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abstract

PURPOSE Tissue-based comprehensive genomic profiling (CGP) is increasingly used for treatment selection in
patients with advanced cancer; however, tissue availability may limit widespread implementation. Here, we
established real-world CGP tissue availability and assessed CGP performance on consecutively received samples.

MATERIALS AND METHODS We conducted a post hoc, nonprespecified analysis of 32,048 consecutive tumor
tissue samples received for StrataNGS, a multiplex polymerase chain reaction (PCR)–based comprehensive
genomic profiling (PCR-CGP) test, as part of an ongoing observational trial (NCT03061305). Sample char-
acteristics and PCR-CGP performance were assessed across all tested samples, including exception samples
not meeting minimum input quality control (QC) requirements (, 20% tumor content [TC], , 2 mm2 tumor
surface area [TSA], DNA or RNA yield , 1 ng/mL, or specimen age . 5 years). Tests reporting ≥ 1 prioritized
alteration or meeting TC and sequencing QC were considered successful. For prostate carcinoma and lung
adenocarcinoma, tests reporting≥ 1 actionable or informative alteration or meeting TC and sequencing QC were
considered actionable.

RESULTS Among 31,165 (97.2%) samples where PCR-CGP was attempted, 10.7% had , 20% TC and 59.2%
were small (, 25mm2 tumor surface area). Of 31,101 samples evaluable for input requirements, 8,089 (26.0%)
were exceptions not meeting requirements. However, 94.2% of the 31,101 tested samples were successfully
reported, including 80.5% of exception samples. Positive predictive value of PCR-CGP for ERBB2 amplification
in exceptions and/or sequencing QC-failure breast cancer samples was 96.7%. Importantly, 84.0% of tested
prostate carcinomas and 87.9% of lung adenocarcinomas yielded results informing treatment selection.

CONCLUSION Most real-world tissue samples from patients with advanced cancer desiring CGP are limited,
requiring optimized CGP approaches to produce meaningful results. An optimized PCR-CGP test, coupled with
an inclusive exception testing policy, delivered reportable results for . 94% of samples, potentially expanding
the proportion of CGP-testable patients and impact of biomarker-guided therapies.
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INTRODUCTION

Molecular profiling of patient tumor specimens is in-
creasingly important as more therapies are indicated in
biomarker-defined patient populations.1 Next-generation
sequencing (NGS) is the diagnostic method of choice to
assess relevant biomarkers simultaneously from
formalin-fixed paraffin-embedded (FFPE) tumor
tissue2-10 or circulating cell-free DNA (cfDNA) liquid
biopsy sample.11-14 The US Center for Medicare and
Medicaid Services has deemed tissue-based compre-
hensive genomic profiling (CGP) by NGS—which

includes evaluation of single-nucleotide variants, short
insertions and deletions (indels), copy number amplifi-
cations and deep deletions, gene fusions, microsatellite
instability (MSI), and tumor mutation burden (TMB)—
medically necessary for patients with advanced solid
tumors (NCD CAG-00450N and LCD L38045).

Successful FFPE tissue CGP requires nucleic acid
isolation of adequate quantity and quality from tumor
cells. Challenges affecting real-world CGP applicability
include minute specimens, samples with low tumor
content (TC), and low-quality nucleic acid (affected by
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sample age and fixation).15 To maximize reportability, most
CGP tests have tumor size (generally in mm2 of tumor
surface area [TSA]), TC, and nucleic acid yield or input
requirements.3,5,15 However, tissue CGP test failure rates of
30%-50% in clinical trial cohorts, where testing is
attempted on all received samples (or those received below
input requirements are considered failures), suggest that
current CGP approaches, which are largely based on hybrid
capture (HC) library preparation, may only be applicable for
a subset of specimens.16-20

Herein, we characterized sample attributes of . 30,000
consecutive real-world samples submitted for CGP and the
performance of a multiplex polymerase chain reaction
(PCR)–based CGP test, StrataNGS, applied to consecu-
tively received and tested samples, including those below
sample input requirements.

