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Abstract: Familial hypercholesterolemia (FH) is an autosomal dominant disease most often caused by
mutations in the low-density lipoprotein receptor (LDLR) gene, which consists of 18 exons spanning
45 kb and codes for a precursor protein of 860 amino acids. Mutations in the LDLR gene lead to a
reduced hepatic clearance of LDL as well as a high risk of coronary artery disease (CAD) and sudden
cardiac death (SCD). Recently, LDLR transgenes have generated interest as potential therapeutic
agents. However, LDLR packaging using a lentiviral vector (LVV) system pseudotyped with a
vesicular stomatitis virus (VSV)-G envelope is not efficient. In this study, we modified the LVV system
to improve transduction efficiency and investigated the LDLR regions responsible for transduction
inhibition. Transduction efficiency of 293T cells with a 5′-LDLReGFP-3′ fusion construct was only
1.55% compared to 42.32% for the eGFP construct. Moreover, co-expression of LDLR affected eGFP
packaging. To determine the specific region of the LDLR protein responsible for packaging inhibition,
we designed constructs with mutations or sequential deletions at the 3′ and 5′ ends of LDLR cDNA.
All constructs except one without the ligand-binding domain (LBD) (pWoLBD–eGFP) resulted in low
transduction efficiency, despite successful packaging of viral RNA in the VSV envelope, as confirmed
through RT-PCR. When we evaluated a direct interaction between LDLR and the VSV envelope
glycoprotein using MD simulation and protein–protein interactions, we uncovered Val119, Thr120,
Thr67, and Thr118 as exposed residues in the LDLR receptor that interact with the VSV protein.
Together, our results suggest that the LBD of LDLR interacts with the VSV-G protein during viral
packaging, which significantly reduces transduction efficiency.
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1. Introduction

Familial hypercholesterolemia (FH) is a life-threatening autosomal co-dominant disease with
a population prevalence of approximately 1 in 160,000–300,000 [1,2]. In approximately 90% of
patients with FH, the disease results from mutations in the low-density lipoprotein receptor (LDLR),
which is responsible for the elimination of LDL-cholesterol (LDL-C) from the blood by endocytosis
and intracellular degradation [3]. Consequently, defects in the LDLR result in a partial or complete
loss of LDLR function, leading to high levels of LDL-C in the serum, often with concentrations above
500 mg/dL. The accumulation of LDL-C to high levels results in the development of cardiovascular
disease (CVD), and aortic valve and coronary artery disease in particular. Other genes that may affect
LDL-C transport include apolipoprotein B (APOB), located in chromosome 2 (p24), and convertase
subtilisin/Kexin type 9 (PCSK9) located in chromosome 1 (1p32.3) [1,4]. Mutations in APOB reduce
the affinity of the LDLR, whereas gain-of-function mutations in PCSK9 cause high levels of LDLR
degradation, because this gene is thought to be involved in the degradation of lysosomal LDLR
protein [5]. This degradation results in reduced levels of receptor on the cell surface, and thus, to higher
accumulation of LDL-C.

Treatment of FH, especially for homozygous individuals, remains challenging. Currently, the most
effective therapeutic agents are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase
inhibitors, commercially known as statins [6]. Other drugs used to reduce LDL-C levels include
recently approved mipomersen [7], lomitapide [8], evolocumab [9], niacin, and the cholesterol
absorption inhibitor known as ezetimibe.

Ezetimibe can reduce LDL-C levels by approximately 10%–15% [10] with no side effects or liver
toxicity [11,12]. To improve LDL-C levels, combining statin with niacin or ezetimibe is recommended
and has an acceptable safety profile [13]. However, even after combination therapy, the majority of
patients with homozygous FH will still maintain high LDL-C levels [10], and therefore, are at high
risk for CVD. An aggressive program of plasma apheresis is also one of the most preferred treatments.
However, the effect of such a regimen is transient and is not available to all patients [14]. Because
approximately 75% of the total body LDL receptors are located in the liver, this organ is crucial for LDL
metabolism [15]. Liver transplantation is, therefore, an efficient method for correcting LDL-C levels
in most cases of homozygous FH [15–19], although risks associated with transplantation, long-term
immunosuppression, and high morbidity and mortality limit the use of this approach. As an alternative,
the delivery of functional LDLR transgenes to the liver has recently emerged as a promising therapeutic
option for FH.

