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Abstract: Wastewater treatment plants (WWTPs) are designed to eliminate organic matter and
pathogens but most WWTPs discharges antimicrobial resistance pathogens into aquatic milieu.
The study aimed to examine the antibiotics resistant patterns and the presence of some resistance
genes among E. coli isolates from WWTPs effluents. Water were collected from WWTPs final
effluents, filtered through nitrocellulose membrane and the filter papers were placed on chromogenic
agar plates, incubated for 24 h at 37 ◦C. Presumptive E. coli isolates (173) were obtained from the
culture method. From the presumptive E. coli isolates screened by polymerase chain reaction (PCR),
111 isolates were positive and the positive isolates were further screened for six diarrheagenic
E. coli pathotypes (EPEC, ETEC, EHEC, DAEC, EIEC, and EAEC) and from the pathotypes screened,
nine isolates harboured daaE gene. The phenotypic susceptibility patterns of the 111 isolates to
12 antibiotics were determined by Kirby-Bauer disk diffusion technique. All the isolates were resistant
to erythromycin and clindamycin. From the resistance genes screened, 31 isolates harboured mcr-1
gene and nine isolates harboured ermA gene. The study reveals that water samples recovered
from the final effluents of WWTPs may likely be one of the major sources of antibiotic-resistant in
Escherichia coli.
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1. Introduction

Wastewater treatment plants (WWTPs) serve as a vehicle of antibiotic-resistance interface between
the environment and the human society. Sewage from households, hospitals, or agricultural waste
contains antibiotics-resistance bacterial of human and animal origin [1]. WWTPs are generally known
as “hotspots” for the occurrence, development, and dissemination of antibiotics-resistance among
bacteria which can acquire this resistance gene from donor to the recipient bacteria or through selective
pressure influenced by residual antibiotics-resistant microbes [2]. When these antibiotic-resistant
bacteria are not completely removed from the waste water treatment plants via treatment process,
they will then be discharged into aquatic and the wider terrestrial environment which will eventually
enter the human system through the food chain [3]. Wastewater treatment plants receive sewage from
diverse sources and bacteria from this various environments interact and exchange antibiotic-resistance
genes horizontally. Wastewater treatment plants (WWTPs) are hotspots for horizontal gene transfer
in bacteria allowing the spread of antibiotic-resistance gene between different bacterial species [4].
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The discharge of treated final effluent from WWTPs into streams, ponds, earth-dams, and canals is one
of the major sources of potential pathogenic contamination in surface waters [5]. Most WWTPs are
designed majorly to eliminate pathogens and organic matter [6], but WWTPs discharge pathogens
harbouring antimicrobial resistance (AMR) determinants into the environment, resulting in horizontal
gene transfer between bacterial and other pathogens which is a global health concern with the
prediction of widespread untreatable infections within the next generation [7]. Escherichia coli is one of
the most used indicator organisms to monitor the microbial quality of water [8]. Disease causing E. coli
is grouped into intraintestinal E. coli causing diarrhea and extraintestinal E. coli which is responsible for
a range of illnesses in humans and animals [9]. Among the bacterial pathogens, diarrheagenic E. coli is
the main cause of globally epidemic and endemic diarrhea [10–12]. Diarrheagenic E. coli (DAE) strains
are grouped into eight pathotypes which includes enteropathogenic E. coli, enterohaemorrhagic E. coli,
enterotoxigenic E. coli, enterinvasive E. coli, and enteroaggregative E. coli, diffusely-adherent E. coli,
diarrhea-associated hemolytic and cytolethal distending toxin producing E. coli [13]. Diarrheagenic
E. coli harbour a virulence element that is responsible for causing disease in human [14,15]. E. coli
has been reported to be highly resistance to some antibiotics used in the treatment of diseases [16].
The occurrence of antibiotic-resistant in pathogenic bacterial strains has great health implications
such as longer hospitalization [17]. The emergence of multi-resistant Gram-negative bacteria against
the existing antibiotics is disappointing; nonetheless, colistin is an old antibiotic that has been reported
to be effective against multi-resistant Gram-negative bacteria but was dumped in human treatment
due to its neurotoxicity and nephrotoxicity effect [18]. However, the increase in the emergence of
multi-resistant bacterial strains has enforced clinicians to use colistin as one of the last-resort drugs of
choice to fight infections [19].

