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Abstract

Summary: The combination, analysis and evaluation of different studies which try to answer or solve the same sci-
entific question, also known as a meta-analysis, plays a crucial role in answering relevant clinical relevant questions.
Unfortunately, metabolomics studies rarely disclose all the statistical information needed to perform a meta-
analysis. Here, we present a meta-analysis approach using only the most reported statistical parameters in this field:
P-value and fold-change. The P-values are combined via Fisher’s method and fold-changes by averaging, both
weighted by the study size (n). The amanida package includes several visualization options: a volcano plot for quanti-
tative results, a vote plot for total regulation behaviours (up/down regulations) for each compound, and a explore
plot of the vote-counting results with the number of times a compound is found upregulated or downregulated. In
this way, it is very easy to detect discrepancies between studies at a first glance.

Availability and implementation: Amanida code and documentation are at CRAN and https://github.com/mariallr/
amanida.

Contact: maria.llambrich@urv.cat or raquel.cumeras@urv.cat

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The widespread of metabolomics as a potential tool for clinical diag-
nosis has increased the systematic reviews and meta-analysis on this
topic. Meta-analysis is the statistical combination in a single esti-
mate for results from primary studies answering the same question,
which is a common practice in medical research. Typical protocols
for meta-analysis only consider one metric to conduct the analysis,
whether statistical significance or relative change. They require raw
data [Metaboanalyst’ (Chong et al., 2018)] or statistics parameters
like standard error, standard deviation or variance [R package
‘meta’ (Balduzzi et al., 2019)], rarely disclosed in metabolomics
studies (Lee et al., 2020; Tofte et al., 2020). This causes that in some
cases about half of the studies on systematic reviews are not suitable
to be included in the meta-analysis (Guasch-Ferré et al., 2016; Pang
et al., 2021). Although some standardizations have been proposed
for the chemical analysis of metabolomics experiments (sample

preparation, experimental analysis, quality control, metabolite iden-
tification and data pre-processing) (Sumner et al., 2007), clinical
metabolomics needs standardized statistical reporting (Mutter et al.,
2019) including how to process meta-analysis. Also, metabolomics
public repositories, such as MetaboLights (Haug et al., 2020), do
not disclose the statistics data for all studies. On this matter, some
approaches have been developed when the studies to be included for
meta-analysis do not disclose statistical data, such as vote-counting
(Bushman and Wang, 2009), a qualitative estimate that takes into
account only the trend of the compound. Some omics have high
established protocols for meta-analysis, i.e. microarray in genomics,
although the last improvements these methods cannot be adapted to
metabolomics as they require the same genes or probes between
studies and/or mean per group with standard deviation (Huo et al.,
2020; Marot et al., 2009), which is not the case for metabolomics,
due to the different analytical techniques used. In this omics, stand-
ards protocols only recommend to disclose the overall result of the
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univariate analysis, P-value and fold-change, without the need of
reporting deviation or other metrics (Viant et al., 2019).

Public meta-analysis tools can only by applied to data with
standard deviation or directly to raw data (see Supplementary Table
S1). Currently there is no available methodology to do a meta-
analysis based on studies that only disclose overall results. Amanida
addresses the issue of combining overall results to perform meta-
analysis based on statistical significance (P-value), relative change
(fold-change) and study size. This approach increases the power of
meta-analysis in metabolomics where the relative change is as im-
portant as the statistical significance (Sinclair and Dudley, 2019;
Tolstikov et al., 2020). Estimates are weighted by study size to give
more value to big studies where results are less overfitted or spurious
(Rattray et al., 2018). Amanida R package also includes the option
of performing a qualitative vote-counting plot, as many metabolo-
mics studies will only report the relative change trend, and in this
case, only a systematic review can be performed.

2 Statistical information

For significance evaluation using the statistic result P-value, we use
the weighted P-values combination (Yoon et al., 2021), which is a
variant of Fisher’s method (Fisher, 1925). A gamma distribution is
used to assign non-integral weights proportional to study size to
each P-value (1).
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The fold-change is logarithmically transformed (base 2) to reduce
skewness due to methodology (Curran-Everett, 2018), so that the
variability is more homogeneous, and the distribution of the sample
mean is consistent with a normal distribution. The logarithmically
transformed fold-change values are averaged with weighting by
study size (2).
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Missing data are ignored, and negative values fold-change which
stands for inverse comparison (control/case), are reversed (-1/value).

A qualitative analysis of the data can be performed with a vote-
counting approach. Vote-counting comprises the general behaviour
of the metabolites per study. As previously described (Bushman and
Wang, 2009), votes are assigned as follows: value of þ1 for com-
pounds up-regulated, value of -1 for down-regulated, and 0 if no
change in the behaviour is reported. Then, the total vote per com-
pound is obtained summing the votes.

3 Software description

The Amanida R package allows a meta-analysis of metabolomics
data, combining the results of different studies addressing the same
question. The user provides the input data through text files (in txt,
csv or xlsx format) containing the following information: identifier
(previously curated by the user), P-value, fold-change, study size (N)
and reference. Then amanida computes the quantitative and qualita-
tive meta-analysis. Results are disclosed in two tables, one for the
quantitative meta-analysis, with the global P-value and fold-change
obtained, and one for the qualitative meta-analysis, with the vote-
counting and number of articles.