In the early nineties, Chowdhury et al. conducted ex vivo gene therapy in rabbits with LDLR
defects and demonstrated a long-term improvement of hypercholesterolemia. Besides, they showed
that animals receiving LDLR-transduced autologous hepatocytes had a 30%–50% decrease in the total
serum cholesterol levels that persisted until the end of their experiment [20]. Grossman et al. later used
a similar strategy to demonstrate the first gene therapy in subjects with homozygous FH [21]. However,
they were not able to achieve many transduced hepatocytes and only caused a small reduction in
LDL-C levels for three subjects. Kassim et al. then designed a recombinant adeno-associated vector 8
(AAV8) containing a mouse LDLR transgene under the control of a liver-specific thyroxine-binding
globulin (TBG) promoter in a murine model. They achieved a significant reduction in total cholesterol
levels within seven days, despite a hepatocyte transduction efficiency of only 5%–10% [22]. In a
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follow-up study from the same group, the authors did not report abnormal lipid accumulation in the
livers or significant liver histopathology and T cell responses to the capsid and transgene [23].

Although further studies have attempted the use of different vectors and transgene constructs,
none have shown stable expression with durable effects [24,25]. Furthermore, AAV has been shown
to less efficiently transduce human hepatocytes than murine hepatocytes [26,27]. In this context,
early preclinical and clinical studies [28,29] showed that rAAV2 vectors transduce human and mouse
hepatocytes similarly, but at low levels. However, rAAV8 vectors transduce human hepatocytes
approximately 20-fold less efficiently than they transduce mouse hepatocytes. Taken together,
these studies demonstrate the feasibility of LDLR gene therapy, although there are concerns related to
the development of severe side effects [23], including the destruction of hepatocytes by cell-mediated
immunity [29] and significant differences between models [20,21,26,27]. These studies also revealed
that preclinical animal models are not always predictive of results in humans [28–30]. For this reason,
further studies are needed to achieve clinical use of LDLR gene therapy.

As mentioned in a previous study [27], the AAV capsid used for gene therapy significantly affects
the transduction efficiency. In this study, we used a lentiviral vector (LVV) in combination with the
vesicular stomatitis virus (VSV) envelope for the packaging of the LDLR transgene. Early studies have
shown that VSV pseudotyped viruses exhibit broad tropism, high stability, and excellent transduction
efficiency, making them the gold standard for gene transfer strategies [31,32]. The VSV-G envelop
is robust and exhibits a high infectivity. The VSV tropism is remarkably broad and it is suggested
that it enters the target cells via a wide-spread but undefined receptor. In the early nineties, Fischer
et al. found an extracellular soluble protein that inhibits VSV infection [33], further protein sequencing,
and immunoaffinity assays showed high homology of the soluble protein with human LDLR, and it was
subsequently named soluble LDLR (sLDLR). Later, the same group found that the LDL receptor and its
family members serve as receptors for VSV [34]. In this study, the authors have confirmed that sLDLR
binds VSV and inhibits both infection by VSV and the transduction by a VSV-G-pseudotyped lentiviral
vector. However, in a control experiment, the lymphocytic choriomeningitis virus (LCMV)-pseudotyped
lentiviral vector (LV), the sLDLR did not bind to the LCMV-LV.

Recently, our group found that LDLR affects the packaging of eGFP. Use of an LVV pseudotyped
with a VSV envelope and co-transfection of hLDLR with the eGFP plasmid in addition to the other
packaging plasmids, led to the inhibition of the eGFP packaging, in a dose-dependent manner. This was
confirmed in a publication from Otaha et al. [35]. It was shown that the inhibition of eGFP packaging
could be a multifactorial process, interfering with different protein–protein interactions. The aims of
this work is to study which parts of the LDLR reduced the transduction efficiency when we use the
LDLR lentiviral vector system, pseudotyped with the VSV-G envelop, indeed different deletions in the
LDLR sequence were introduced. Furthermore, we determine using the MD simulation, the residues
that interact with the VSV protein.