South Africa has 986 municipal water-treatment facilities [20] and about 26% of sewage is
inadequately treated before being discharged into rivers [21]. However, the high level of the occurrence
of bacterial pathogens in streams and rivers poses a direct health risk to the people drawing water from
these surface-water sources. Studying the antimicrobial susceptibility pattern of these bacterial strains
(E. coli) is significant in order to identify the shift in antibiotic resistance patterns among these pathogens
and to adopt control measures that will help in preventing the spread of multidrug-resistant or resistant
strains of bacteria that will help to guard clinicians on antibiotics use [22]. To our best awareness,
there are few studies on the incidence of diarrheagenic E. coli and their antibiotic susceptibility pattern
recovered from WWTPs in Alice and Fort Beaufort, Easter Cape South Africa. The aims of this study
was to isolate E. coli from final effluent of selected WWTPs, in Alice and Fort Beaufort, determine their
antibiotic susceptibility pattern, delineation of the isolates into various E. coli pathotypes and screen
for the presence of resistant genes using molecular approaches.

2. Materials and Methods

2.1. Study Area and Collection of Water Samples

The study was conducted in Alice and Fort Beaufort with geographical coordinates of 32◦47′0′ ′

South, 26◦50′0′ ′ East, 32◦76′63′ ′ South, 26◦62′00′ ′ East, respectively, and both towns are located in
Eastern Cape Province of South Africa. Water samples from the final effluent of the municipal WWTPs
were collected once a week for three months. Samples were collected with sterile 1000 mL Nalgene
bottles and were collected separately at three different points throughout the sampling period from
the final effluents, transported on ice packs to the laboratory and processed upon arrival. The two
WWTPs use activated sludge treatment technology and disinfect their final effluents by chlorination
before discharging the sewage into the receiving water bodies.

2.2. Bacterial Isolation

After shaking, each effluent sample of 100 mL from the 45 water samples analyzed were filtered
through nitrocellulose membrane filters (0.45-µm pore size, Millipore, Durban, South Africa) adopting
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the membrane filtration technique. The membrane filter papers were picked with a sterilized forceps,
placed onto chromogenic agar plates and the plates were incubated for 24 h at 37 ◦C. After overnight
incubation, 173 presumptive colonies of E. coli were picked, streaked onto nutrient agar plates and
incubated for 24 h at 37 ◦C. Pure colonies from the nutrient agar plates were inoculated into 7 mL of
Luria-Bertani broth, incubated for 24 h at 37 ◦C and from which glycerol stocks were prepared and
stored at −80 ◦C for future analyses.

2.3. Extraction of Bacterial DNA

Bacterial DNA was extracted by boiling method as described by Momtaz et al. [23] with little
modification. Presumptive E. coli in glycerol stocks stored at −80 ◦C were resuscitated in Luria-Bertani
broth, incubated for 24 h at 37 ◦C followed by DNA extraction as follows. For the bacteria DNA
extraction, 200 µL of the overnight broth was transfer into DNase free 2 mL microcentrifuge tubes,
centrifuged at 15,000 rpm for 10 min and the supernatant was decanted. The pellet was re-suspended
in 200 µL sterile distilled water; vortexed and the cells were lysed by boiling on AccuBlock (Digital dry
bath, Labnet, Staffordshire, UK) for 15 min at 100 ◦C and thereafter centrifuge at 15,000 rmp for 5 min.
DNA-containing supernatants were transferred into another DNase free microcentrifuge tubes and
were stored at −20 ◦C for future analyses.

2.4. Molecular Confirmation of E. coli and E. coli Pathotypes

Presumptive E. coli isolates were confirmed by polymerase chain reaction (PCR) targeting the uidA
gene as earlier described by Janezic et al. [24]. The pathotypes of the confirmed E. coli isolates were
determined by PCR technique making use of specific primers targeting virF gene for enteroinversive
E. coli (EIEC), aafII gene for enteroaggregative E. coli (EAEC), daaE gene for diffusely adherent E. coli
(DAEC), eae gene for enteropathogenic E. coli (EPEC), stx1 gene for enterohaemorrhagic E. coli (EHEC)
and stII gene for enterotoxigenic E. coli (ETEC) as listed in Table 1. Verification of amplification of the
PCR products of various reaction mixtures was carried out by resolving them in a 1.5% agarose gel
electrophoresis for 35 min at 120 Volts in 0.5% TBE buffer stained with ethidium bromide solution.
The resolved PCR products were visualized and photographed under UV light trans-illuminator
(ALLIANCE 4.7) molecular Imager Gel Doc system.

Table 1. Primers sets for uidA gene of E. coli and various genes of E. coli pathotypes.

