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Abstract

Background

It is unclear whether and how whole-genome sequencing (WGS) data can be used to imple-

ment genomic medicine. Our objective is to retrospectively evaluate whether WGS can facil-

itate improving prevention and care for patients with susceptibility to cancer syndromes.

Methods and Findings

We analyzed genetic mutations in 60 autosomal dominant cancer-predisposition genes in

300 deceased patients with WGS data and nearly complete long-term (over 30 years) medi-

cal records. To infer biological insights from massive amounts of WGS data and comprehen-

sive clinical data in a short period of time, we developed an in-house analysis pipeline within

the SeqHBase software framework to quickly identify pathogenic or likely pathogenic vari-

ants. The clinical data of the patients who carried pathogenic and/or likely pathogenic vari-

ants were further reviewed to assess their clinical conditions using their lifetime EHRs.

Among the 300 participants, 5 (1.7%) carried pathogenic or likely pathogenic variants in 5

cancer-predisposing genes: one in APC, BRCA1, BRCA2, NF1, and TP53 each. When

assessing the clinical data, each of the 5 patients had one or more different types of cancers,

fully consistent with their genetic profiles. Among these 5 patients, 2 died due to cancer

while the others had multiple disorders later in their lifetimes; however, they may have

benefited from early diagnosis and treatment for healthier lives, had the patients had genetic

testing in their earlier lifetimes.
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Conclusions

We demonstrated a case study where the discovery of pathogenic or likely pathogenic

germline mutations from population-wide WGS correlates with clinical outcome. The use of

WGS may have clinical impacts to improve healthcare delivery.

Introduction

Next-generation sequencing (NGS) technologies are increasingly used in biomedical research

and clinical practice to identify disease-associated genetic variants for advancing precision

medicine [1]. Precision medicine allows researchers and physicians to predict more accurately

which treatment and prevention strategies for a particular disease will work in which groups of

people based on their genetic differences [2]. More than 4,000 Mendelian disorders have been

studied at the genetic level [3]. Assessment of genetic pathogenicity leveraging whole-genome

sequencing (WGS), whole-exome sequencing (WES), or other sequencing data and electronic

health records (EHRs) has recently become feasible as EHRs have been implemented widely in

healthcare systems [4, 5].

Even though tens of millions of genetic variants are uncovered in the human genomes,

we do not have a clear understanding of the majority of their roles in health and disease [6].

The American College of Medical Genetics and Genomics (ACMG) has recommended

identification and return of incidental findings (IFs) in a set of 56 actionable genes [7, 8]. A

study on the NHLBI Exome Sequencing Project (ESP) cohorts has reported actionable exo-

mic IFs from 112 genes in 6,503 participants [9]. The spectrum of pathogenic genetic varia-

tions across a diverse set of genes spanning dominant and recessively inherited disorders in

the Exome Aggregation Consortium (ExAC) population has been assessed [10]. A recent

study that focuses on two genes suggests that up to 3% of individuals may be at risk for

heart arrhythmias [5]. Germline mutations in 565 cancer-predisposition genes with an

emphasis on the analysis of 60 autosomal dominant cancer-predisposing genes have been

studied by Zhang et al. [11]. Other studies suggest that 1%-3% of the population may carry

clinically actionable variants linked to Mendelian diseases [12–14]. Although these studies

have provided significant insights into the human genome and have been able to identify

individuals who carry clinically actionable genetic variants, their clinical impact remains

unknown.

Our aims were to assess how often cancer gene screening identifies actionable cancer risk

genes and to retrospectively evaluate whether the combination of WGS and EHR can facili-

tate improving prevention and care for patients with susceptibility to cancer syndromes. In

this study, we firstly classified genetic pathogenicity of germline mutations in 60 autosomal

dominant cancer-predisposition genes (S1 Table) among 300 deceased patients at Marsh-

field Clinic with WGS data using an in-house analysis pipeline called SeqHBase [15] based

on the latest ACMG guidelines issued by the ACMG and the Association of for Molecular

Pathology (AMP) [16]. Then we assessed clinical conditions for the patients who carried

pathogenic or likely pathogenic variants using clinical data derived from their lifetime