2. Material and Methods

2.1. Construction of a 5′-LDLReGFP-3′ Fusion Cassette and Packaging of a Lentiviral Vector (LVV)

The 5′-LDLReGFP-3′ fusion cassette is under the control of the cytomegalovirus promoter (pCMV).
The predicted sequence from 5′ to 3′ includes a multiple cloning site (MCS), a Kozak consensus sequence
(GCC GCC ACC), hLDLR cDNA with the stop codon deleted (but inclusive of the signal peptide,
LDL-binding domain, EGF homology domain, O-linked sugar domain, membrane anchor, and the
cytoplasmic domains), a 21 bp spacer sequence (GGT CTA GAA CCG GTC GCC ACC), eGFP cDNA,
and a MCS at the 3′ end (Supplementary Figure S1). The 21-nucleotide spacer between the LDLR
and eGFP sequences codes for glycine, leucine, glutamic acid, proline, valine, alanine, and threonine.
The proline residue was incorporated intentionally in the spacer to enhance its flexibility. Proline
residues are known to prevent the formation of secondary structures and consequently, protein
misfolding in many peptides [36–38]. The fusion cassette was synthesized by ATG Biosynthetic
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(Merzhausen, Germany) and cloned into the vector pLVX-IRES-ZsGreen between the 5’ LTR and
3’LTR. Packaging was performed using two auxiliary plasmids [31], one coding for the viral proteins
group-specific antigen (gag), polymerase (pol), trans-activator of transcription (Tat), and Rev protein
(Rev) (pCMV-∆R8.9), and the other coding for the VSV envelope protein (pMD2). Localization of the
LDLR therapeutic gene and the eGFP reporter gene on a single vector was intended to complement
LDLR deficiency and enable detection of the biodistribution pattern after vector-mediated gene transfer.

2.2. Transfection of 293T Cells Using Lipofectamine

Transfection and transient expression in 293T cells were performed as follows: a total of 1 × 106

293T cells were seeded in 24-well plates 24 h prior to transfection in Dulbecco’s modified Eagle medium
(DMEM) supplemented with 10% FCS and 1% penicillin/streptomycin, and the culture medium was
changed 2 h prior to transfection. A volume of 400 µL per well of DMEM without FCS and 1%
penicillin/streptomycin was added to 24-well plates and incubated under 5% CO2 conditions. Next,
a total of 0.25 µg of plasmid DNA (0.1 µg CMV∆8.91, 0.05 µg pMD2, and 0.1 µg M107 (for eGFP
alone) or pLDLR–Egfp) in a total volume of 50 µL DMEM medium without FCS was mixed with 4 µL
Lipofectamine from Invitrogen (Dreieich, Germany). The DNA/Lipofectamine mixture was incubated
at 25 ◦C for 20 min, and 100 µL of the mixture was then added dropwise to cells. One hour later,
1 mL DMEM supplemented with 10% FCS and 1% penicillin/streptomycin was added. The medium
was replaced one day later (14–16 h), and 48 h after transfection, the cells were observed using an
Olympus IX71 fluorescence microscope (Hamburg, Germany) and FACS analysis was performed
using a Cytomics FC500 Flow Cytometer from Beckman Coulter (Krefeld, Germany). The results
were analyzed using WinMDI software and transfection activity was expressed as a percentage of
positive cells.

2.3. Packaging and Transduction of 293T/HepG2 Cells with Supernatant

A total of 1 × 108 293T cells were seeded in 10 cm-diameter dishes 24 h before transfection in
supplemented DMEM, and the culture medium was changed 2 h before transfection. A total of
2.5 µg of plasmid DNA (1 µg pLDLR–eGFP or M107, 0.5 µg of the pMD2 envelope plasmid, and 1 µg
of packaging plasmid pCMV-∆R8.9) was added to a 500 µL total volume of DMEM without FCS.
The precipitate was formed by adding plasmid DNA to 40 µL Lipofectamine in a total volume of
500 µL DMEM medium without FCS and incubating at 25 ◦C for 20 min. Next, 1000 µL of the
DNA/Lipofectamine mixture was added dropwise to cells. One hour later, 5 mL DMEM supplemented
with FCS and 1% penicillin/streptomycin was added. The medium was replaced the next day, and after
another 24 and 48 h, supernatant with the packaged virus was collected and filtered through 0.22 µm
cellulose acetate filters. An equivalent amount of freshly harvested supernatant containing a packaged
virus was used to transduce 1 × 105 293T cells (or HepG2 cells for constructs with a liver-specific
promoter) in a 24-well plate. Two days post-transduction, cells were analyzed using an Olympus IX71
fluorescence microscope (Hamburg, Germany), and the transduction efficiency was quantified using
FACS analysis with a Cytomics FC500 Flow Cytometer (Beckman Coulter). The results were analyzed
using WinMDI software, and the transfection activity was expressed as a percentage of positive cells.

