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Bryophyllum pinnatum is a perennial herb traditionally used in ethnomedicine. In the

present report, silver nanoparticles (AgNPs) were synthesized using B. pinnatum leaf

extract. BP-AgNPs were confirmed following UV-Vis spectroscopy with SPR peak at

412 nm and further characterized by FTIR, XRD, SEM-EDX, and TEM. Microscopic

images confirmed the spherical shape and ∼15 nm average size of nanostructures.

BP-AgNPs were evaluated for photocatalytic degradation of hazardous dyes (methylene

blue and Rhodamine-B) and showed their complete reduction within 100 and 110min.,

respectively. BP-AgNPs have emerged as a unique SPR-based novel sensor for the

detection of H2O2, which may deliver exciting prospects in clinical and industrial areas.

DPPH and ABTS free radical scavenging activity were studied with respective IC50 values

of 89 and 259µg/mL. A strong intercalating interaction of CT-DNA with BP-AgNPs was

investigated. Observed chromosomal abnormalities confirm the antimitotic potential of

BP-AgNPs in the meristematic root tip. The cytotoxicity of BP-AgNPs against B16F10

(melanoma cell line) and A431 (squamous cell carcinoma cell line), was assessed with

respective IC50 values of 59.5 and 96.61µg/ml after 24 h of treatment. The presented

green synthetic approach provides a novel and new door for environmental, industrial,

and biomedical applications.

Keywords: Bryophyllum pinnatum, DNA binding, green synthesis, photocatalyst, cytotoxicity

INTRODUCTION

The distinctive features of metal nanoparticles (NPs) have made it attractive to various applications
such as optical, electronic, magnetic, and antimicrobial for the last few years. (Punjabi et al.,
2018; Arun et al., 2019; Guilger-Casagrande and de Lima, 2019; de Oca-Vásquez et al., 2020).
NPs are usually synthesized with distinct physical, chemical, and biological methods, but are
inconvenienced by their cost, slow process as well as generation of waste causing environmental
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pollution and biotic harmfulness (Wang et al., 2016; Unni
et al., 2017; Gahlawat and Choudhury, 2019; Hamida et al.,
2020; Tortella et al., 2020). The physical methods utilize costly
equipments and produce unstable larger nanoparticles, while
hydrazine and sodium borohydride like hazardous materials are
used as reducing agents in the chemical approaches (Mohanta
et al., 2017; Chandraker et al., 2019a). Likewise, cautious
isolation of bacteria, fungi, and the management of their non-
contaminated culture or their byproducts are tedious issues with
the microbial synthesis of NPs (Chandraker et al., 2019b).

Green synthesis using plant extracts is a blameless, facile,
rapid, reliable, cost-effective, and eco-friendly approach that gives
higher stability and better physicochemical characteristics to NPs
(Ravi et al., 2013; Kumari et al., 2020). The phytochemicals and
secondary metabolites found in plant extracts act as capping
agent, and responsible for the reduction of metal ions and
formation of NPs. Green synthesized metal/metal oxide NPs
like CuO, FeO, and MgO are being utilized enormously in
biomedical and clinical applications (Kumari et al., 2018; Sheel
et al., 2020; Verma et al., 2020). Instead, AgNPs are preferred
over other noble metal NPs like Au, Pt, Pd, Cu, Fe, etc., due to
their extensive uses in bioengineering, cosmetics, food packaging,
catalysis, electrochemistry, environmental remediation, and
pharmaceutical industries as antiseptic agents (Paul et al., 2018;
Mohan et al., 2020; Yousaf et al., 2020). Phytochemicals present
in the plant extract are capable of capping and reducing Ag+

to Ag0 (Das et al., 2020). It is, therefore, suitable for large scale
fabrication of AgNPs in non-aseptic environments.