EHRs, followed by manual review of medical charts on selected patients by a MD clinical

geneticist.
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Materials and Methods

Sample Selection

In this study, 300 deceased patients were recruited from a Personalized Medicine Research

Project (PMRP) [17–19] launched at Marshfield Clinic in 2002. The PMRP is a unique biore-

pository resource that includes serum, plasma, and DNA from over 20,000 patients with links

to their EHRs, including diagnosis, treatment, procedure codes, laboratory values, prescrip-

tions, pharmacy, and physician notes. This cohort represents a very stable population that are

primarily non-Hispanic whites with over 70% claiming German ancestry [20]. Each of them

has an average of over 30 years of dynamic, continuous, virtually comprehensive, and extract-

able EHR data as well as diet and activity data linked to participant biospecimens. Since their

enrollment, about 2,000 PMRP participants have passed away, and over 1,000 of them have

more than 30 years of longitudinal and nearly comprehensive EHR data. 300 of the 1,000

deceased patients were randomly selected, resulting in 161 females and 139 males. In addition,

EHR is not being used to identify those patients. It could be biased towards including more

patients with late-onset diseases (e.g. cancer) for collecting patients with having about 30-year

EHRs. All participants in the PMRP had previously consented for research in written and this

project was approved by Marshfield Clinic’s Institutional Review Board.

Generation of 300 WGS Data

The blood samples of the 300 participants were sequenced by Complete Genomics (Mountain

View, CA) according to manufacturer’s guidelines. The sequencing data were aligned to

human reference (hg19). A minimum read-depth of 10 was used for variant calling. The VCF

files, including single nucleotide variants (SNVs) and small insertions and/or deletions

(INDELs), of the 300 genomes were provided by Complete Genomics. After quality control,

over 27 million unique SNV and/or INDEL variants were identified across the 300 genomes.

Computational Methods

NGS technology is an essential component supporting genomic medicine, but the volume and

complexity of the data pose challenges for its use in biomedical research [21]. Sequencing a

single human genome generates about 200 gigabytes of data. Therefore, enormous challenges

for analyzing large-scale NGS and clinical data still exist including data storage, processing,

scaling, quality control management, and interpretation [22]. It is critical to develop an effi-

cient computational framework and tools to analyze large-scale sequencing and clinical data.

To infer biological insights from massive amounts of NGS data and comprehensive clinical

data in a short period of time, we developed an in-house analysis pipeline within a software

framework called SeqHBase to quickly catalogue, retrieve and query genetic variants, and to

help classify genetic pathogenicity based on the latest ACMG guidelines [16]. We used

ANNOVAR [23] to annotate the 300 WGS data, then the variation and annotation informa-

tion were managed and analyzed by the in-house system SeqHBase.

Variant Classification

Variants in the 60 cancer-predisposition genes (S1 Table) were classified in the 300 genomes.

In SeqHBase pipeline, there are a number of data quality filters, including minimum read-

depth (e.g. reads > = 30X), maximum variant minor allele frequency (MAF; e.g., MAF < =

0.05%) in the 1000 Genomes Project [13], the ESP [24], and the ExAC [25], variant classifica-

tion by ClinVar [26], and biological functions interested (e.g., splicing, nonsynonymous, stop-

gain, stop-loss, and frameshift). We collected genetic variants of reads> = 30X, including (i)
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any variant present in the ClinVar database and annotated in one of the biological functions

interested and (ii) new variants absent in the ClinVar database and annotated in the biological

functions interested with MAF < = 0.5%, in the 60 cancer-predisposing genes. Variants

departing from Hardy-Weinberg equilibrium (exact test P� 1E-6) [27] were further filtered.

All variants collected can then be classified as “pathogenic,” “likely pathogenic,” “uncertain sig-

nificance,” “likely benign,” and “benign” using a combination of automated assessment and

manual review, by following the latest ACMG guidelines [16].