2.4. PCR using RNA from Viral Supernatant

RNA was isolated from viral supernatant using the QIAamp MinElute Virus Spin Kit from Qiagen
(Hilden, Germany), and first-strand cDNA was synthesized using 20 ng of RNA (DNase-treated) in a
20 µL reaction mixture with the GoScript Reverse Transcription System from Promega (Mannheim,
Germany), according to the manufacturer’s protocol. The GFP fragment was then obtained using 10 µL
of cDNA as a template in a 20 µL total reaction mixture containing 0.4 µL Qiagen HotStarTaq plus DNA
Polymerase (Hilden, Germany), 2 µL 10× PCR buffer, 2 µL 25 mM MgCl2, 0.4 µL 10 mM dNTPs, 2 µL
of 10 µM forward/reverse primers (forward primer ATCGAGCTGAATGGCGATGT, reverse primer
GATGTAGCCCTCAGGCATGG), and water. The PCR program consisted of polymerase activation
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at 95 ◦C for 5 min, followed by 40 cycles of denaturing at 95 ◦C for 30 s, annealing at 60 ◦C for 30 s,
extension at 68 ◦C for 1 min, and a final extension at 68 ◦C for 5 min. The amplified product was
separated on a 1.5% agarose gel to ascertain its size and quality.

2.5. Target Sequence, Template Identification, and Sequence Alignment

Because of the importance of overcoming the vector production problem, we examined which
part of the LDLR domain could be responsible for failed lentivector production. We have addressed
this problem using a bioinformatics approach, as described below.

The amino acid sequence of the conserved protein domain of lentivirus was obtained from
the National Center for Biotechnology Information (NCBI) database (https://blast.ncbi.nlm.nih.
gov/Blast.cgi). For template identification, the Basic Local Alignment Search Tool (BLAST) was
used, and two BLAST methods, protein–protein BLAST and position-specific iterated-BLAST
(PSI-BLAST), were performed for template selection by searching against the Protein Data Bank
(PDB). After comparative searching, the homolog structure with the best score was selected as
a template. The template protein PDB file and amino acid sequence data in FASTA format were
downloaded from the PDB. Multiple sequence alignment of template and target proteins was performed
using CLCbio software (Aarhus, Denmark). Alignments were then used to build a phylogenetic tree
using the same software.

2.6. Protein Structure Modeling and Binding Site Prediction

Template-based protein structure determination was performed based on the following.
Homologous proteins often have analogous tertiary structures. Consequently, the structure of a
protein homolog of the targeted region is used to predict its structure. Also, conservation of the
tertiary structure is much greater than that of the primary sequence. Interactive Threading ASSEmly
Refinement (I-TASSER, University of Michigans, Ann Arbor, USA) constructs three-dimensional (3D)
structural models by reassembling fragments excised from threading templates, starting with the amino
acid sequence of the lentivirus target region [39]. The accuracy of these methods depends on the quality
of templates and alignments. This method relies only on the tertiary coordinates of a target lentivirus
domain template through the use of a large set of template model decoys to reconstruct the structure of
the lentivirus target domain. Furthermore, we predicted the active site using the Molecular Operating
Environment (MOE, Chemical Computing Group software, Montreal, Canada) [40]. An alpha-shape
algorithm was used to determine potential active sites in the 3D protein model structures. To analyze
the receptor active site, protein surface calculations and molecular docking were used to search for
favorable binding configurations between a flexible protein and protein targets that are most likely
to contribute to tight protein–protein interaction [41–43]. Typically, scoring functions emphasize
favorable hydrophobic, ionic, and hydrogen bond contacts. We detected candidate protein–protein
binding sites using an efficient geometric algorithm based on Edelsbrunner’s alpha-shapes. The LDLR
versus the conserved domain of the lentivirus-binding site on a macromolecular structure was ranked
according to its accessible hydrophobic contact surface, and active site analysis was used to identify
polar, hydrophobic, acidic, and basic residues. Solvent-exposed ligand atoms, residues in close contact
with the lentivirus domain atoms, and side-chain and backbone acceptors were visualized.