The leading mortality rate for cancer is predicted to reach
up to 21 million worldwide over the next decade (Siegel et al.,
2016). Chemotherapy is a prominent approach of treatment
which includes numerous cytotoxic drugs to arrest cancer
cells, however, these drugs also harm normal body cells and
causes adverse physiological effects (Iqbal et al., 2017). The
antagonistic effects can be reduced by using metallic NPs in
controlled targeted drug delivery, without affecting the normal
cells. The AgNPs are playing an important role in the quality
enhancement of anti-cancer drugs with maximum therapeutic
effects (Lohcharoenkal et al., 2014; Verma et al., 2019). The
cytotoxic agents may interact with the DNA of target cells and
disrupt the mitosis and cell cycle. To explore the intracellular
action of NPs, studies on their binding with DNA have become
a primary interest in recent years (Ribeiro et al., 2018). Apart
from some complicated techniques like gel electrophoresis and
other electrochemical detection, UV-vis spectroscopy has been
established as a convenient, accurate and extremely sensitive
mode to illustrate the interaction of NPs with nucleic acids
(Komal and Kaushik, 2019).

Removal of water pollutants is a serious concern of researchers
worldwide (Yang et al., 2017). Synthetic dyes are one of
the chief pollutants as well as hazardous and carcinogenic
substances which are processed and released from the paint,
fabrics, rubber, leather, paper, cosmetics, and plastic industries.
Their catalytic degradation has received widespread attention
because of being quick, extremely efficient (as compared to other
approaches), and cost-effective approach, which does not trigger
secondary contamination.

Hydrogen peroxide (H2O2) is a strong oxidizer, frequently
used in various manufacturing and food processing industries.
Despite, its exposure in industrial processes results in various
human health risks and environmental issues because of having
toxic effects (Tagad et al., 2013). As per US-EPA, it is detrimental
to human and aquatic bodies above permissible limit of 30
PPM in potable water (Bhagyaraj and Krupa, 2020). Therefore,
a sensitive, accurate and easy detection method for H2O2

contaminants is highly required.
Bryophyllum pinnatum (Lam.) Oken (family: Crassulaceae)

is a perennial herb extensively grown in India, China, Tropical
African and American countries, and Australia, and used widely
in ethnomedicine. The natural succulent leaves of the plant
have a range of therapeutic properties, including antibacterial,
hypotensive, gastroprotective, immunomodulator, antidiabetic,
anti-inflammatory, and anti-leishmania (Chibli et al., 2014). The
plant often reported treating insect bites, kidney stones, boils,
burns, gastric ulcers, sores, and eye infections, etc. (Fernandes
et al., 2019). In this work, we aimed to synthesize AgNPs
using leaf extract of B. pinnatum and explore their potential
for photocatalytic, DNA binding, H2O2 sensing, free radical
scavenging, antimitotic and cytotoxic activities.

EXPERIMENTAL SECTION

Materials
The leaves of B. pinnatum were collected during January 2019
near the Kapil Dhara fall of the Amarkantak region under
the Anuppur district of Madhya Pradesh, India. Plant species
authentication was carried out by the subject experts, and
the voucher specimen (DOB/19/BP/044) was deposited in the
herbarium of Botany department, IGNTU, Amarkantak, India.

Chemicals
Silver nitrate (AgNO3; AR grade), calf thymus DNA sodium
salt (CT-DNA), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-
azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) were
purchased from Himedia Laboratories Pvt. Ltd., Mumbai, India.
Acetocarmine, Hydrogen peroxide (H2O2), Methylene blue,
and Rhodamine-b were obtained from CDH Laboratories Pvt.
Ltd. Mumbai.

Preparation of Leaf Extract
The collected fresh leaves were washed thoroughly twice with
double distilled water (DDW) to eliminate dust and natural
impurities. The B. pinnatum leaf extract (BPLE) was made with
25 g of fresh leaves, which were cut into equal size. The sliced
leaves were boiled in 100mL of DDW for 20min at 65◦C, and
after cooling, the leaves extract was filtered twice with whatman
No. 1 filter paper and kept at 4◦C.

Phytochemical Analysis
Preliminary phytochemical screening was carried out using the
standard protocol followed by Ali et al. (2018) and Chandraker
et al. (2020) to identify the phytoconstituents present in BPLE.

