA. Based on mouse 
acupoints Atlas,44 the ST36 acupoint was located 4 mm 
below and 1–2 mm lateral to the midpoint of the knee on 
the anterior side of ankle. BL13 acupoint is located at the 
third thoracic vertebra (around 0.3 cm from the midline in 
mice), and BL 23 acupoint was found at the 1.5 cun lateral 
to the lower border of the spinous process of the second 

lumbar vertebra. Acupuncture needles (diameter 0.14 mm, 
length 15 mm) were purchased from Seirin America. All 
mice were sedated with 0.8–1% isoflurane by a small animal 
anesthesia system 5 minutes before and during electrical 
stimulation. The anode and cathode of the electrical stimu-
lator (Cat. No. ES-160, ITO Physiotherapy & Rehabilitation 
CO. Japan) were connected to two acupuncture needles. 
These needles were inserted at a depth of 2 mm, and 
electrical stimulation pulses were applied for 30 min (2 
mA, 4/20 Hz) at both the BL13 and ST36 acupoint. We 
connected negative pole to BL13 and positive to ST36 on 
the same side of the body as described in previous studies.45 

The frequency switching of 4Hz/20Hz through the electrical 
stimulator program was also chosen as described in previous 
studies.46,47 Four weeks after PPE instillation mouse 
emphysema was established and then EA was performed 
every 2 days for 2 weeks. The mice receiving EA for two 
weeks were either used to collect bronchoalveolar lavages or 
sacrificed for collection of lung tissues for histological 
examination, IHC analysis and confocal microscopy with 
corresponding tissue slides.

Statistical Analysis
All the values are expressed as mean ± SEM. Two-way or 
one-way ANOVA was used to examine the significant 
differences among multiple groups of experiments, which 
was followed by a Student-Newman-Keuls test as post hoc 
test to confirm where the differences occurred between 
groups. If the significance was detected between the two 
groups of experiments, Student’s t-test was used. P < 0.05 
was considered statistically significant.

Results
Characterization of Porcine Pancreatic 
Elastase (PPE)-Induced Mouse Model of 
Emphysema
PPE-induced emphysema is a well-established and widely 
used animal model of emphysema.32 To confirm the success 
of producing this animal model, we characterized the patho-
logical changes in the lungs of mice receiving PPE instilla-
tion. As shown in Figure 1A, the lungs of mice receiving 
PPE exhibited substantially increased low attenuation area 
(LAA) in Micro-CT images. LAAs (less than 650 HU) are 
shown in green in three-dimensional images. However, no 
obvious increase in LAA was observed in the lungs of PBS- 
treated mice. Increased LAA is an index of loss of lung 
volume in mice. These results are summarized in Figure 1B, 
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showing significantly increased LAA in the lungs of mice 
receding PPE. Masson’s trichrome staining showed severe 
collagen deposition around airways and in the interstitium 
between alveoli in the PPE-treated mice compared to PBS- 
treated mice. The appearance of interstitial fibrosis is 
demonstrated by the blue stained collagen deposition around 
the airways (small bronchi and bronchioles) (Figure 1C) and 
the interstitial space between alveoli (Figure 1D). Through 
histopathological examinations of hematoxylin and eosin 
(HE), the stained lung sections showed severe granulocyte 
infiltration of the bronchial wall and injured bronchial muco-
sal epithelium cells. The alveolar sacs and spaces were 
enlarged, and the alveolar walls were thickened. Compared 
to control mice, mice with emphysema showed a severe 
inflammatory response as shown by increases in inflamma-
tory cells, with most of them being neutrophils and lympho-
cyte and alveolar macrophages (Figure 1E and F). These 
pathological changes in the bronchial wall and alveoli are 
typical features of chronic lung injury during emphysema. 
The success rate of PPE-induced emphysema model is 
~90% as shown by structural changes 4 weeks after PPE 
treatment. Mice after instillation were under observation for 
60 min to make sure that the instillation was successful by 
checking if the mouse behaved as it did before the proce-
dure, which ensured the success of PPE induction in the 
emphysema model.