2.7. Molecular Docking and Molecular Dynamics (MD) Simulation

The LDLR protein structure selected with PDB ID: 1N7D was docked into the targeted active
site of the group-specific antigen (gag) conserved domain determined by the docking server (http:
//www.dockingserver.com/web), which is based on AutoDock version 4 (Molecular Graphics Laboratory,
San Diego, USA). The analysis evaluated accurate gag target domain geometry optimization, energy
minimization, charge calculation, and docking calculation and provided an LDLR–gag conserved
protein domain complex representation. We found that a more accurate partial charge calculation and
therefore, a more accurate docking calculation, could be achieved using quantum chemical methods.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.dockingserver.com/web
http://www.dockingserver.com/web
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For protein-to-protein docking calculations, quantum chemical partial charge calculations were used
only for the target gag protein conserved domain. The application Molecular Orbital PACkage
(MOPAC 2009, CAChe Research LLC, Portland, USA), which quickly calculates the partial charge of
proteins by quantum mechanical semi-empirical methods, was also used. In addition, the targeted
module is expected to assist advanced Molecular Dynamics (MD) simulation by Chemistry at Harvard
Macromolecular Mechanics (CHARMM, Harvard University, Cambridge, USA) and Groningen
Machine for Chemical Simulations (Gromacs, University of Groningen, Groningen, Netherland) and
lead to an improved understanding of the structure and dynamics of complex biomolecular systems.

We also studied the interaction between the LDLR LBD (PDB ID: 1n7d) and VSV glycoprotein
G ectodomain (PDB ID: 5i2s). This interaction was determined using pyDock (Barcelona, Spain),
a protein–protein docking algorithm [44] based on electrostatics, desolvation energy, and a limited van
der Waals interaction, to produce score rigid-body docking poses (pyDock SER) [45].

2.8. Constructs with Mutations and Sequential Deletions at 3′ and 5′ Ends of the LDLR cDNA or
Liver-Specific Promoter

Using bioinformatics methods, we constructed a vector (construct A = pLDLRmut–eGFP)
containing 7 mutations: mutation 1 (p38K > V), AAA (lysine) to GTT (valine); mutation 2 (p58E
> K), GAG (glutamic acid) to AAA (lysine); mutation 3 (p72D>G), GAC (aspartic acid) to GGT
(glycine); mutation 4 (p81R > D), CGC (arginine) to GAC (aspartic acid); mutation 5 (p572S > P),
AGT (serine) to CCT (proline); mutation 6 (p648S > L), TCC (serine) to CTT (leucine); and mutation
7 (p688N > L), AAC (asparagine) to CTT (leucine) (Supplementary Figure S2C). We also designed
other constructs (Supplementary Figure S4) with sequential deletions at the 3′ of LDLR cDNA of
the 5′-LDLReGFP-3′ cassettes (construct B = pAD-eGFP, construct C = pOLS-eGFP, construct D =

pEgf-eGFP, and construct E = pLBD-eGFP). We also produced two mutants of the 5′-LDLReGFP-3′

fusion cassettes with sequential deletions in the 5′ of the hLDLR cDNA sequence: the first corresponded
to a deletion of the signal peptide (construct F = pWoSPep-eGFP) and the second to a deletion of
the LBD (construct G = pWoLBD-eGFP). We also designed and constructed two additional vectors
containing the same 5′-LDLReGFP-3′ fusion cassette but under the control of two different liver-specific
promoters, albumin and Ealb-Pa1AT.

2.9. Data Availability Statement

All data generated and/or analyzed during this research study are available from the corresponding
author on reasonable request.

3. Results

3.1. Transduction of 293T Cells with eGFP or pLDLR–eGFP

Previous studies have identified the VSV-G-pseudotyped LVV as the gold standard for gene transfer
strategies. For this reason, we used an LVV in combination with the VSV envelope (Supplementary
Figure S1) to determine whether this combination can improve the transduction efficiency of the LDLR
gene. After transfection and transduction, the efficiency was quantified using FACS and fluorescence
microscopy. As shown in Figure 1, the transfection efficiency of the M107 vector (eGFP) was 88.57%
as compared to 56.58% for the vector containing LDLR–eGFP. However, after transduction of 293T
cells with the same volume of eGFP or LDLR–eGFP supernatant, transduction efficiency for eGFP
was 42.32%, compared to 1.55% in cells transduced with the LDLR–eGFP supernatant (Figure 1).
It seems that the packaging of the cassette including the LDLR-eGFP was not successful. Furthermore,
subsequent assays confirmed a negative effect of the transmembrane LDLR sequences on packaging of
eGFP alone, indeed, co-transfection of hLDLR with eGFP and other packaging plasmids, led to the
inhibition of eGFP packaging in a dose-dependent manner [35].
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section, we used the same supernatant amount to transduce the 293T cells. Thereafter, cells were used 
for fluorescent microscopy (original magnification, ×200) and FACS analysis. The results were 
analyzed using WinMDI software and transfection efficiency was expressed in percent of positive 
cells. 