Frontiers in Molecular Biosciences | www.frontiersin.org 2 January 2021 | Volume 7 | Article 593040

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Chandraker et al. Biofabrication and Applications of BP-AgNPs

Green Synthesis of BP-AgNPs and
Optimization
Respective volumes (0.5, 1.0, 1.5, and 2.0mL) of BPLE were
added individually to 24.5, 24.0, 23.5, and 23mL of 1mMAgNO3

solutions for a final volume of 25.0mL in 50mL Erlenmeyer
flasks. Similarly, 23mL solutions of AgNO3 were arranged with
four concentrations (0.1, 0.25, 0.5, and 1mM) and mixed with
2.00mL BPLE. Further, the effect of pH on the synthesis of BP-
AgNPs was analyzed. For this study, 2mL of BPLE was separately
added to 23mL AgNO3 (1mM) having variable pH viz., 2, 4,
6, and 8. The pH was adjusted using sulfuric acid, and sodium
hydroxide solutions drop by drop. To evaluate the effect of
temperature on the green synthesis of BP-AgNPs, the reaction
mixture was kept at variable temperatures (27, 40, 60, and 80◦C)
in a hot air oven. The color shift from colorless solution to
yellowish/dark brown solution suggesting BP-AgNPs synthesis
and confirmed the reduction from Ag+ to Ag0.

Characterization of BP-AgNPs
The synthesis of BP-AgNPs were determined by UV-visible
spectroscopy (Shimadzu UV-1800). Fourier Transform Infra-
Red spectra obtained with FTIR (Bruker, Germany. Model:
Vertex 70) using KBr at a resolution of 0.5 cm−1 in the diffuse
reflectance mode and within a range of 500–4,000 cm−1. Studies
of X-Ray Diffraction (XRD) were performed using Bruker D8
at 30 kV and 20mA current with Cu K (I = 1.54A) to test the
crystallinity of BP-AgNPs. Using Scanning electron microscopy
(EVO 18; Carl Zeiss, Germany), the surface morphology and
elemental composition (Energy Dispersive X-ray Analysis) of
BP-AgNPs were determined. Transmission electron microscopy
(Technai G20 FEI) operated at 200 kV, and a 104 beam current
was used to determine the size of NPs.

Applications of BP-AgNPs
Cytotoxic Activity
Cells were cultured in Dulbecco’s Modified Eagle’s (DME)
medium supplemented with 10% FBS and 1% antibiotic and
antimycotic solution at 37◦Cwith 5%CO2. For the control group,
cells were cultured in medium containing 0.1% DMSO. For the
treatment group, cells were incubated with different nanoparticle
dispersed concentrations in DMSO (0.1%). The cytotoxicity of
BP-AgNPs against A431 (squamous cell carcinoma cell line) and
B16F10 (melanoma cell line) was determined using MTT assay
(Singh et al., 2013). Both types of cells were seeded at 5,000
cells/well separately in 96-well plates. After 24 h of seeding, cells
were incubated with different concentrations of nanoparticles
(10, 25, 50, and 100µg/ml) for 24 and 48 h. On completion of the
treatment time, the media was taken out, and the MTT solution
was added to each well and incubated for 4 h. Subsequently,
100 µl of DMSO was added to dissolve the formazan crystals
formed. Finally, after incubating the plate at 37◦C for 10min,
absorbance was recorded on amicroplate reader at 570 nm. Using
the following formula percent cell viability was calculated:

% Cell viability

=
(

Average absorbance of the treated sample

Average absorbance of the control sample

)

× 100

Impact on Mitosis in the Onion Root Tip
Onion (Allium cepa; 2n = 16) bulb was purchased from the
Lalpur market in front of IGNTU, Amarkantak. The outer scale
of bulbs was cleaned, and the bulbs were placed on 100mL
beaker at room temperature (30 ± 1◦C) for root germination
(Chandraker et al., 2014). Root tips (2–3 cm) were treated with
20 and 50% of BP-AgNPs suspension for 6 and 12 h, separately.
However, DDW was used as a control (Ghosh et al., 2020). After
that, roots were submerged in 1M HCl solution and heated for
4–5min and transferred to DDW for 2min. The root tips were
crushed with 40% acetocarmine with a dissecting needle, and the
coverslip was carefully placed on the slide for microscopic study.
The experiment was performed in triplicate. Chromosomal
abnormalities were observed under the microscope, and the
mitotic index was calculated as follows.