MATERIALS AND METHODS

Patient Cohort

All samples received for testing from February 13, 2017, to
June 25, 2020, from the Strata Trial (NCT03061305), a
100,000-patient observational study for patients with ad-
vanced solid tumors, were included. Sample, sequencing
quality control (QC) metrics, and clinically reported bio-
marker results were retrieved from StrataPOINT, a de-
identified Strata Trial Results Database (Data Supplement).

CGP Testing

Samples were tested with StrataNGS, the current version of
which is a 429-gene polymerase chain reaction–based
comprehensive genomic profiling (PCR-CGP) laboratory-
developed test for FFPE tumor tissue samples performed
on coisolated DNA and RNA, which has been validated on
more than 1,900 FFPE tumor samples, and is covered for
Medicare beneficiaries (21,22 and Tomlins et al, manuscript
submitted). Earlier StrataNGS versions used during the

described study period (Data Supplement) were essentially
the same, but only report prioritized mutations from 57
genes (v3) or did not include TMB (v2)22; as specimen
requirements have not changed, all received samples
during the described study period were included.

StrataNGS requires one FFPE block or 10 × 5 mm-thick
unstained slides. Minimum sample input QC requirements
are TSA ≥ 2 mm2, TC ≥ 20%, time from sample acquisi-
tion , 5 years, and ≥ 1 ng/mL for both DNA and RNA;
however, samples not meeting these requirements but with
identifiable and isolatable tumor are deemed exceptions and
testing is attempted. PCR-CGP data are processed using in-
house–developed bioinformatics pipelines and sequencing
QC assessments are performed per variant type and a final
molecularly informed TC is determined. For samples
failing ≥ 1 sequencing QC assessments or with a final TC,
20% (the StrataNGS limits of detection [LOD] for most al-
teration types), positive alterations may still be called via an
expert molecular pathology review process; however, other
alterations cannot be definitively ruled out, thus yielding a
partial test result. Additional test details and sample QC
metric definitions are provided in the Data Supplement; the
formal analytical and clinical validation of the current test is
described separately (Tomlins et al manuscript submitted).

Reportability, Actionability, and Positive Predictive Value

Tests with ≥ 1 reported prioritized alteration or passing all
sequencing QC assessments and having TC ≥ 20% were
considered successfully reported. Pan-cancer actionability
is described in the Data Supplement. For prostate cancer
and non–small-cell lung cancer (NSCLC) adenocarcinoma
specific analyses, only reports that could rule in (by being
positive for an actionable or exclusionary biomarker) or rule
out (by passing all sequencing QC metrics and TC. 20%)
biomarker-directed therapy were considered informative,
as described in the Data Supplement.

CONTEXT

Key Objective
Comprehensive genomic profiling (CGP) on tumor tissue can guide treatment for patients with advanced solid tumors.

Whether tissue requirements for leading tests (eg, ≥ 25 mm2 tumor surface area and ≥ 20% tumor content) limit
adoption and affect real-world performance is unclear. Here, we determined tissue characteristics and CGP performance in
. 30,000 consecutively received tissue samples tested by polymerase chain reaction (PCR)–based comprehensive
genomic profiling.

Knowledge Generated
Among . 30,000 consecutively tested tissue samples, 59% had , 25 mm2 tumor surface area and 11% had , 20% tumor

content. PCR-based CGP and a broad exception testing policy (performing testing on samples not meeting minimum input
requirements) successfully reported 94% of samples, including 81% of such exception samples.

Relevance
Themajority of samples received for tissue-based CGP testing in a real-world cohort are small. An optimized PCR-CGP test and

testing of exception samples may increase the proportion of patients who can undergo tissue CGP to guide biomarker-
based therapies.
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RESULTS

Characteristics of Samples Received for CGP

CGP testing was performed by a single Clinical Laboratory
Improvement Amendments–certified, College of American
Pathologists–accredited laboratory (Strata Oncology, Ann
Arbor, MI) as part of an observational clinical trial evaluating
the impact of solid tumor sequencing in the advanced-
cancer setting using a previously validated PCR-CGP test
(StrataNGS). Across 28 diverse US health systems, 31,165
consecutive unique solid-tumor samples (from 30,565
unique patients) were received for CGP testing between
February 13, 2017, and June 25, 2020; an additional 883
samples (Fig 1A) were rejected for various reasons, most
commonly scant or no identifiable tissue or tumor (Data
Supplement). Rejected samples were excluded from fur-
ther analysis.