NLRP3 Inflammasome Formation and 
Activation in the Lung of Mice with 
PPE-Induced Emphysema
Western blot analysis was carried out to measure the 
protein expression levels of NLRP3 inflammasome com-
ponents: NLRP3, caspase-1, ASC, in the lung tissues. We 
observed significantly increased protein expression of all 
these components in the PPE treated mice as compared to 
the PBS group of mice, indicating more inflammasome 
components available for its assembling and activation in 
PPE treated mice (Figure 2A and B). Using confocal 
microscopy, we found that the colocalization of NLRP3 
with ASC or caspase-1 (yellow staining under confocal 
microscope) was markedly increased by PPE instillation 
both in the alveolar (Figure 2C) and bronchial wall 
(Figure 2E), meaning enhanced formation of NLRP3 
inflammasomes. Quantitation of the NLRP3 colocalization 
by measurement of Pearson’s correlation coefficient is 
presented in Figure 2D for changes in alveoli and 
Figure 2F in bronchioles, showing that NLRP3 

inflammasome formation was significantly enhanced in 
mice treated by PPE compared to those treated by vehicle 
(PBS).

To confirm inflammasome activation in the lung tissue, 
we first measured the protein level of a prototype inflam-
masome product, IL-1β by Western blot analysis 
(Figure 3A). We found that there was a significant increase 
in cleaved IL-1β in PPE-treated mice as compared to PBS- 
treated mice (Figure 3B). Furthermore, we also detected 
IL-1β levels and localization by immunohistochemistry 
(IHC). As shown in Figure 3C, IL-1β as indicated by 
brown staining was markedly increased in the bronchial 
and alveolar wall, suggesting that NLRP3 inflammasomes 
are activated in these lung tissues of mice with PPE 
instillation. As shown in Figure 3D, the intensity analysis 
of IL-1β detected by brown staining showed that IL-1β 
levels significantly increased in the bronchial and alveolar 
wall of mice with PPE instillation compared to mice 
treated with PBS. It is clear that in PPE-induced emphy-
sema NLRP3 inflammasomes are activated in the lung.

Using confocal microscopy, we detected the colocali-
zation of EpCAM (an epithelial marker, red) and IL-1β 
(green). As shown in Figure 3E, the colocalization of 
EpCAM and IL-1β was much higher in the bronchial 
epithelium in the lung from PPE-treated mice than PBS- 
treated mice. The colocalization coefficient (PCC) of 
EpCAM and IL-1β is presented in Figure 3F, showing 
that inflammasome activation significantly increased in 
epithelial cells of PPE-treated mice compared to those 
treated with PBS.

Increased Exosomes Release in the Lung 
of Mice with PPE-Induced Emphysema
To address how the prototype NLRP3 inflammasome pro-
ducts, IL-1β is secreted out of lung cells, we assessed the 
contribution of exosomes as a mechanism in mice receiving 
PPE instillation compared to mice receiving PBS instillation. 
We first confirmed a more remarkable increase in exosomes 
in the lung tissues of PPE-treated mice than PBS-treated 
mice, as shown by IHC staining of exosome markers, CD63 
and Annexin 2 (Figure 4A) in the bronchial wall, interstitial 
tissues and alveolar septa. Figure 4B shows the densitometry 
data showing that brown staining of exosome markers, CD63 
and Annexin 2 was significantly increased in the lungs of 
PPE-treated mice compared to PBS-treated mice.