Mitotic index (MI) =
TDC

TC
× 100

Phase index (PI) =
TC

TDC
× 100

Where TDC—dividing cells, TC—total number of cell counted.

DNA Interaction Activity
Studies of DNA interaction were performed by the method
described by Chandraker et al. (2019b), Different concentrations
of CT-DNA (20–260 µl) in Tris-HCl buffer (pH 7.2) were treated
with BP-AgNPs (10µM) in 1 % aqueous DMSO. UV-visible
spectrophotometer further examined the specific concentration
of the combined solution of CT-DNA and BP-AgNPs.

Photocatalytic Activity
The BP-AgNPs was studied for its catalytic property under
sunlight in the degradation of toxic dyes methylene blue (MB)
and rhodamine-B (RB). The dye degradation experiment was
performed, according to Rodríguez-Cabo et al. (2017). The dye
solutions were prepared by dissolving 2.5mg MB and RB in
250ml DDW, separately. In both the dye solutions (50ml), 10mg
of BP-AgNPs were added individually. A control of MB and
RB were also prepared without NPs and retained under the
same condition. The UV-vis spectra and absorptionmaxima were
monitored at fixed intervals.

H2O2 Sensing Capability
Following the standardmethod of Aadil et al. (2016) with aminor
alteration, the H2O2 sensing capability of BP-AgNPs has been
noted. In a colloidal solution (3mL) of BP-AgNPs, 20mM H2O2

(1ml) was thoroughly mixed. The initial UV-visual spectrum of
BP-AgNPs solution without H2O2 has been recorded. Further,
the UV-vis spectra of the reacting solution was observed at
fixed intervals.

Antioxidant Activity
The antioxidant activity of BP-AgNPs was evaluated by
the DPPH and ABTS free radical scavenging assays. By
following the conventional method of Butola and Verma
(2019), the DPPH and ABTS reducing potential of BP-AgNPs
and the standard reference compound ascorbic acid were
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determined. DPPH solution (0.1mM) in methanol was mixed
with varying concentration of methanolic BP-AgNPs. After
30min of incubation in dark, the absorbance (517 nm) was
recorded. Similarly, ABTS free radical solution was prepared with
potassium persulphate, and treated with different concentrations
of BP-AgNPs. After 30min of incubation, the absorbance
was taken at 734 nm. The percentage scavenging activity was
calculated using the following formula.

% Scavenging activity

=
Absorbance of control− Absorbance of sample

Absorbance of control
× 100

Statistical Analysis
Antimitotic, antioxidant and MTT assays were performed
in triplicate and their data expressed in mean ± SE
following OriginPro 8.5 software. For MTT assay, data were
analyzed by Student’s t-test, where P < 0.05 was considered
statistically significant.

TABLE 1 | Phytochemical analyses of BPLE.

S. No. Phytochemicals Tests performed Result

1. Flavanoids Ferric chloride test, Lead acetate test +ve

2. Alkaloids Mayer’s test, Wagner test +ve

3. Phytosterols Salkowski’s test, Libermann-Buchard’s test -ve

4. Anthocyanin NaOH test -ve

5. Tannins Ferric chloride test +ve

6. Phlobatannins HCL test -ve

7. Terpenoides Trim-Hill reagent test +ve

8. Anthraquinone Benzene test -ve

9. Saponins Foam test +ve

10. Glycosides Molisch test, Keller Killani test -ve

RESULTS AND DISCUSSION

Phytochemical Analysis
The occurrence of flavonoids, terpenoids, saponins, alkaloids,
and tannins in BPLE was confirmed by various qualitative tests
(Table 1). Such phytochemicals might be adsorbed on the surface
of Ag+ causing their reduction to Ag0, and further, prevent
their agglomeration. The previous studies also reported the
presence of the same compounds in B. pinnatum (Uchegbu et al.,
2017). Among several metabolites, flavonoids were explored
to share a significant role in the ethnomedicinal importance
of B. pinnatum (Chibli et al., 2014; Fernandes et al., 2019).
Besides, pure flavonoids are said to be mainly compound for
the transformation of metallic ions to their nanostructures
with enhanced anti-microbial and anti-cancer activities (Jain
and Mehata, 2017). Similarly, alkaloids, tannins, and saponins
have also been reported as green reducing agents to develop
novel nanomaterials with versatile applications (Ahmad, 2014;
Almadiy and Nenanaah, 2018; Choi et al., 2018). The schematic
of BP-AgNPs synthesis is shown in Figure 1.