Sample characteristics from all 31,165 consecutively
tested samples are shown in Table 1, with demographics in
the Data Supplement. Notably, 10.7% of tested samples
had a final TC , 20% (Table 1), a common minimum TC
requirement for CGP tests (including the PCR-CGP test),
because corresponding LOD can preclude exclusion of
certain variants or variant types below that TC.3,5 Only
40.8% of samples had TSA ≥ 25 mm2, with 44.7% of
samples having ≤ 10 mm2 TSA (Table 1). Importantly,
TSA≥ 25mm2 is the minimum TSA requirement for several
leading commercial HC-CGP tests, including the only US
Food and Drug Administration (FDA)–approved tissue CGP
companion diagnostic device (FoundationOne CDx).3,5,23,24

As expected, the majority of samples were from biopsies
(57.2%); however, cytology cell blocks from fine-needle
aspirations and fluid cytology comprised 7.8% of samples
(Table 1). As expected, nucleic acid yield was associated
with TSA; as among samples with , 2 mm2 TSA, only
44.5% and 51.7% yielded . 1 ng/mL DNA and RNA,
respectively (Data Supplement).

Pan-Tumor CGP Experience

Given our previous experience that PCR-CGP could often
deliver partial results even in very poor quality samples,
CGP was attempted on all 31,165 tumor samples using the
PCR-CGP test, including exception samples not passing
input requirements (those with TC , 20%, TSA , 2 mm2,
specimen age . 5 years, or DNA and/or RNA concen-
tration , 1 ng/mL); median turnaround time from sample
receipt to report release was 7 business days (interquartile
range 6-9). Of these 31,165 samples, 31,101 (99.8%) were
evaluable for passing sample input requirements and were
further considered for assessing sample characteristic
impact on PCR-CGP reportability (Fig 1A and Data
Supplement).

As shown in Figure 1 and the Data Supplement, 29,293 of
31,101 (94.2%) samples were successfully reported, de-
fined as having at least one reported prioritized alteration or

passing all sequencing QC assessments and ≥ 20% final
TC. Among the 23,012 (74.0%) samples passing all input
requirements, 22,782 (99.0%) were successfully reported.
Reportability did not vary by sample size (Fig 1B and Data
Supplement), demonstrating that this PCR-CGP test is
suitable for minute samples with ≥ 2 mm2 TSA when other
input requirements are met. Notably, among 8,089
(26.0%) exception samples, 6,511 (80.5%) were still
successfully reported (Figs 1A and 1B). Samples with
TC , 20% comprised the largest (10.7%) and poorest
performing exception category (68.2% successfully re-
ported), as expected given that , 20% TC samples au-
tomatically fail QC because of the overall LOD, and thus all
such samples without reported prioritized alterations are
deemed test failures (not reported) as the presence of
variants cannot be excluded. Samples not meeting other
input requirements had decreased reportability (85.9%-
90.1%) relative to QC-passing samples, but again, re-
portable results were still provided for most (Fig 1B). The
impact of sample characteristics on individual variant class
performance is described in the Data Supplement. Rep-
resentative successfully tested samples across the TSA
range are shown in Figure 1C, and results stratified by
cancer type and potential biomarker–based actionability
are shown in Figure 2. Clinicopathologic and biomarker
findings from all samples are provided (Data Supplement).

To address the positive predictive value (PPV) of prioritized
biomarkers reported from exception and/or sequencing QC
samples, we determined the PPV of PCR-CGP for ERBB2
amplification in all exception and/or sequencing QC-failure
breast cancer samples with orthogonal clinical ERBB2
amplification status. As shown in the Data Supplement, the
PPV in these 60 samples was 96.7%, similar to 98.5% PPV
for ERBB2 amplifications determined in the PCR-CGP test
clinical validation (only including sample and sequencing
QC-passing samples; Tomlins et al, manuscript in review);
genomic data from a true-positive 1.5-mm2, TC-exception
sample are shown in Figure 3. Likewise, an example report
from a successfully reported TC-exception NSCLC sample
harboring expert-reviewed prioritized TP53 mutation and
EML4-ALK fusion is shown in the Data Supplement. Ad-
ditionally, as shown in the Data Supplement, biomarker
frequencies were highly correlated (overall Pearson
r = 0.990; per tumor type r = 0.897-0.999) to those from
MSK-IMPACT, an independent, large, single-institution,
advanced solid-tumor profiling experience using an FDA-
cleared HC-CGP test.7 Lastly, no significant changes in the
percentage of samples meeting sample QC metrics or
reportability were observed across the study period, con-
sistent with continued desire for CGP testing of challenging
tissue samples (Data Supplement).