Results

Germline Mutations in the 60 Cancer-Predisposing Genes

In the 300 whole genomes, the data presented in those biological functions interested across

the 60 cancer-predisposing genes spanning diverse autosomal dominant cancers encompass

207 classified variants (S2 Table). Of the 207 variants in the 60 genes, 5 variants were classified

as “pathogenic” or “likely pathogenic” (Fig 1). The 5 variants are shown in Table 1, and all of

them are absent in the 1000 Genomes Project, the ESP, and the ExAC cohorts. To further

Fig 1. Pie chart of variant categories (pathogenicity) in 60 autosomal dominant cancer-predisposing

genes. Provided are the percent of total variants for each category shown in S2 Table.

doi:10.1371/journal.pone.0167847.g001

Table 1. Pathogenic/likely pathogenic variants in the 60 cancer-predisposing genes identified by WGS of 300 deceased patients*.

Gene Chr Position AA Change rs # Function Homs/Hets

APC 5 112102976 c.311C>G rs74953290 p.Ser104Ter 0/1

BRCA1 17 41246018 c.1530del rs80357735 p.Gly511Alafs 0/1

BRCA2 13 32913729 c.5238dupT rs80359499 p.Ser1746Alafs 0/1

NF1 17 29679366 c.7486C>T rs866445127 p.Arg2496Ter 0/1

TP53 17 7578389 c.541C>T rs587782596 p.Arg181Cys 0/1

* Chr denotes chromosome, AA denotes amino acid, and rs # denotes rs number.

doi:10.1371/journal.pone.0167847.t001
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confirm that our automated analysis is reliable, a certified medical geneticist manually

reviewed the variant data and provided clinical interpretation on these variants (Table 2).

Clinical Impact

5 of the 300 participants carried presumed “pathogenic” or “likely pathogenic” variants in the

60 autosomal dominant cancer-predisposing genes. The 5 “pathogenic” or “likely pathogenic”

variants identified in this study are located in 5 genes including APC, BRCA1, BRCA2, NF1,

and TP53. The APC gene encodes a multi-domain protein that plays an essential role in tumor

suppression by antagonizing the WNT signaling pathway [28]. Inappropriate activation of this

pathway through loss of APC function contributes to cancer progression, as in familial

Table 2. Clinically Significant Variants Associated with Cancers.

Gene Function Observed Phenotypes (age-onset) Manual interpretation by a certified medical geneticist

APC p.Ser104Ter Prostate cancer (early-70s); many colon polyps,

developed colorectal cancer (mid-60s); family history of

colon cancer (mid-50s)

This variant is located within the exon 3 of the APC gene, and will

cause a truncated gene product. This variant has been found in a

patient with familial adenomatous polyposis (FAP), PMID 21142386.

Truncating variants in APC are the cause of FAP and are high risk

factor for colorectal cancer (CRC), which is consistent with this

individual’s phenotype and family history. In addition, other truncating

variants in exon 3 of APC have been found in patients with FAP/CRC

(PMID 9664575, 25559809, 21646762 and 20649969). Therefore,

this variant is interpreted as pathogenic.

BRCA1 p.Gly511Alafs Breast and ovarian cancers (early-50s) This variant is located within the exon 11b of the BRCA1 gene, and

will cause a truncated gene product. This variant has been found in a

patient from a cohort of breast/ovarian cancers, PMID 12698193.

Truncating variants in BRCA1 are high risk factor for breast/ovarian

cancers, which is consistent with this individual’s phenotype. In

addition, other truncating variants in exon 11b of BRCA1 have been

found in patients with breast/ovarian cancers (PMID 18489799,

15117986, and 8880569). Therefore, this variant is interpreted as

pathogenic.

BRCA2 p.Ser1746Alafs Prostate cancer (early-70s) This variant will cause a truncated gene product of BRCA2. This

variant has been found in multiple patients with breast/ovarian

cancers, PMID 11802209, 23110154 and 24504028. Truncating

variants in BRCA2 are high risk factor for breast/ovarian cancers and

prostate cancer, which is consistent with this individual’s phenotype.

Therefore, this variant is interpreted as pathogenic.