Green Synthesis of BP-AgNPs and Their
Optimization
UV-visible spectroscopy is a relible and basic technique for
characterizing nanoparticles. Metallic NPs exhibit absorption
bands in the visible region because of surface plasmon resonance
(SPR) band (Lopes et al., 2018). Therefore, the synthesis of BP-
AgNPs was confirmed by spectroscopic analysis through their
distinctive SPR peak at 412 nm, as the band is typical of the
nanoscale silver. Whereas, no absorption spectra was detected
with an aqueous solution of BPLE and suspension of AgNO3 salt,
separately (Figure 2). Green synthesis of BP-AgNP tends to be
highly selective and relies on some essential factors, i.e., extract
concentration, pH, temperature, and AgNO3 concentration.
Because of their distinctive properties, these parameters regulate

FIGURE 1 | A possible mechanism for the reduction of Ag+ to Ag0 and synthesis of BP-AgNPs.

Frontiers in Molecular Biosciences | www.frontiersin.org 4 January 2021 | Volume 7 | Article 593040

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Chandraker et al. Biofabrication and Applications of BP-AgNPs

FIGURE 2 | UV–Vis spectra of BPLE, AgNO3, and colloidal dispersion of BP-AgNPs.

the size, shape, yield, stability, and agglomeration of the BP-
AgNPs.

Effect of Extract Concentration
A concentration-dependent effect of leaf extract was found in
BP-AgNPs synthesis (Figure 3A). The green synthesis of BP-
AgNPs is very low at 0.5mL concentration of BPLE. This is
because of the lesser availability of phytochemicals like phenols,
triterpenes, glycosides, alkaloids, flavonoids, steroids, lipids, and
organic acids, which act as capping, reducing, and stabilizing
agent in phytosyntesis process (Nabikhan et al., 2010). The
optimal level of leaf extract was found to be 2.0mL for green
synthesis nanoparticles.

Effect of pH
pH plays a major role in green synthesis of BP-AgNPs. It was
confirmed that the size and shape of the NPs could be regulated
by adjusting the pH of the solution media (Patra and Baek,
2014). In Figure 3B, the characteristic SPR peak of Ag0 was not
observed at acidic pH. However, a slightly basic medium (pH 8)
supports the formation of BP-AgNPs. The obtained result is
similar to earlier observations of Gurunathan (2019) and Vanaja
et al. (2013) where acidic pH either suppresses NPs formation or
gives low absorbance band, whereas, negative ions (OH−) after
dissociation of NaOH in basic medium causes much reduction of
Ag+ into AgNPs.

Effect of AgNO3 Concentration
By taking variable concentrations of AgNO3 in the optimization
experiment, it was found that on lower concentrations (0.12–
0.5mM), the absorption peak for AgNPs was not observed
(Figure 3C). This may be due to the very low availability
of Ag+ ions in the reaction mixture. At 1.0mM AgNO3,
significant absorption spectra (412 nm) was found in the UV-
vis spectrophotometer. Hence, 1mM AgNO3 is the optimal
concentration for green synthesis of AgNPs. However, in some
other reports, a further increase in concentration up to 5mM
showed more absorbance (hyperchromic shift) at the same
wavelength and produced larger NPs (Vanaja et al., 2013).