Prostate Carcinoma Experience

The FDA approval of pembrolizumab for all advanced
microsatellite instability–high (MSI-H) solid tumors and the
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approval of rucaparib (for BRCA1/2) and olaparib (for
BRCA1/2, ATM, and 11 other potential homologous re-
combination deficiency [HRD] genes) for metastatic
castration-resistant prostate cancer led the National
Comprehensive Cancer Network to recommendMSI-H and
HRD gene testing for all men with metastatic castration-

resistant prostate cancer given relatively high frequency of
these alterations.17,25-30

As shown in Figure 4A and the Data Supplement, among
1,344 prostate cancer samples, although the overall ex-
ception proportion was similar to the pan-tumor input-
evaluable cohort (33.7% v 26.0%), prostate cancer had
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FIG 1. (A) Breakdown of consecutive PCR-CGP tests ordered from a single commercial clinical sequencing provider between February 13, 2017, and
June 25, 2020, including the number of samples rejected before testing, the number of tests performed, the number of samples with evaluable input
characteristics, and the number of PCR-CGP tests successfully reported. Samples were grouped into those meeting (pass) or not meeting (exception)
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the highest frequency of age exception samples (10.9%)
and overall frequency of samples age . 5 years (14.9%;
Data Supplement), consistent with the frequent delay be-
tween diagnosis and recurrence after definitive therapy
and/or androgen deprivation therapy. To assess therapy
selection performance, we separated reports into those
yielding informative therapy selection results (able to rule in
or out biomarker-guided therapy) for MSI status and HRD

gene (BRCA1, BRCA2, and ATM) alterations and those
yielding noninformative results where additional testing (eg,
either by liquid biopsy or obtaining and testing another
sample) would be required. Overall, 84.0% of prostate
cancer samples yielded informative results (including
60.9% of exception samples; Fig 4B and Data Supple-
ment). Importantly, the positive MSI-H and HRD biomarker
rate was similar between samples meeting input require-
ments versus exceptions (14.7% v 12.6%; Fig 2B and Data
Supplement). Together, this suggests that approximately
84% of patients with advanced prostate cancer desiring
CGP have sufficient tissue samples for informative PCR-
CGP, minimizing the potential need to obtain and test a new
sample or pursue liquid biopsy testing (Fig 4C).

NSCLC Adenocarcinoma Experience

CGP is especially relevant in NSCLC given the large number
of recommended biomarkers required to guide therapy
(Data Supplement). Among 1,144NSCLC adenocarcinoma
samples, the exception proportion was greater than the
overall pan-tumor cohort (40.6% v 26.0%), with 21.6%
having TC, 20% and 12.1% having TSA, 2 mm2 (Fig 5A
and Data Supplement). Yet, 87.9% of NSCLC adenocar-
cinoma samples yielded informative (able to rule in or out
biomarker-guided therapy) results (Fig 5B and Data Sup-
plement), including 98.4% of samples meeting input re-
quirements and 72.6% of exceptions. Importantly, overall
informative biomarker frequencies in this NSCLC adeno-
carcinoma cohort were similar to those observed in NSCLC
adenocarcinoma from the MSK-IMPACT cohort (Pearson
correlation coefficient r2 = 0.96, P, .001; Figs 5C and Data
Supplement).