Primer Sequence (5′–3′) E. coli and Pathotypes Targeted Genes Base Pair References

F-GAACGTTGGTTAATGTGGGGTAA
E. coli uidA 147 [25]R-ACGCGTGGTTACAGTCTTGCG

F-GAACGTTGGTTAATGTGGGGTAA
DAEC daaE 542 [26]R-TATTCACCGGTCGGTTATCAGT

F-AGCTCAGGCAATGAAACTTTGAC
EIEC virF 618 [26]R-TGGGCTTGATATTCCGATAAGTC

F-CACAGGCAACTGAAATAAGTCTGG
EAEC aafII 378 [26]R-ATTCCCATGATGTCAAGCACTTC

F-TCAATGCAGTTCCGT TATCAGTT
EPEC eae 482 [26]R-GTAAAGTCCGTTACCCCAACCTG

F-CAGTTAATGTGGTGGCGAAGG
EHEC stx1 348 [26]R-CACCAGACAATGTAACCGCTG

F-GCACACGGAGCTCCTCAGTC
ETEC stII 129 [26]

2.5. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing of the confirm E. coli isolates was determined by disc diffusion
method on Muller-Hinton agar (MHA) plates following Clinical and Laboratory Standard Institute
(CLSI) [27] guidelines. Fresh culture from the glycerol stock was streaked on nutrient agar plates,
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incubated at 37 ◦C for 24 h. Colonies were transferred into test tube of 5 mL of normal sterile saline
adjusted to obtain turbidity matching 0.5 Mc-Farland standards. The isolates were inoculated onto
MHA plates and disks impregnated with antimicrobial agents were dispensed on the inoculated plates,
incubated at 37 ◦C for 18–24 h and zones of inhibition were measured after the incubation periods.
Each isolate was classified as resistant or susceptible to antimicrobial agents used while those that
were intermediate were considered resistant. The commercial antibiotic discs used were: Amoxicillin
(25 µg), Cefuroxime (30 µg), Gentamicin (10 µg), Doxycycline (30 µg), Ciprofloxacin (5 µg), ofloxacin
(5 µg), Trimithoprime (5 µg), Menopenem (10 µg), Colistin-Sulphate (10 µg), Erythromycin (15 µg),
Clindamycin (2 µg) and Sulphamethoxazole (25 µg). Table 2 show the names, concentrations and
interpretation of the antibiotic discs used.

Table 2. Primers sets used in targeting various resistance genes.

Primer Sequence (5′–3′) Targeted Genes Base Pair (bp) Reference

F-GTTCAAGAACAATCAATACA GAG
ermA 421 [28]R-GGATCAGGAAAAGGACATTT TAC

F-CGGTCAGTCCGTTTGTTC

R-CTTGGTCGGTCTGTAGGG Mcr-1 309 [29]

3. Results

3.1. Molecular Confirmation of E. coli Isolates

The occurrences of 173 E. coli isolates were detected in water samples collected from the three
different sampled points of the final effluent of the WWTPs and PCR analysis confirmed these findings.
Among the 173 isolates screened, 111 (64.16%) were confirmed positive for E. coli targeting the
housekeeping uidA gene. Figure 1 show the confirmed molecular gel image of the amplified product
of uidA (147bp) of some of the identified positive E. coli isolates.
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Figure 1. Gel image for the molecular confirmation of E. coli isolates using the uidA (147bp) gene.
Lane M: 100bp DNA ladder, Lane 1: Negative control, Lane 2–12 samples.

3.2. Molecular Confirmation of E. coli Pathotypes

Among the six E. coli pathotypes screened for by PCR technique with specific oligonucleotide
primers targeting each of this diarrheagenic E. coli, only nine (8.1%) were positive for diffusely
adherent E. coli (DAEC) that harboured daaE gene while none was positive for EIEC, EPEC, EAEC,
ETEC, and EHEC and the result is as shown in Table 3. Among the nine E. coli isolates that harboured
daaE gene, only one isolate was susceptible to CIP, MEM, CXM, and GM while the rest isolates were all
resistance to all the antibiotics.
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Table 3. Number of confirmed E. coli Pathotypes.