We also performed nanoparticle tracking analysis 
(NTA) using the lung lavages from different groups of 
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Figure 1 Histopathological and morphological changes in the lung of mice receiving porcine pancreatic elastase (PPE) or phosphate buffered saline (PBS) instillation. (A) 
Representative micro-computed tomography (micro-CT) lung images. (B) Bar graph shows the low attenuation area (LAA) of the lung (n=4). (C) Representative 
photomicrographs depicts Masson’s trichrome staining of lung tissue. (D) Summarized data showing collagen deposition in blue color detected by Masson’s trichrome 
staining (n=3). (E) Hematoxylin and Eosin staining of the lung tissue. (F) Summarized bar graphs shows PPE significantly increased alveolar sacs and spaces in the lung. (n=6). 
*P<0.05 vs PBS treatment.
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Figure 2 NLRP3 inflammasome formation in the lung. (A) Semiquantitative immunoblots reacted with anti-NLRP3, ASC, and caspase-1 antibodies, respectively. (B) 
Corresponding densitometric analyses of protein expression levels of NLRP3, ASC and caspase-1 normalized by β-actin. (n=3). Confocal microscopic analysis of NLRP3 
inflammasome formation by examining NLPR3 colocalization with ASC or caspase-1 in the (C) alveoli and (E) bronchial wall of lung of mice receiving PPE or PBS instillation. 
(D and F) The Pearson correlation coefficient (PCC) for the colocalization of NLRP3 with ASC or caspase-1. (n=6). *P<0.05 vs PBS treatment.
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Figure 3 NLRP3 inflammasome activation in the lung. (A) Semiquantitative immunoblots reacted with anti-IL-1β antibodies. β-actin was used as internal loading control. (B) 
Corresponding densitometric analyses of protein expression levels of cleaved IL-1β normalized by β-actin (n=3). (C) Representative micrographs depict IL-1β immunostain-
ing in the alveolar and bronchial wall of lung. (D) Summarized bar graphs shows PPE significantly increased IL-1β immunostaining. (E) Representative micrographs depict 
colocalization of EpCAM and IL-1β in the bronchial epithelium in the lung. (F) Bar graph shows PCC of EpCAM and IL-1β significantly increased in the lung of mice receiving 
PPE instillation (n=5–7). *P<0.05 vs PBS treatment.
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Figure 4 Exosomes secretion and IL-1β release in the lung of mice. (A) CD63 and AnX2 (exosome marker) release increased in the lung of mice receiving PPE instillation. 
(B) Bar graph shows enhanced staining of exosomes markers in the lung (n=6) (C) Representative images showed exosome release and (D) Bar graph shows increased 
exosome counts in lung lavages from mice receiving PPE instillation (n=5–6). (E) Representative photomicrographs depicts IL-1β-containing exosomes. (F) The PCC of 
CD63 (green) vs IL-1β (red) was significantly increased in the mice receiving PPE. *P<0.05 vs PBS treatment.
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mice. Figure 4C shows representative 3-D histograms of 
EVs analyzed by NTA that consist of concentrations, sizes 
and intensity of EVs. It was found that a much larger or 
wider histogram was detected in the lung lavages from 
mice with PPE-induced emphysema. The higher peak of 
the histogram from the lung lavages in mice with PPE- 
induced emphysema than those animals with PBS treated 
control mice indicate more EVs with a diameter of 100 
nm. The broader width of the histogram shows increased 
EVs with different sizes between 50 and 150 nm dia-
meters. Digitalized data of these EVs, namely, exosomes 
are summarized in Figure 4D, showing that PPE-treated 
mice have significantly increased exosomes or small EVs 
in their tracheal spaces, which can be washed out into lung 
lavages. Using confocal microscopy, we demonstrated that 
markedly increased colocalization of EVs marker (CD63, 
green) and inflammasome product, IL-1β (red) was 
detected around or within bronchioles, indicating that IL- 
1β is present in exosomes (Figure 4E). The IL-1β- 
containing exosomes secreted to the outside of lung cells 
trigger inflammatory response leading to lung inflamma-
tion. The Pearson colocalization coefficient (PCC) of 
CD63 (green) vs IL-1β (red) was clearly increased, while 
the mice were treated by PPE (Figure 4F).