NF1 p.Arg2496Ter Multiple skin (both basal cell and squamous) cancers

(mid-70s)

This variant is located within the exon 51 of the NF1 gene, and will

cause a truncated gene product. This variant has been found in at

least two patients with neurofibromatosis 1, PMID 7981679 and

22965773. Truncating variants in NF1 cause neurofibromatosis 1,

and are high risk factor for skin cancers, which is consistent with this

individual’s phenotype. In addition, other truncating variants in exon

51 of NF1 have been found in patients with neurofibromatosis 1

(PMID 23656349 and 7981679). Therefore, this variant is interpreted

as pathogenic.

TP53 p.Arg181Cys Pancreatic cancer (mid-80s and mid-80s), the patient’s

child died from melanoma in 30’s

This variant will cause a missense change from Arg to Cys at the

codon 181 of the TP53 gene product. This variant has been found in

the germline of patients with different types of cancers from multiple

unrelated families (PMID 7981679, 27157322, 27501770, 23484829

and 22965773). This variant was not found control databases

including ExAC and 1000 genome. Defects in TP53 cause Li-

Fraumeni Syndrome, and are high risk factor for multiple types of

cancers including pancreatic cancer and melanoma, which is

consistent with this individual’s phenotype and family history. In

addition, studies suggest that the Arg181Cys change caused

deficiency of TP53 function (PMID 10229196, 12909720 and

21343334). Therefore, this variant is interpreted as pathogenic.

doi:10.1371/journal.pone.0167847.t002
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adenomatous polyposis [29]. Mutations in APC may result in colorectal cancer [30], prostate

cancer [31], and other cancers [32]. The BRCA1 gene is a protein product and is responsible

for DNA repair [33]. It forms several distinct complexes through association with different

adaptor proteins, and each complex forms in a mutually exclusive manner [34]. Mutations in

BRCA1 may result in breast and/or ovarian cancer [35] and pancreatic cancer [36]. The

BRCA2 gene is also a protein product responsible for DNA repair [37]. It is a key mediator of

homologous recombination [38]. Mutations in BRCA2 may result in breast and/or ovarian

cancer [39], pancreatic cancer [40, 41], and prostate cancer [42] as well. The NF1 gene encodes

neurofibromin, a cytoplasmic protein that is predominantly expressed in neurons, Schwann

cells, oligodendrocytes, and leukocytes. Mutations in NF1 may result in juvenile myelomono-

cytic leukemia [43], neurofibromatosis [44], Neurofibromatosis-Noonan syndrome [45], and

Watson syndrome [46]. Interestingly, a multidisciplinary team at Yale University, led by Yale

Cancer Center members, has confirmed that NF1 is a “major player” in the development of

skin cancer [47], which is also observed in this study. The TP53 gene responds to diverse cellu-

lar stress to regulate target genes that induce cell cycle arrest, apoptosis, senescence, DNA

repair, and/or changes in metabolism [48]. Mutations in TP53 may result in adrenal cortical

carcinoma [49], breast cancer [50], choroid plexus papilloma [51], colorectal cancer [52],

hepatocellular carcinoma [53], Li-Fraumeni syndrome [54], nasopharyngeal carcinoma [55],

osteosarcoma [56], pancreatic cancer [57], basal cell carcinoma [58], and glioma susceptibility

[59].

The 5 patients, who carried “pathogenic” or “likely pathogenic” variants, were expected to

express autosomal dominant cancer-predisposing syndromes based on their genetic profiles.

We reviewed the 5 patients’ lifetime EHRs and found the following results: (i) One male

patient who carried a stop-gain mutation (rs72953290) in APC had prostate cancer, many

colon polyps, and colorectal cancer. In addition, he had family history of colon cancer. (ii)

One female carried a frameshift deletion (rs80357735) in BRCA1 that is predicted to result in a

significantly increased risk for breast and ovarian cancer. In fact, this patient had no known

family history of breast cancer and did not receive yearly breast exams or mammograms. She

was diagnosed with breast and ovarian cancer in her early-50s and died 6 years later. (iii) One

male patient, who carried a frameshift insertion (rs80359499) in BRCA2, had prostate cancer

in his early-70’s and died a few years later. (iv) One male patient, who carried a stop-gain

mutation (rs866445127) in NF1, had multiple skin (both basal cell and squamous) cancers. (v)

One female patient, who carried a missense mutation (rs587782596) in TP53, had pancreatic

cancer. Additionally her child died from melanoma in his 30’s. The summary information is

presented in Table 2. Namely, each of the 5 patients had one or more different types of cancers,

demonstrating consistency with their genetic profiles.