3.2. Docking Calculation and Protein–Protein Interaction Determination through MD Simulation 

Because the inhibitory mechanism for the LDLR protein is unknown, we used bioinformatics 
methods to identify a protein interaction between LVV and LDLR. After performing docking 
calculations and protein–protein interaction MD simulations, we found that the interface of all 

Figure 1. Transfection and transduction of 293T cells using LDLReGFP or eGFP. After transfection of
the 293T cells in 24-well plates as described in the materials and methods section, (A) we analyzed the
Expression of GFP in 293T cells transfected with construct harboring eGFP gene only or 5’-LDLReGFP-3’
cassette using fluorescent microscopy (original magnification, ×200) or flow cytometry and express the
transfection efficiency in percent of positive cells. (B) After packaging of the construct harboring eGFP
gene only or 5’-LDLReGFP-3’ cassette, as described in the materials and methods section, we used
the same supernatant amount to transduce the 293T cells. Thereafter, cells were used for fluorescent
microscopy (original magnification, ×200) and FACS analysis. The results were analyzed using WinMDI
software and transfection efficiency was expressed in percent of positive cells.
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3.2. Docking Calculation and Protein–Protein Interaction Determination through MD Simulation

Because the inhibitory mechanism for the LDLR protein is unknown, we used bioinformatics
methods to identify a protein interaction between LVV and LDLR. After performing docking calculations
and protein–protein interaction MD simulations, we found that the interface of all domains and seven
conserved residues in the active site of LDLR interact with the gag-conserved domain, and that the
most energetically favorable site for binding was the region between aa 295 and 690 (Supplementary
Figure S2C). The interactions between LDLR and gag protein occur through the establishment of
two hydrogen bonds connecting GlnA665, AsnA667 (LDLR), and AsnB49 (gag-conserved domain)
(Supplementary Figure S2D). This region in the LDLR is important because of the essential role it
plays in conformational changes in LBD, which in turn may be closely related to a loss of binding
(Supplementary Figure S2E). Subsequent protein predictions were performed under high-binding
affinity conditions to determine whether conformational changes would occur or be constrained.
We also replaced a short hydrophobic region in the hLDLR ligand-binding domain. This substitution
allowed us to identify specific conserved amino acids that show high affinity for interacting with the
hLDLR ligand.

3.3. Functional Effect of Mutations and Sequential Deletions at the 3′ End of LDLR cDNA

To reduce the interaction between the gag protein and LDLR, we designed seven mutants. We also
designed constructs with sequential deletions at the 3’ end of the LDLR cDNA in the 5′-LDLReGFP-3′

cassettes. After transfection and transduction, we quantified the transduction efficiency using
FACS analysis. We found that transduction with supernatant containing LDLR–eGFP harboring
seven mutations (pLDLRmut–eGFP) did not show any improvement compared to the LDLR–eGFP,
with efficiency reaching 0.2% for LDLR–eGFP as compared to 0.13% for LDLRmut–eGFP (Figure 2A).
Transductions with constructs containing sequential deletions at the 3′ end showed a positive signal in
fewer cells as compared to cells with the LDLR–eGFP construct (Figure 2A). Further, RT-PCR analysis of
the supernatant revealed that the pseudovirus from different constructs contained the eGFP sequence,
indicating that successful packaging of viral RNA in the VSV envelope had occurred (Figure 2B).



Viruses 2019, 11, 1063 9 of 16

Figure 2. Transduction of 293T cells with LDLReGFP supernatant including different substitution
or deletions at the 3’ of LDLRcDNA. The packaging of the construct harboring eGFP gene only or
5’-LDLReGFP-3’ cassette with different substitutions or deletion was done as described in the materials
and methods section, thereafter we used the same supernatant amount to transduce the 293T cells.
(A) We analyzed the expression of GFP using flow cytometry and express the transduction efficiency
in % of GFP. (B) After isolation of RNA from the supernatant and synthesis of the first-strand cDNA,
as described in the materials and methods section, the GFP fragment was showed using PCR.