Results can be graphically inspected via different plots: the volcano_-
plot where P-value and fold-change are plotted in logarithmic scale (see
Fig. 1), for which the user can select the cut-off thresholds, labelling the
selected compounds with their identifiers; the vote_plot where the vote-
counting results are plotted per each compound; and the explore_plot
where the vote-counting results are plotted against the total number of
articles in which each compound is reported as upregulated or downre-
gulated (see Fig. 2). All analysis can be obtained in a completely

automatic manner using amanida_report function. To illustrate the
package we have used a dataset from a urinary metabolomics meta-
analysis study of colorectal cancer (Mallafré et al., 2021).

4 Validation

To evaluate the package, we selected a metabolomics meta-analysis
with data disclosed (Lee et al., 2020) which describes the association of
metabolites with lung cancer risk. We could only use the information of
amino acids concentration disclosed in six studies to compare both
methodologies, as it was the only fully available (Supplementary Table
S2). We must mention that to include the original six studies as in Lee
et al. from one study the numeric values have been extracted directly
from box-plots (Pietzke et al., 2019). The meta-analysis used on the
reviews compares the weighted means between groups using the fixed
model or random model if there is high heterogeneity (I2> 40%) be-
tween studies. The principal difference is that the fixed model assumes
the effect in all studies is the same and the random model assumes that
the effects between studies vary according to a normal distribution, used
for convention. When there is high heterogeneity between studies with
random models the studies are weighted more equally, this gives higher
weight to small studies which is an unwanted approximation in metabo-
lomics. Regarding results, Lee et al. found three statistically significant
compounds associated with lung cancer risk: Methionine (I2¼86.0%),
Proline (I2¼ 87.1%) and Tryptophan (I2¼ 83.6%). Following the same

Fig. 1. Amanida volcano plot. Quantitative meta-analysis results with a cut-off of

0.05 for P-value and 3 for fold-change. Data obtained from (Mallafré et al., 2021)

Fig. 2. Amanida explore plot. Vote-counting results plotted against total number of

articles divided by trend. Data obtained from (Mallafré et al., 2021)
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procedure, we have repeated the meta-analysis using the ‘Meta’ R pack-
age (Balduzzi et al., 2019). We obtained significant results (see
Supplementary Figs) for Proline [random model (I^2¼87.1%)].
Differences in the results are due to the difference in the box-plot estima-
tions from (Pietzke et al., 2019).

We applied the amanida approach to the same data as Lee et al.
for amino acids, where 20 of the 21 amino acids achieve statistical
significance (P-value combined < 0.05, Supplementary Table S3),
however the fold-change combined in all cases is smaller than 1.5,
far from the threshold of 2 to consider a biological change. This
means it might be a pattern in the amino acids of lung cancer
patients, but the biological effect is small.

Evaluation of meta-analysis results includes multiple metrics
including the multiple steps of processing applied compound by
compound, while amanida results are obtained straightforward in a
detailed report. As mentioned before, amanida has the advantage to
work with P-values and fold-change, metrics more disclosed in
metabolomics studies than the compound concentrations with their
deviations. Also, it increases the readability of the results, classical
meta-analysis includes multiple parameters to consider, such as het-
erogeneity, ranks or multiple models to obtain relevant results. We
must say that Lee et al. considered as good metabolites, those with
extremely high heterogeneity, and that Cochrane recommends not to
do meta-analysis when considerable variation of results, i.e. I2 is 75–
100% (Higgins et al., 2019). The validation study used, was the
only one that the authors found that reported both mean differences
and standard deviations along with P-values and fold-changes.

5 Limitations

Applying amanida meta-analysis directly to the statistical estimates
reduces the combination accuracy since without the raw data is not
possible to know how much dispersion there is or how many outliers
are included. Another drawback is found when the studies only dis-
close the statistical information for the significant compounds
whereas preventing the correct combination of all results. Good
practices in metabolomics suggest using a minimum of 50 samples
per group to obtain relevant results, in a meta-analysis, these small
studies are not recommended to be included due to the variability
introduced, as we can observe with Proenza et al.’s (2003) and Yue
et al.’s (2018) studies which have 14 and 20 participants per group,
respectively. A common criticism for all meta-analyses described in
Cochrane Handbook is that they ‘combine apples with oranges’
(Higgins et al., 2019), which have been also said for metabolomics
as there is a wide range of techniques for compound detection or ex-
traction methods with different sensibility that are combined. This
limitation can be restricted on the systematic search, selecting only
studies with the same technique and protocol, but it will reduce sub-
stantially the number of studies to combine.

6 Summary

\Amanida has been developed to deal with two issues, the few data
disclosed in metabolomics and attribute different weights for the stud-
ies according to sample size. Standards metabolomics protocols basic-
ally recommend to disclose the overall result of the analysis, P-value
and fold-change, without the need of reporting their means or devi-
ation or other metrics (used in classical meta-analysis). In amanida,
both overall statistical results are weighted according to the sample
size, where larger studies will have more importance. Classical meta-
analysis does not measure the strength of the combined result, only
shows if the data has a pattern. To look for the strength we combine
the statistical significance (P-value) with the effect (fold-change),
which measures the quantity of change between groups. Amanida is
the first approach to a meta-analysis with non-integral data.
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