Like prostate cancer, TC , 20% NSCLC adenocarcinoma
samples had the lowest informative rate (Data Supple-
ment), as negative results cannot be definitively asserted in
this sub-LOD setting, which can particularly affect detection
of nonmutation biomarkers given the frequent difficulty of
knowing the true TC in the absence of TC-defining mu-
tations. However, in contrast to the low actionable bio-
marker frequency in prostate cancer, actionable or
informative biomarkers are frequent in NSCLC adenocar-
cinoma. Hence, the positive informative biomarker de-
tection rate in NSCLC adenocarcinoma TC-exception
samples (58.7%) is only marginally less than that in
samples meeting input requirements (82.0%), and all other
sample exception groups had positive detection rates of
79.7%-81.2% (Data Supplement). These results suggest
that approximately 88% of patients with advanced NSCLC
adenocarcinoma desiring CGP have sufficient tissue
samples for informative PCR-CGP, minimizing the potential
need for rebiopsy or liquid biopsy (Fig 5C).

DISCUSSION

Herein, we present the tissue characteristics and PCR-CGP
test performance from more than 30,000 consecutively
tested solid-tumor samples from patients with advanced

TABLE 1. Characteristics of 31,165 Specimens Received for CGP
Characteristic No. (%)

TSA, mm2

, 2 2,164 (7.0)

2-10 11,735 (37.8)

11-24 4,506 (14.5)

≥25 12,681 (40.8)

NA 79 (—)

TC, %

0-19 3,325 (10.7)

20-39 6,566 (21.1)

40-59 8,317 (26.7)

≥ 60 12,957 (41.6)

Specimen age, years

, 1 22,838 (73.3)

1-2 3,667 (11.8)

. 2-5 3,428 (11.0)

. 5 1,226 (3.9)

NA 6 (—)

Specimen type

FFPE block 21,305 (68.4)

FFPE slides 9,860 (31.6)

Specimen collection

Excision or resection 3,566 (34.8)

Biopsy 5,867 (57.2)

Fine-needle aspirate 626 (6.1)

Fluid cytology 170 (1.7)

Others 21 (0.2)

NA 20,915 (—)

NOTE. This table summarizes select specimen characteristics for
31,165 consecutive tissue specimens received between February 13,
2017, and June 25, 2020, for CGP testing at a single clinical
sequencing laboratory. Sample counts (n) and relative frequencies (%)
are shown. Complete sample characteristic information was not
available for all received specimens; for any samples in which an
individual characteristic was unavailable, the corresponding
characteristic is categorized as NA. Specimen collection technique
was only prospectively recorded for a subset (n = 10,255) of tissue
specimens.

Abbreviations: CGP, comprehensive genomic profiling; FFPE,
formalin-fixed paraffin-embedded; NA, not available; TC, tumor
content; TSA, tumor surface area.
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cancer submitted from 28 diverse US health systems
through a multi-institutional observational clinical trial.
Importantly, testing during the study period was not re-
stricted by tumor type and was provided at no cost to
patients. Sites were provided with minimal sample sub-
mission requirements and PCR-CGP testing was attempted
for essentially all samples with identifiable tumor, providing
a unique view on real-world tumor tissue availability and
CGP test performance.

Unexpectedly, we found that most submitted samples were
limited, with 10.7% having , 20% TC and 44.7% with
TSA ≤ 10 mm2. Despite these challenges, PCR-CGP re-
ported results for 94.2% of all tested tumor samples, in-
cluding 80.5% of exception samples not meeting input
criteria. Specifically, among NSCLC adenocarcinoma, we
found that limited tissue was even more pronounced with
21.6% of samples having , 20% TC and an additional
12.1% having , 2 mm2 TSA; however, PCR-CGP testing
successfully reported treatment selection informative results
in 87.9% of samples. Similar results were observed in
prostate carcinoma, where despite a substantially lower

positive informative biomarker rate, PCR-CGP produced
treatment selection informative results in 84.0% of samples.

We attribute PCR-CGP’s high reportability rates to two main
factors. First, multiplex PCR-based CGP library preparation
method enabled minimal input (eg, TSA 2 mm2) versus
leading commercially available HC-CGP tests
requiring ≥ 25 mm.2,3,5,23,24 Notably, only 40.8% of sam-
ples in our total received cohort met this requirement and
the proportion was even smaller in input-evaluable NSCLC
samples (23.6%, lung—NSCLC; Data Supplement). Con-
sistent with these findings, in clinical trials testing available
FFPE tissue samples from patients with advanced NSCLC
or CRPC, HC-CGP failure rates of approximately 30%-40%
have been reported.16-20 Thus, the PCR-CGP test, with its
lower input requirements, has the potential to expand the
proportion of testable tumor samples.