3.4. Effect of a Liver-Specific Promoter and Sequential Deletions at the 5′ End of the LDLR cDNA on the
Packaging of LDLR–eGFP

Initially, we tested the interactions between the gag and LDLR, however the experimental assay
showed that the seven modifications in the LDLR (pLDLRmut-eGFP), and the deletion at the 3’ end,
do not improve the packaging. Then, based on the publication from Finkelshtein et al. [34], we
designed additional constructs with deletions at the 5’ end and tested the interactions between the
LBD and SVS-G. Furthermore, we also substituted the CMV promoter into an LDLR–eGFP construct
containing a liver-specific promoter (albumin or Ealb). The transfection efficiency was comparable
for all constructs (Supplementary Figure S3) and reached 54.96% for eGFP, 40.71% for the albumin
promoter-containing construct (pWAlbumin prom), 54.73% for the Ealb promoter-containing construct
(pWEalbprom), 46.44% for the construct without a signal peptide (pWoSPep-eGFP), and 41.77% for
the construct without LBD (pWoLBD-eGFP). When 293T/HepG2 cells were transduced with the same
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volume of pseudovirus supernatant, we found that pWoSPep-eGFP, pWEalbprom, and pWAlbumin
had low transduction efficiencies (Figure 3). In contrast, transduction with pWoLBD–eGFP-containing
supernatant demonstrated an improved transduction efficiency of ~70% of the eGFP transduction
(Figure 3).

3.5. Interaction between VSV-G Protein and LDLR

To our knowledge, no studies are evaluating a direct interaction between LDLR and VSV
envelope glycoprotein using MD simulation. Protein–protein interaction surfaces are generally
hydrophobic. We assessed hydrophobicity by measuring the area of an accessible protein surface that
forms an interface region with a partner protein, thus, becoming inaccessible to the solvent owing
to protein–protein contact. In the simulation, the two proteins LDLR and VSV were treated as rigid
objects, and 6-dimensional rotational and translational degrees of freedom were explored. For this
phase, surface complementarity, electrostatic complementarity, and desolvation parameters were
selected to probe various conformations by using a fast Fourier transform. Several confirmations
were identified and ranked according to scoring criteria. We used the result of a distance restraints
calculation, together with electrostatic and desolvation binding energy and affinity, to identify the
correct docking orientation. Out of the top 10 highest energies for these protein–protein interactions,
the lowest energy score was 1094.4 kcal/mol (Figure 4), corresponding to the proposed interaction
between the LDLR LBD and VSV envelope glycoprotein. The exposed residues of the LBD in the LDLR
receptor that interacted with the VSV protein were Val119, Thr120, Thr67, and Thr118. Besides, LDLR
has a side chain donor containing residue Asp69 and a backbone acceptor containing residue Arg83
that strongly interact with each other.
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eGFP gene only, constructs with LDLReGFP cassette under the liver-specific promoter or LDLReGFP
constructs with deletions at 3’ of LDLReGFP, the same amount of the supernatants was used for
the transduction of the HepG2/293T cells, as described in the materials and methods section, the
transduction efficiency was presented in % of GFP.
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Figure 4. Model of the crystal structure of VSV and LBD interactions. Protein to protein interaction
with LBD of LDLR (Chain A) PDB ID: 1n7d (orange) and VSV envelope glycoprotein g ecto domain
(Chain B) ID: 5i2s (purple). (B) LBD active site as shown in the molecular surface. (C) LBD as shown
in the molecular surface with a target VSV was highlighted in red. (D) A complex of LBD and VSV
envelope glycoprotein has a van der Waals interaction with each other as shown in residues (atom)
for binding are labeled with three-letter amino acid codes. Furthermore, an overview of LDLR ligand
binding domain and VSV interact with each other as shown helix model. (E) Frequency histogram of
docking scoring energies barrier for docking. (F) The interactive residues both VSV and LBD in n2D
view. MOE was used to generate the figure based on the information.
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4. Discussion

FH is a life-long autosomal codominant disease in which ~90% of patients have defects in the
LDLR. To date, the treatment of FH, especially for homozygous individuals, is challenging despite
efforts to manage the disease with lifestyle changes and/or use of drugs. The majority of patients with
homozygous FH maintain high serum LDL-C levels [10] and are at high risk for CVD. Plasma apheresis
or liver transplantation opportunities are limited, and thus, delivery of a functional LDLR transgene
shows great promise as a therapy. Previously, retroviral [20,21] or adenoviral [46] vectors or AAV
was used to deliver LDLR transgene [22,23]. In this study, we used an LVV pseudotyped with VSV
envelope. This envelope has been extensively studied [47,48] and is characterized by broad tropism,
high stability, and excellent transduction efficiency with multiple pseudotyped viral vectors [32,49,50].