E. coli Pathotypes DAEC EIEC EPEC EAEC ETEC EHEC

Targeted genes daaE virF eae aafII stII stx1
No of positive isolates 9 0 0 0 0 0

3.3. Antimicrobial Susceptibility Pattern of the Confirmed E. coli Isolates

Antibiotic susceptibility pattern of the isolates tested against various antibiotics following Clinical
and laboratory standard Institute, (CLSI) [27] Guidelines showed that clindamycin and erythromycin
(100% each) had the highest percentage resistance. The following is the frequency of the level of
resistance exhibited by E. coli isolates against the antibiotics tested; clindamycin and erythromycin
(100% each), sulphamethoxazole (99%), amoxicilin (94.5%), doxycycline (90%), trimithoprime (83.7%),
cefuroxime (64.8%), ofloxacin and ciprofloxacin (60.3% each), colistin-sulphate (58.5.1%), gentamicin
(52.2%), and menopenem (48.6%) and those that showed intermediate were considered as resistant.
The antimicrobial susceptibility patterns of the isolates recovered from WWTPs in the Eastern Cape
Province of South Africa are shown in Figure 2.
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Figure 2. Antimicrobial susceptibility patterns of E. coli isolated from wastewater treatment plants
(WWTPs) in the Eastern Cape South Africa. Clindamycin (CD), Amoxicillin (A), Colistin-sulphate
(CO), Erythromycin (E), Doxycyline (DXT), Cefuroxime (CXM), Meropenem (MEM), Gentamicin (GM),
Ofloxacin (OFX), Trimethgoprim (TM), Sulphamethaxole (SMX), and Ciprofloxacin (CIP).

3.4. Resistance Determinants among the Isolates

The resistant genes screened by molecular technique were ermA and mcr-1. Among the 65 E. coli
isolates that showed phenotypic resistance to colistin as shown in Figure 2, 31 isolates harboured
mcr-1 gene, and the 111 isolates that showed phenotypic resistance to erythromycin, only nine isolates
harboured ermA gene. Table 4 showed the number of confirmed E. coli isolates recovered from WWTPs
that were resistance to ermA and mcr-1 of genes. The choice for screening for the presence of these
resistance genes is because of the high phenotypic resistance in E. coli isolates to erythromycin and
also to give an update on the efficacy of the last-resort (colistin) antibiotics.
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Table 4. Numbers of confirmed E. coli isolates resistant to ermA and mcr-1 genes.

Targeted Genes
Screened

Total No of
Isolates Screened

No of Isolates That Showed Phenotypic
Resistance to the Text Antibiotic

No of Confirmed
Isolates

ermA 111 111 9
mcr-1 111 65 31

4. Discussion

The final effluent of wastewater treatment plants is a major vehicle of antimicrobial resistant
pathogens into the aquatic environment. However, the aquatic environment also helps in the
spread of antibiotic resistance genes through transfer of genetic material among these pathogens [30].
Microbiological water quality standards are majorly based on faecal indicators; though they signify
a minor part of the total bacterial in aquatic environment and E. coli is a frequently used indicator
organism used to monitor the microbial quality of water [31]. From the 173 presumptive E. coli
isolates screened, 111 isolates harboured uidA gene through molecular technique. This result highlights
the high occurrence of E. coli isolates recovered from the final effluent of the two WWTPs and this
water being discharged into the environment poses a serious threat to public health and this is in
support with the report of Osińska et al. [32,33]. E. coli contamination of water is, and remains a
regular and persistent problem, impacting negatively on human health and national economies [34].
Diarrheagenic E. coli are the principal cause of death globally especially in developing countries where
about 1.6–2.5 million deaths occur yearly as a result of diarrhea [13,35]. Among the six diarrheagenic
E. coli strains profiled for from the 111 confirmed E. coli isolates, only nine (8.1%) isolates harboured
daaE gene while none was positive for EIEC, EPEC, EAEC, ETEC, and EHEC. This implies that WWTPs
serves as reservoir of some diarrheagenic E. coli pathotypes and this is in agreement with the report
of Mokracka et al. [36]. Study of Omar & Barnard [37] also detected the presence of diarrheagenic
E. coli from the final effluent of wastewater treatment plant and this also corroborated our findings.
Another study of Sidhu et al. [38] also identified the presence of some of these diarrheagenic E. coli
strains in surface water and this accentuate the global occurrence of potential diarrheagenic E. coli
pathotypes in the aquatic environment that poses high risk of waterborne infections. Infections
caused by these diarrheagenic E. coli strains are treated with antibiotics and the effectiveness of these
antibiotics in the treatment of these infections is being compromised due to the increasingly emergence
of resistant strains to most first-line antimicrobial agents [39].