Attenuation of PPE-Induced NLRP3 
Inflammasome Formation and Activation 
by Deletion of ASM Gene
Since acid sphingomyelinase (ASM), a lysosomal cera-
mide producing enzyme, has been confirmed to contribute 
to exosome release,34,35 we determined whether deletion 
of ASM gene alters NLRP3 inflammasome activation and 
release of inflammatory exosomes during emphysema in 
mice with ASM gene knockout (ASM−/-). As shown in 
Figure 5A and C, confocal microscopy found that in the 
lung of ASM KO mice the colocalization of NLRP3 with 
ASC or caspase-1 was much less than that in WT mice, 
indicating that ASM gene is also involved in NLRP3 
inflammasome formation in the lung during PPE-induced 
emphysema. The quantification of the colocalization coef-
ficients (Figure 5B and D) shows that ASM gene deletion 
significantly attenuated the colocalization of these inflam-
masome molecules, namely, NLRP3 vs ASC or caspase-1.

In addition, IHC analysis also demonstrated that ASM 
gene deletion reduced PPE-induced IL-1β production in 
the mouse lung. Figure 5E depicts the typical staining of 
IL-1β antibody in different mouse groups, showing that 

the IL-1β level was elevated in the lungs of WT mice with 
PPE instillation. However, this increased lung IL-1β 
induced by PPE instillation was almost completely abol-
ished in ASM gene KO mice. The data of these IHC 
experiments are summarized in Figure 5F, showing that 
increases in the IL-1β level in the lung from mice with 
PPE-instillation were significantly suppressed. It is clear 
that ASM gene is importantly implicated in NLRP3 
inflammasome formation and activation during 
emphysema.

Inhibition of PPE-Induced Exosome 
Release by Deletion of ASM Gene
We also observed the effect of ASM gene deletion on 
exosome secretion in the lungs of mice with PPR- 
induced emphysema. Using IHC staining, we detected 
the expression of exosome markers, CD63 and Annexin 
2 in the lung. Under control condition, the expression level 
of CD63 and Annexin 2 in the bronchial and alveolar wall 
was much lower in ASM mice compared to that in WT 
mice (Figure 6A and C). The densitometry analysis shows 
that increased CD63 and Annexin 2 levels by PPE instilla-
tion were significantly attenuated by ASM gene deletion 
(Figure 6B and D). These data clearly show that ASM 
deficiency decreased exosome secretion from inflamma-
tory lung tissues induced by PPE instillation. As shown 
in Figure 6E, NTA analysis demonstrated that increased 
peak of the histogram (100 nm vesicles or exosomes) from 
the lung lavages of mice with PPE-induced emphysema 
was obviously suppressed. Digitalized data of exosomes 
are summarized in Figure 6F, showing that in PPE-treated 
mice lacking ASM gene there was no significantly 
increased exosomes secretion into their tracheal spaces, 
as detected in lung lavages.