Even though there are no family members in the 300 deceased patients, it is conceivable

that family history recorded in EHRs can help disease prevention. As mentioned in the 2th

patient who carried the cancer-predisposing mutation in BRCA1, she died from breast and

ovarian cancer in her later 50’s. This case implied that it could be important to have aggressive

screening and prophylactic surgery for patients with BRCA1 mutations. In addition, it is very

likely that more aggressive surveillance or preventative measures could have extended the lives

of those patients if genetic testing had been done in their earlier ages. Therefore, combining

WGS and EHRs could potentially improve personalized healthcare.

Discussion

Combining the functional characterization of identified genetic variants with comprehensive

clinical data available in EHRs has the potential to provide compelling evidence to implicate
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novel disease-associated variants in phenotypically well-characterized patients. In this study,

we analyzed germline mutations in the 60 autosomal dominant cancer-predisposition genes in

300 deceased patients with WGS data and nearly complete long-term medical records. To

infer biological insights from massive amounts of WGS data and comprehensive clinical data

in a short period of time, we developed an in-house analysis pipeline within a software frame-

work called SeqHBase to quickly classify genetic pathogenicity based on the latest ACMG

guidelines [16]. The pathogenic and/or likely pathogenic variants identified in this study were

further reviewed using the carriers’ lifetime EHRs. Of the 300 participants, each of the 5 (1.7%)

carried a presumed “pathogenic” or “likely pathogenic” variant in one of the 60 cancer-predis-

posing genes. When assessing extensive clinical data, each of the 5 patients had one or more

different cancers, exhibiting fully consistency with their genetic profiles. The results generated

in this study demonstrated that genetic mutations in autosomal dominant cancer-predisposing

genes could be potentially used in clinical diagnosis, prevention, and personalized treatments,

showcasing the power of combining WGS and EHR to accelerate biomedical discoveries. It

also showed potential impacts of clinically actionable genetic variants over a lifetime and dem-

onstrated that genomic sequencing could be helpful in precise disease diagnoses and risk pre-

diction. Meanwhile, we have realized that the 300 patients selected in this study should not be

regarded as a representative population at Marshfield Clinic. That is, younger people may

need to be recruited with WGS study in the future.

We acknowledge that WES or targeted sequencing may provide similar results at a reduce

cost. However, WES or targeted sequencing technologies may not capture the whole genome

coding regions comprehensively while WGS generates more complete coverage for the whole

genome regions [60]. Although sequencing costs have dropped substantially in the past a few

years, the cost for data analysis and interpretation remain very high. Further comprehensive

studies are needed as true impacts on clinical outcomes may be much more complex. It may

not be feasible to use WGS for screening general population in clinical practice now.

In addition, more efforts are needed to distinguish genetic variants that are truly clinically

actionable, that is, the variants are useful for guiding clinical decisions regarding interventions

to improve health outcomes. As multiple independent evaluations might have classified variant

pathogenicity differently [5], more stringent criteria and the latest ACMG guidelines should

be compiled prior to reporting pathogenic variants [61].

In summary, clinical research studies of the implementation of genomic data in healthcare

can provide valuable lessons on how genomic data should be managed, and patient privacy

should be protected, when incorporating genomic data into clinical practice on a larger scale.

These lessons can alert healthcare institutions of the scientific and technical challenges of

using genomic data in precision medicine. NGS technological advances in clinical genome

sequencing and adoption of EHRs will pave the way to create patient-centered precision medi-

cine in clinical practice. The rise of Big Data in NGS and clinical data will contribute to better

treatment paradigms, leading to improvements in diagnosis and personalized treatments that

may ultimately lead to an overall reduction in healthcare cost. This study portrayed a promis-

ing method for assessing genetic pathogenicity by using WGS data.

Supporting Information

S1 Table. 60 Autosomal Dominant Cancer-Predisposition Genes.
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