Second, as PCR-CGP can generate some data on nearly all
samples and because of our belief that even a single
biomarker may be highly actionable (regardless of the
ability to assess all CGP variant classes), we used a liberal
exception testing policy, where we attempted testing on

NoninformativeInformativeTMB-highNCCNFDA-approvedMSI-highActionability category

Overall Tumor-specific

All (
n =

 8,
24

1)

Adre
nal 

(n
 =

 7)

Bilia
ry

 (n
 =

 13
6)

Blad
der

 (n
 =

 20
7)

Bra
in

 (n
 =

 40
4)

Bre
as

t (
n =

 91
0)

Cer
vic

al 
(n

 =
 56

)

Colo
n an

d R
ec

tu
m

 (n
 =

 95
9)

Endom
et

riu
m

 (n
 =

 31
6)

Eso
phag

us (
n =

 19
7)

Hea
d an

d N
ec

k (
n =

 21
3)

Kid
ney

 (n
 =

 17
5)

Liv
er

 (n
 =

 37
)

Lu
ng—

NSCLC
 (n

 =
 13

20
)

Lu
ng—

Oth
er

s (
n =

 10
2)

Lu
ng (n

 =
 1)

Ly
m

phom
a (

n =
 51

)

M
ela

nom
a (

n =
 24

1)

M
en

in
ges

 (n
 =

 21
)

Nonm
ela

nom
a S

kin
 (n

 =
 46

)

NSCLC
 (n

 =
 1)

Oth
er

s (
n =

 35
3)

Ova
ry

 (n
 =

 48
1)

Pan
cr

ea
s (

n =
 47

2)

Pro
sta

te
 (n

 =
 41

7)

Sar
co

m
a (

n =
 24

3)

Sm
all

 In
te

sti
ne (

n =
 31

)

Sto
m

ac
h (n

 =
 16

3)

Thym
us (

n =
 14

)

Thyr
oid

 (n
 =

 82
)

Unkn
own P

rim
ar

y (
n =

 58
5)

0

25

50

75

100
Sa

m
pl

es
 (%

)

FIG 2. Pan-cancer assessment of potential actionability from PCR-CGP testing. All sample QC input-evaluable samples profiled between January 1
and June 25, 2020 (n = 8,241), were stratified by tumor type and assigned to one actionability class on the basis of MSI-H status, presence of an FDA-
approved (within cancer type) biomarker, presence of an NCCN guideline–recommended (within cancer type) biomarker, and other TMB-H (≥ 10
mutations/megabase as TMB-H) using the associated therapy logic used in current StrataNGS reporting. Samples without one of these biomarkers
were considered informative if at least one prioritized biomarker was reported or the sample passed all sequencing QC metrics with ≥ 20% TC. All
other samples were considered test failures. CGP, comprehensive genomic profiling; FDA, US Food and Drug Administration; MSI-H, microsatellite
instability–high; NCCN, National Comprehensive Cancer Network; NSCLC, non–small-cell lung cancer; PCR-CGP, multiplex polymerase chain
reaction–based comprehensive genomic profiling; QC, quality control; TC, tumor content; TMB, tumor mutation burden; TSA, tumor surface area.

PCR Amplicon–Based Comprehensive Genomic Profiling

JCO Precision Oncology 1317



DNA-1

DNA-2

Chr 1 Chr X4
3
2
1
0

-1
-2
-3
-4

Lo
g 2

 C
op

y
N

um
be

r R
at

io ERBB2

ERBB2
Chr 1 Chr X

B

A

1.5 mm2 TSA

15% TC

1.5 ng/mL DNA
2.1 ng/mL RNA

< 1 year sample age

Sample QC

Cannot exclude

 negatives

QC pass mutations
QC pass CNA
QC pass MSI
QC pass TMB
QC fail fusions

Sequencing QC

2 mm

4
3
2
1
0

-1
-2
-3
-4

Lo
g 2

 C
op

y
N

um
be

r R
at

io

Amplicon 1

346/1,999 reads (17.3% VAF)