Suppression by EA of NLRP3 
Inflammasome Formation and Activation 
in the Lung of Mice Receiving PPE 
Instillation
So far, no clinical trials accomplished show that any 
NLRP3 inflammasome inhibitors can effectively treat 
COPD, but acupuncture at some lung-specific acupoints 
has been used for treatment of COPD. Therefore, the pre-
sent study also examined the effects of EA on the forma-
tion and activation of NLRP3 inflammasome in mice with 
PPE-induced emphysema. As shown in Figure 7A and B, 
EA of the lung-specific acupoint, Feishu (BL13) in 
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Figure 5 Inhibition of NLRP3 inflammasome formation and activation in acid sphingomyelinase (ASM) gene knockout mice receiving PPE instillation. Representative 
photomicrographs depicts NLPR3 colocalization with (A) ASC or (C) caspase-1. (B and D) Summarized data in the bar graph shows PCC. (E) Representative images depicts 
IL-1β immunostaining in the lung. (F) Summarized data shows IL-1β levels in different treatment groups. (n=6). *P<0.05 vs WT mice with PBS treatment. #P<0.05 vs WT 
mice with PPE treatment.
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Figure 6 Blockade of increased exosome release in the lung of mice receiving PPE instillation by ASM gene deletion. Representative images depicts (A) CD63 (C) AnX2 
immunostaining in the lung of mice. (B and D) Summarized data in the bar graph shows decreased exosome levels in ASM gene knock out mice. (E) Representative images 
showed exosome release and (F) Bar graph shows decreased exosome counts in lung lavages from mice receiving PPE instillation by ASM gene deletion. (n=5–6). *P<0.05 vs 
WT mice with PBS treatment. #P<0.05 vs WT mice with PPE treatment.
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Figure 7 Effects of electroacupuncture at the acupoint Feishu (BL13) and Shenshu (BL23) on NLRP3 inflammasome formation and activation induced by PPE instillation. 
Representative images depict NLPR3 colocalization with (A) ASC or (C) caspase-1. (B and D) Summarized data in the bar graph shows PCC. (E) Representative images 
depicts IL-1β immunostaining in the lung. (F) Summarized data shows IL-1β levels in different treatment groups. (n=6). *P<0.05 vs PBS treatment. #P<0.05 vs PPE treatment 
group without EA or mice receiving EA at lung-nonspecific acupoint, BL23.
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combination with a general anti-inflammatory acupoint, 
Zusanli (ST36) significantly attenuated PPE instillation- 
induced formation of NLRP3 inflammasome in the lung 
tissues, which was demonstrated by largely reduced colo-
calization of NLRP3 vs ASC compared to the control 
group of mice. On the contrary, the formation of NLRP3 
inflammasome was not increased in mice receiving EA at 
acupoint of BL23, a lung non-specific acupoint, even in 
combination with ST36. Similar results were shown by 
detection of NLRP3 vs caspase-1 colocalization 
(Figure 7C and D), which depicts the significant inhibition 
of PPE instillation-induced NLRP3 inflammasome forma-
tion in the mouse lung by EA of lung-specific acupoint 
(BL13). Immunohistochemical staining showed that EA 
almost blocked PPE instillation-induced increases in IL- 
1β level in the lung of mice with emphysema compared to 
mice with emphysema that did receive EA or received EA 
at lung-nonspecific acupoint BL23 (Figure 7E and F). This 
suggests that EA can attenuate activation of NLRP3 
inflammasome in the lung during PPE-induced 
emphysema.

Inhibition by EA of Exosome Release in 
the Lung of Mice Receiving PPE 
Instillation
Furthermore, we examined the effects of EA on exosome 
secretion in the lung tissue of mice with PPE instillation. 
As shown in Figure 8A and C, PPE instillation-induced 
increases in exosomes as indicated by their biomarker 
staining, such as CD63 and Annexin 2 in the bronchial 
wall, interstitial tissues and alveolar septa were largely 
attenuated by EA of the acupoint Feishu (BL13) and 
Zusanli (ST36), compared to mice that did not receive 
EA or received EA at BL23 acupoint, a lung-nonspecific 
acupoint. These results are summarized in Figure 8B and 
D, showing that PPE instillation significantly increased 
CD63 and Annexin 2 staining in the bronchial wall, inter-
stitial tissues and alveolar septa, while in mice receiving 
EA PPE instillation were almost unable to induce 
increases in CD63 or Annexin 2 staining. The attenuation 
of PPE instillation-increased CD63 and Annexin 2 staining 
in the bronchial wall, interstitial tissues and alveolar septa 
was not observed in mice receiving EA at at lung- 
nonspecific acupoint BL23. It is clear that EA at BL13 
has a specific effect on lung exosome secretion induced by 
PPE instillation.

We also performed nanoparticle tracking analysis 
(NTA) using the lung lavages from different groups of 
mice. As shown in Figure 8E, increased EVs or exosomes 
with different sizes between 50 and 150 nm diameters in 
the lung lavages from mice with PPE instillation-induced 
emphysema were markedly reduced when they received 
EA at BL13 compared to those mice that received EA at 
BL23 or did not receive any EA. Summarized data in 
Figure 8F depict that EA significantly reduced PPE instil-
lation-induced exosome release into tracheal spaces and 
therefore exosomes washed out into lung lavages were 
substantially reduced.