We were able to achieve a transduction efficiency of 42.32% using supernatant containing eGFP,
but the efficiency was only 1.55% for cells transduced with LDLR–eGFP supernatant. The low
transduction efficiency in our study is comparable to that obtained by Grossman et al., where only a
few transduced hepatocytes and a small reduction in LDL-C levels were observed in three subjects [21],
despite promising results from studies in rabbits with LDLR [20]. In contrast, Ou et al. obtained a
remarkable reduction in LDL levels [51], although transduction efficiency was not provided in the
analysis of LDLR mRNA and protein expression levels. Interestingly, we also found that LDLR affects
the packaging of eGFP alone. Use of an LVV pseudotyped with VSV envelope and co-transfection of
hLDLR with the eGFP plasmid in addition to the other packaging plasmids led to inhibition of eGFP
packaging in a dose-dependent manner [35]. This negative effect of LDLR on the packaging of eGFP
was also confirmed in the publication from Otaha et al. [35]. However, we do not know the mechanisms
by which the expression of the LDLR inhibits the packaging of the eGFP. It is not because of the length
or structure of the transgene cassette, but it could be related to the protein–protein interactions between
the components of the LVV system, including the LDLR and the VSV envelop protein.

To investigate reduced packaging efficiency, we designed, using bioinformatics methods, several
LDLR mutants and generated constructs with sequential deletions at the 3′ and 5′ ends of the LDLR
cDNA in the 5′-LDLReGFP-3′ cassettes. We also replaced the CMV promoter with liver-specific
albumin and Ealb-Pa1AT promoters. However, these mutations did not improve packaging efficiency
(Figure 2A), and only a few positive cells were observed compared to positive signal observed for the
eGFP construct, despite verification of successful viral RNA packaging in the VSV envelope (Figure 2B).
Also, neither deletion of the signal peptide nor substitution of the CMV promoter with liver-specific
promoters increased the transduction efficiency (Figure 3). In contrast, removing the LBD of LDLR
(pWoLBD-eGFP) allowed transduction efficiency to reach approximately 70% of the eGFP transduction
(Figure 3), which led us to conclude that this domain is responsible for low packaging efficiency.

Our result is consistent with that of the Rubinstein group [33,34], who found that interferons induce
an extracellular soluble protein, identified as soluble LDLR (sLDLR), that inhibits VSV infection [33].
Recently, this group also analyzed the effect of sLDLR on eGFP expression after transduction of cells
with eGFP packaged in an LVV pseudotyped with VSV-G and showed that sLDLR completely blocked
transduction of fibroblasts. In contrast, sLDLR did not inhibit transduction of cells with eGFP packaged
in an LVV pseudotyped with lymphocytic choriomeningitis virus (LCMV), indicating that sLDLR
specifically binds to VSV-G and that the sLDLR must be present at the early stages of viral infection to
exert its antiviral effects [34]. Using co-immunoprecipitation, the authors also found that interactions
exist between the ligand-binding domain of LDLR and VSV-G. Which is consistent with our results and
showed that removing the LBD increased the transduction efficiency. Furthermore, the MD simulation
showed that the exposed residues of the LDLR receptor were Val119, Thr120, Thr67, and Thr118,
in the LBD that interacts with VSV. As LBD is the most important region in the transport of LDL,
it is difficult to modify it without affecting the transport efficiency of LDLR. For this reason, in future
studies, it would be more suitable to replace the VSV envelop with the LCMV envelope, or to use
the murine leukemia virus (MLV) pseudotyped with the hepatitis B virus (HBV) envelop, to obtain
higher transduction efficiencies. Previous studies have shown the possibility of pseudotype LCMV
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glycoproteins with retroviral and HIV-based lentiviral vectors for gene transfer [52,53]. Moreover,
the group of Dylla et al. used feline immunodeficiency virus (FIV) vectors pseudotyped with the
LCMV-derived glycoproteins for successful transduction in the liver [53]. For the murine leukemia
virus (MLV) or the LVV pseudotyped with the hepatitis B virus (HBV) envelop, previous studies
approved the effectivity of this system for gene transfer in primary human hepatocytes [54,55].

5. Conclusions

Taken together, our results show that the LBD of the LDLR interacts with the VSV-G protein
during the packaging process in a lentiviral VSV-G system, and this interaction significantly reduces
transduction efficiency. While it is possible to use an LVV system for packaging the LDLR–eGFP
construct, another envelope from other viruses, such as LCMV or MLV, should be used to avoid this
reduced efficiency.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1999-4915/11/11/
1063/s1.
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