PIK3CA p.H1047R

34/255 reads (13.3% VAF)

PIK3CA p.H1047R

242/1,543 reads (15.7% VAF)

TP53 p.Y220C

85/450 reads (18.9% VAF)

TP53 p.Y220C

Amplicon 2

Amplicon 3

Amplicon 3

C

DNA-1 DNA-2

DNA-1 DNA-2

FIG 3. Underlying genomic data supporting a reported ERBB2 amplification in a breast cancer TC and tumor size exception sample. (A) Hematoxlyin and
eosin slide from a 1.5-mm2 TSA lung biopsy from a patient with metastatic breast cancer submitted for PCR-CGP. The inked region indicates the region for
microdissection, and a scale bar is shown. Sample QC and sequencing QC metrics are shown, with sample exception and failing QC metrics in red. As the
overall molecular profile supports a TC of 15%, below the PCR-CGP’s overall limit of detection of TC ≥ 20%, positive results can be reported by expert review;
however, negative results cannot be asserted and hence the test is partially reported. (B) Genome-wide copy number profiles fromDNA panel 1 (top) and DNA
panel 2 (bottom) are shown. Individual amplicon-level log2 copy-number ratio (v a pseudomatched normal profile) is plotted for each targeted gene, with
data colored by chromosome (chromosome 1 to X from left to right). TC correction has not been applied. Thresholds for (continued on following page)

Tomlins et al

1318 © 2021 by American Society of Clinical Oncology



nearly all samples with identifiable tumor, even if not
meeting all input requirements. To maximize actionable
insights from the available tissue, this necessitated PCR-
CGP bioinformatic pipeline development and QC metrics

optimized for minute, low-quality samples, and reporting
included expert-level variant review. As expected, low-TC
samples were the most challenging (68.2% reportability),
given the inability to exclude the presence of alterations in
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FIG 4. (A) Donut plot characterizing the
composition of consecutively tested, sam-
ple input characteristic-evaluable prostate
cancer samples (n = 1,344) from the
overall PCR-CGP test cohort. The outer ring
indicates the percentage of samples
meeting (pass: dark red or not meeting
(exception: orange) PCR-CGP input re-
quirements. In the inner pie chart, samples
passing all input requirements are stratified
by TSA; exception samples are stratified by
indicated sample attribute (TC , 20%;
TSA , 2 mm2; age . 5 years: specimen
collected . 5 years before PCR-CGP; and
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category) for which an informative result
(able to rule in or out actionable alterations)
was reported. To be considered informative
(total of light and dark blue), the test must
have reported (1) either MSI-H or a dele-
terious mutation and/or copy number deep
deletion in MSH2/6, BRCA1/2, or ATM
(dark blue) or (2) tested definitively negative
for these biomarkers by meeting all se-
quencing QC metrics and having
TC ≥ 20%, thePCR-CGP test’s overall limit
of detection (light blue). The percent of total
informative and informative rule in are in-
dicated. (C) Potential real-world prostate
cancer testing paradigm on the basis of
sample characteristics and PCR-CGP per-
formance characteristics observed in this
cohort. Patients with noninformative test
results in this cohort were not followed to
determine whether rebiopsy or liquid bi-
opsy testing was pursued. CGP, compre-
hensive genomic profiling; FFPE, formalin-
fixed paraffin-embedded; MSI-H, micro-
satellite instability–high; PCR-CGP, multi-
plex polymerase chain reaction–based
comprehensive genomic profiling; QC,
quality control; TC, tumor content; TSA,
tumor surface area.