Discussion
The primary goal of the present study was to reveal 
whether exosome-mediated release of NLRP3 inflamma-
some products contributes to instigation of the inflamma-
tory response in the lung during emphysema and whether 
NLRP3 inflammasome activation and associated inflam-
matory exosome release could be a target for acupuncture 
therapy of emphysema. Using a well-known emphysema 
mouse model with PPE instillation, we demonstrated that 
inflammatory exosomes associated with PPE-induced 
NLRP3 inflammasome activation were released into the 
lung tissues, thereby leading to inflammation and related 
degenerative injury in the lung. We also showed that acid 
sphingomyelinase as a confirmed regulator of NLRP3 
inflammasome activation and exosome release is impor-
tantly involved in PPE instillation-induced NLRP3 inflam-
masome formation and activation as well as in associated 
inflammatory exosome release in the lung. 
Therapeutically, EA of the acupoint Feishu (BL13) and 
Zusanli (ST36), often combined use for treatment of lung 
inflammatory disease, was shown to inhibit NRLP3 
inflammation activation and associated exosome release 
in mice with PPE-induced emphysema, which may be 
attributed to its beneficial action to suppress lung inflam-
mation during emphysema. Our results suggest that 
NLRP3 inflammasome activation and associated exosome 
release may be an important pathogenic mechanism med-
iating pulmonary inflammation and degenerative injury 
during the development of emphysema.

The inflammatory exosomes have been reported to be 
involved in a variety of chronic degenerative diseases such 
as glomerular sclerosis,27 atherosclerosis26 and vascular 
calcification.34 These exosomes are produced during 
NLRP3 inflammasome activation and mediate the release 
of NLRP3 inflammasome products to the outside of cells, 
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Figure 8 Effects of electroacupuncture at the acupoint Feishu (BL13) and Shenshu (BL23) on increases in exosome release induced by PPE instillation. Representative images 
depicts (A) CD63 (C) AnX2 immunostaining in the lung of mice. (B and D) Summarized data in the bar graph shows decreased exosome levels during electroacupuncture 
treatment. (E) Representative images showed exosome release and (F) Bar graph shows electroacupuncture decreased exosome counts in lung lavages from mice receiving 
PPE instillation. (n=6). *P<0.05 vs PBS treatment. #P<0.05 vs PPE mouse group without EA or mice receiving EA at lung-nonspecific acupoint, BL23.
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where those inflammasome-derived cytokines, such as IL- 
1β or IL-18 trigger the tissue inflammatory response lead-
ing to tissue inflammation and degenerative injuries.14,48,49 

It is well known that exosomes are secreted from the cells 
mainly in an endocytic pathway50 via multivesicular body 
(MVB) formation and fusion with cell membrane. In 
response to different stimuli and cellular activities, exo-
somes may contain different bioactive molecules, includ-
ing nucleic acids, proteins and bioactive lipids. During 
inflammation, there are reports that exosomes from inflam-
matory tissues or foci can release different chemokines, 
including TNF, IL-1β, CXCL2 and CXCL8.51–54 In addi-
tion, there is evidence that exosomes may contain tRNAs, 
mRNAs, microRNAs (miRNAs), and long non-coding 
RNAs.55 All these may play different roles in the commu-
nication between or among cells. Many of these lipids, 
proteins or RNAs released via exosomes or other EVs 
have been reported to participate in innate immune 
responses and, in particular, in the activation and resolu-
tion of inflammation.26,56 It has been reported that these 
effects mediated by exosomes can be activated by 
pathogens57–60 and infected cells61 carried pathogen- 
associated molecular patterns (PAMPs) as well as damage- 
associated molecular patterns (DAMPs).62,63 The present 
study was designed to test whether the inflammatory exo-
somes produced or released during inflammasome activa-
tion contribute to lung inflammation and related 
pathological changes during emphysema and whether 
a classical therapy of COPD by acupuncture in China 
exerts its beneficial action on emphysema through inhibi-
tion of NLRP3 inflammasome activation and associated 
inflammatory exosome release.