Antimicrobial susceptibility testing is a well-known global standard enabling laboratories to help
clinicians in treating infections caused by bacteria [40]. Antibiotics are commonly used therapeutic
agents against infections caused by pathogenic bacterial strains; however, increase in resistance in
these bacterial strains to these antibiotics need urgent actions to curtail the spread of these resistant
microorganisms that poses major threats to human and animal health [41]. From the confirmed E. coli
isolates that were tested against a panel of 12 commercial antimicrobial agents, the isolates exhibited
different phenotypic resistance patterns against the antimicrobial agents ranging from CD and E
(100% each), SMX (99%), A (94.5%), DXT (90%), TM (83.7%), CXT (64.8%), OFX and CIP (60.3% each),
CO (58.5.1%), GM (52.2%), and MEM (48.6%). All the isolates were resistance to CD and E and also
exhibited resistance to a wide range of antimicrobial agents as shown in Figure 2. The occurrence of
antibiotic-resistant bacteria in the environment poses a serious threat to public health, adds to higher
disease burden, reduces the effectiveness of these antibiotics and increases the mortality rate [33].
Li et al. [42] also reported high resistance rate in E. coli isolates recovered from pig faecal samples
and our finding is accordance with their report. The study of Adwan et al. [43] also revealed high
resistance rates (95%) in E. coli isolate to erythromycin and this also corroborated with our result.

The aquatic milieu appears to allow antibiotic resistance genes of sewage origin to continue
and spread into the environment which therefore increases the high risk of gene transfer to human
and animal through food chains [44]; injection of contaminated water or through direct contact with
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infected person [45]. WWTP final effluents used as irrigation water can promote the distribution
of antibiotic resistance genes into soils or water that somehow could find their ways into human
system [46]. The detection of erm resistance genes by molecular method has regularly been used
to monitor the loads of antibiotic resistance gene in different environments [47]. However, genetic
screening of the 111 E. coli isolates that showed phenotypic resistance to erythromycin (resistance and
intermediate), only nine (8.1%) isolates harboured ermA gene and the result of the phenotypic resistance
gene do not correspond with the phenotypic resistance as shown in 2. Ziembińska-Buczyńska et al. [48]
and Yuan et al. [49] also reported the presence of erythromycin phenotypic resistance gene (erm gene)
in E. coli recovered from wastewater treatment plant and their report is in line with our result. From the
antimicrobial susceptibility test result shown in Figure 2, 65 confirmed E. coli isolates demonstrated
phenotypic resistance to colistin and when these 65 E. coli isolates were screened by the PCR technique,
31 (47.6%) isolates harbours mcr-1 gene as showed in Table 4. Colistin sulphate is regarded as a
last-resort antibiotic against multi-resistant bacterial pathogens as reported by Curcio et al. [50] and
the finding from this study revealed high occurrence of colistin-resistance (mcr-1) gene which could be
higher in the communities serviced by the WWTPs under investigation. E. coli developing resistance
to colistin is usually associated with chromosomal mutations [51]; however, a new plasmid-mediated
conveyable resistance determinant which is mcr-1 gene encoding for phosphoethanolamine transferase
has been established as a marker for the detection of colistin resistance [29]. Quesada et al. [52]
and Islam et al. [53], also reported colistin resistance E. coli isolates carrying mcr-1 gene and this is
in concordance with our result. The continued spread of mcr-1 gene in E. coli and other bacterial
strains will compromise the clinical usefulness of last-resort antibiotic which could result to additional
antibiotic treatment failure and extensive morbidity and mortality [54]. One of the mechanism in
which these bacterial that harboured these resistance genes can be transferred to human is through
consumption of contaminated foods from animal origin [55,56]. All the isolates that showed phenotypic
resistance to the test antmicrobial agents do not correspond with the number of confirmed resistance
genes and this could be attributed to the fact that there are several variants of resistance determinants
responsible for the observed phenotypic resistances among the isolates [57].

5. Conclusions

During the treatment process of WWTPs, microbes are notably reduced but vast quantities of
antimicrobial agents as well as drug-resistant bacteria escaping the treatment process are channeled
into aquatic milieu with treated effluents. The discharge of these treated effluents into the aquatic
environment could possible increase antibiotic-resistance in E. coli thus escalating the spread of
drug-resistant microbes in communities using the streams and water bodies receiving the treated
effluent. The high prevalence of colistin-resistance gene in E. coli recovered from the final effluent pose
a high risk to the people in this study area that depend on this surface water bodies as their major
source of water and this is the first report on colistin-resistance E. coli carrying the mcr-1 gene.
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