FIG 3. (Continued). calling amplifications and deep deletions are shown by gray dashed lines. The ERBB2 amplification is indicated. (C) Read-level support for
reported prioritized TP53 and PIK3CAmutations is shown fromDNA panel 1 (left) and DNA panel 2 (right). Reference nucleotides and amino acids are shown
on top, with coverage and nonreference allele distributions below. Forward and reverse strand reads are shown in pink and purple, respectively (randomly
downsampled reads are shown; nonvariant-containing reads are compressed). Nonreference bases are colored (black = deletion, light purple = insertion,
A = green, C = blue, G = orange, and T = red). Variant and total reads are shown, along with the VAF. CGP, comprehensive genomic profiling; chr,
chromosome; CNA, copy number alteration; MSI, microsatellite instability; PCR-CGP, multiplex polymerase chain reaction–based comprehensive genomic
profiling; QC, quality control; TC, tumor content; TMB, tumor mutation burden; TSA, tumor surface area; VAF, variant allele frequency.
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such samples on the basis of test LOD (data and an ex-
ample report from two such samples are shown in Fig 3 and
the Data Supplement2). Likewise, samples failing more
than one sample QC metric were less frequently reportable
(Data Supplement), whichmay guide decisions on rebiopsy
or liquid biopsy testing. However, the high PPV (96.7%) for
ERBB2 amplification in exception and/or sequencing QC-
failure breast cancer samples supports the potential clinical
utility of our approach.

Liquid biopsy represents an alternative CGP methodology
when no tissue is available or procurement is difficult.
Although highly specific for treatment selection,16 as evi-
denced by the recent FDA approval of both the Founda-
tionOne Liquid CDx and Guardant360 CDx cfDNA CGP
tests, cfDNA sensitivity is challenged by the lack of cir-
culating tumor DNA in some patients and differentiating an
informative negative test from a lack of detectable cfDNA
(eg, does an NSCLC cfDNA test identifying a TP53mutation
at 0.5% variant allele frequency [VAF] exclude the possi-
bility of an EGFR exon 19 deletion?) given the prevalence of
clonal hematopoiesis (CHIP) and the poor PPV of de novo
alterations at VAFs , 1%.31-36 For example, in NSCLC, the
Guardant360 CDx test showed only 67.4%-77.7% positive
predictive agreement versus tissue-based EGFR testing
(exon 19 deletions/p.L858R/p.T790M).33 In prostate can-
cer, liquid biopsy may be particularly appealing in patients
with very old diagnostic tissue or bone-only disease.37

Encouragingly, sensitivity for actionable BRCA1/2 muta-
tions was 93% in a comparison of cfDNA FoundationACT/
One Liquid versus FoundationOne tissue testing in CRPC
rucaparib screening studies; however, cfDNA-exclusive
mutations had low VAF relative to cfDNA-based TC,38

suggesting that they may be subclonal and thus of un-
clear therapeutic relevance. Likewise, BRCA2 deep

deletion detection is critical but challenging as detection
(via tissue or cfDNA) requires 30%-40% TC; however, ,
25% of patients in the cfDNA-based rucaparib studies
had≥ 35% cfDNA TC38 versus 79.5% of the 2,045 prostate
cancer samples having ≥ 35% tissue TC herein. Last, CHIP
is particularly relevant in prostate cancer as a recent
cfDNA-based laboratory-developed test found 10% of men
harbored CHIP variants in olaparib-associated HRD genes,
most frequently ATM.39 These results complicate inter-
preting efficacy of poly (ADP-ribose) polymerase inhibitor
trials enrolling men with cfDNA-based ATM variants40 and
olaparib treatment selection. Hence, these issues highlight
the difficult decisions clinicians face when deciding be-
tween tissue versus liquid testing.36,37

A limitation of our study is the lack of head-to-head testing
with HC-based tissue tests and/or liquid biopsy testing,
necessitating carefully designed future studies to directly
compare real-world performance. Likewise, patients with
noninformative PCR-CGP testing in this cohort were not
followed to determine whether rebiopsy or liquid biopsy was
pursued and impact on clinical management. Additionally,
the PCR-CGP test used herein does not report a global HRD
assessment.41 Last, PCR-CGP testing treatment response
has not been determined, and thus, our approach’s clinical
impact is unclear.

The growing compendium of biomarker-guided targeted
therapies and immunotherapies makes clear the impor-
tance of CGP for treatment selection in patients with ad-
vanced cancer. Our study demonstrates that althoughmost
patients desiring CGP in a real-world cohort have chal-
lenging tissue specimens, optimized approaches including
PCR-CGP and broadly testing sample exceptions can
maximize actionable information.
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