We first developed a mouse model of emphysema in mice 
via PPE instillation, which is a well-established animal model 
for studies on the pathogenesis and therapy of emphysema.64,65 

In this animal model of emphysema, it was found that NLRP3 
inflammasomes in lung epithelial cells were activated to pro-
duce cytokines or other factors in cytoplasm such as IL-1β, IL- 
18 or HMGB1. These factors as inflammasome activating 
products can be delivered by exosomes into lung tissue to 
trigger the inflammatory response, producing typical chronic 
pulmonary inflammation, and ultimately leading to lung tissue 
injury. It is clear that NLRP3 inflammasome activation 
together with increased exosome-release of IL-1β or other 
inflammasome products importantly contributes to the devel-
opment of lung inflammation and injury during emphysema. 
To our knowledge, this is the first report showing that inflam-
matory exosomes mediate the release of NLRP3 

inflammasome products that promote the development of 
emphysema and its pathophysiology. Some previous studies 
also demonstrated that the pro-inflammatory products are seg-
regated into membrane-enclosed compartments and secreted 
into exosomes, which participate in the pathogenic process of 
different inflammatory or degenerative diseases.66–68 There is 
evidence that this inflammasome-driven unconventional, vesi-
cle-mediated secretion of immunoregulatory proteins or cyto-
kines constitutes a novel paradigm for understanding 
inflammatory responses.69

In previous studies, it has been shown that acid sphingo-
myelinase (ASM) and ceramide critically regulate NLRP3 
inflammasome activation and related exosome release.26,27,35 

Ceramide-mediated signaling has also been reported to be 
involved in the development of diabetic vasculopathy and 
NLRP3 inflammasome activation, which was accompanied 
by the enhanced exosome-mediated release of the inflamma-
some products, resulting in the inflammatory response and 
chronic degenerative injury in the arterial wall.65 However, it 
remains unknown whether ceramide-mediated signaling is 
involved in the development of chronic inflammatory lung 
disease due to NLRP3 inflammasome activation. Using ASM 
gene knockout mice, we tested whether PPE instillation- 
induced emphysema and associated inflammasome activa-
tion as well as exosome release are regulated by ASM gene 
and its product. It was found that ASM gene deletion sig-
nificantly attenuated the NLRP3 inflammasome formation 
and activation and at the same time it suppressed the release 
of inflammatory exosomes in mice receiving PPE instillation. 
These results from ASM gene knockout mice further con-
firmed that an ASM gene-controlled mechanism activating 
NLRP3 inflammasome and associated exosomes release 
plays a critical role in the development of inflammation 
during emphysema.

Although there is no direct evidence showing the ther-
apeutic action of acupuncture on NLRP3 inflammasome 
activation and release of inflammatory exosomes during 
COPD including emphysema, some previous studies did 
confirm that acupuncture has a definite therapeutic effect on 
COPD35,42 and that exosomes are involved in the regulation 
of inflammation.70,71 The present study tested whether the 
anti-inflammatory action of acupuncture is attributed to its 
action on NLRP3 inflammasome activation and associated 
inflammatory exosome release during emphysema. We found 
that EA of the acupoints Feishu (BL13) and Zusanli (ST36) 
significantly attenuated PPE instillation-induced NLPR3 
inflammasome activation and associated release of the 
inflammatory exosomes, which may represent an important 
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molecular mechanism mediating the therapeutic action of 
acupuncture during emphysema. Although previous studies 
have also shown that EA may alter inflammasome activation 
for the treatment of different inflammatory diseases.72–75 Our 
studies further demonstrated that EA not only attenuated 
NLRP3 inflammasome activation but also suppressed the 
inflammatory exosome release in emphysema. Without this 
inflammatory exosome release, NLRP3 inflammasome acti-
vation may only induce minimal inflammatory response76 

because inflammasome products may not be released out of 
cells to trigger inflammatory response producing local or 
global inflammation in the lungs of animals or patients with 
emphysema.

The present study did not attempt to define the mechan-
isms by which EA attenuates PPE-induced lung NLRP3 
inflammasome activation and associated exosome release to 
induce inflammatory response and degenerative injury. 
Recent studies have indicated that the anti-inflammatory 
effect of acupuncture may be due to strengthening the 
immune response of the body, which may occur by the 
regulation of immune function via the hypothalamus- 
pituitary-adrenal (HPA) axis or sympathetic and parasympa-
thetic pathways. In addition, acupuncture itself is a type of 
local microtrauma in the tissues of acupoint area, which can 
activate tissue or cell anti-inflammatory effect to alleviate 
inflammation.77 In this regard, recent studies have shown that 
EA remarkably reduces lung inflammation and the levels of 
ACh, AChE, IL-6 and TNF-α, indicating that the cholinergic 
anti-inflammatory pathway may mediate beneficial action of 
acupuncture.42 Moreover, there are reports that EA inhibits 
NLRP3 inflammasome activation through cannabinoid B2 
(CB2) receptors by endocannabinoids in inflammatory pain72 

and that ROS/Nrf2 pathway mediates EA-induced ameliora-
tion of cardiopulmonary bypass-induced apoptosis and 
inflammation in the lung, indicating the role of redox 
signaling.73 Indeed, studies from our laboratory and by others 
show this redox activation of NLRP3 inflammasome in many 
tissues and organs.76,78–81 In addition, NLRP3 inflamma-
some activation has also been shown to be linked to extra-
cellular vesicles such as exosome release, which is associated 
with an increase in intracellular ceramide.35,36,82 Given that 
acupuncture has been shown to reduce tissue or plasma 
ceramide level.83 It is possible that EA may decrease intra-
cellular ceramide level or suppress danger factor-induced 
ceramide production and thereby attenuate NLRP3 inflam-
masome activation and associated exosome release.

Specific to the stimulation of BL13 and ST36 acupoint, 
there is evidence that a combination of both acupoints was 

effective in the treatment of COPD. For example, previous 
studies confirmed that acupuncture with a combination of 
ST36, BL13, and others improved lung function in COPD 
patients as shown by increased peak oxygen uptake 
( V
:

O2peak) and peak minute ventilation ( V
:

Epeak).38 It 
has also been shown that acupuncture of only ST36 mainly 
increases plasma levels of corticosterone (CORT) and 
adrenocorticotropic hormone (ACTH), which has 
a general anti-inflammatory effect. The release of these 
factors is related to increased expression of corticotropin- 
releasing factor (CRF) protein in the paraventricular 
nucleus of the hypothalamus, which may be stimulated 
by a nerve pathway that links to ST36.84

More importantly, the present study attempted to test 
whether EA of BL13 acupoint in combination with ST36 
acupoint attenuates pulmonary inflammasome activation and 
exosome release during PPE-induced emphysema. The rea-
son to choose BL13 acupoint is that this acupoint is often 
used for treatment of COPD clinically and its beneficial 
effects were also confirmed in a number of animal studies. 
For example, BL13 was confirmed to attenuate the inflam-
matory response as shown by reduction of IL-8 and TNF-α 
production. The downstream products of NLRP3 inflamma-
some activation, by enhancing the expression of mRNA and 
protein of histone deacetylase 2 (HDAC2).43 Some neuro-
physiological studies have indicated that the acupoint BL13 
certainly links a set of nerves, which are involved when 
BL13 is stimulated. Stimulating BL13 may affect the lung 
function via the posterior roots of the lungs due to obvious 
anatomical reason.85 The specific neurotransmitters or other 
factors mediating the effects of EA at BL13 acupoint need to 
be defined in our future studies.

Conclusion
Our findings indicate that NLRP3 inflammasome activa-
tion and associated inflammatory exosome release are 
critically implicated in the development of inflammation 
during PPE-induced emphysema. EA reduces inflamma-
tory lung injury in this animal model by suppressing both 
NLRP3 inflammasome activation and the release of 
inflammatory exosomes that increase IL-1β levels in lung 
tissue to trigger inflammatory response leading to inflam-
matory injury in the lung.

Abbreviations
NLRP3, NLR family pyrin domain containing 3; ASC, 
Apoptosis-associated speck-like protein containing a CARD; 
COPD, Chronic obstructive pulmonary disease; DAMPs, 
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