Effect of Temperature
Temperature is also a relevant parameter for NPs synthesis. The
physical and chemical methods require respective temperatures
>350 and <350◦C, whereas, green synthesis approach follows
ambient to 100◦C (Patra and Baek, 2014). In the present study,
the synthesis of BP-AgNPs increases with increasing the reaction
temperature. The UV-visible spectra (Figure 3D) showed that
60◦C is the most suitable condition for BP-AgNP synthesis. At
room temperatureand 40◦C, synthesis of NPs is very low to
moderate, whereas, at 80◦C, nanoparticle synthesis is high but
not favored due to aggregation. A similar result was obtained
using olive leaf mediated NPs at different temperatures (Khalil
et al., 2014).
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FIGURE 3 | UV–Vis spectra of BP-AgNPs synthesis on variable concentrations of BPLE (A); on variable pH (B); on variable concentrations of AgNO3 solutions (C),

and on variable temperature (D).

The stability of BP-AgNPs was checked regularly following 8
months of green synthesis. The spectral data suggested adequate
stability of NPs with a slight increase in the SPR peak, which may
be due to proximity effect or agglomeration.

FT-IR Spectral Analysis
The FT-IR spectrum of BP-AgNPs is shown in Figure 4a, where
noticed peaks denote functional groups in various chemical
compounds, such as flavonoids, polysaccharides, polyphenols,
and triterpenoids. The FTIR bands at 3,000–3,300, 2904.33,
2358.56, 1594.12, 1385.12, 1021.45, and 669.19 cm−1. The peak
centered on ∼3,300 cm−1 corresponding to O-H stretching,
whereas, 2904.33 cm−1 suggests amide C–C stretching. The peak
observed at 2358.95 cm−1 may be due to C–H stretching of a
methylene group, and the peak at 1594.12 cm−1 corresponds
to -C=C- and -C=N stretching. The band at 1385.12 cm−1

corresponds to O-H bend, and 1021.45 cm−1 can be attributed to
the stretching vibration of the O–C bend. The final peak observed
at 669.17 cm−1 may be due to the N–H stretching of the amide
group (Nabikhan et al., 2010).

XRD Analysis
XRD profile of phytosynthesized BP-AgNP is shown in
Figure 4b, confirming the presence of Ag in the sample. In the
XRD graph at 2θ = 28, 32, and 46, the Bragg reflections were
observed that noticeably shows the existence of (111), (200),
and (220) lattice plane, respectively. The peak pattern can be an
indexed face-centered cubic (fcc) silver (JCPDS, File No. 893722)
(Sudhakar et al., 2015). From the analysis of XRD Pattern it
was confirmed that green synthesized particles had a nano-size
with crystalline nature. Certain extra unattributed peaks near
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FIGURE 4 | FT-IR spectra of BP-AgNPs (a), XRD pattern of BP-AgNPs showing crystalline Ag facets (b), SEM (c), and TEM (d) images of BP-AgNPs, EDX spectra

(e), and elemental composition of BP-AgNPs (f).
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FIGURE 5 | Effect of BP-AgNPson cell viability of A431 and B16F10 cells after (A) 24 h (B) 48 h of treatment. The assay was done in triplicate and the data are

represented as mean ± SE; significance value *p ≤ 0.05,**p ≤ 0.01, ***p < 0.001 as calculated by Student’s t-test.

typical peaks were also recorded, showing the crystallization of
the bioorganic stage on the NP’s surface.

SEM and EDX Analysis
The topology and morphology of BP-AgNPs were visualized
through SEM assessment. The synthesis of consistent and
comparatively orbicular BP-AgNPs is confirmed in Figure 4c.
Energy-dispersive X-ray analysis (EDX) reveals the composition
of elementals in BP-AgNPs. The EDX spectrum, which shows
the major elementary peak at 3 keV, indicates metallic silver in
Figure 4e.During the capping of AgNP by biomolecules of BPLE,
other small peaks of K, Cl, Ca, and O were also created. The
quantitative estimate shows that elemental Ag has a maximum
weight percentage of 81.77%, while O, Cl, Ca, and K having had
11.43, 5.91, 0.27, and 0.63%, respectively Figure 4f.

TEM Analysis
Figure 4d displays the TEM image which elucidates the
formation of isotropic, nearly spherical NPs. The average particle
size was measured 15 ± 5 nm, following the particle size
determined from the XRD.

In vitro Cytotoxic Activity
MTT assay was performed to determine the cytotoxic property
of BP-AgNPs. It is a colorimetric measurement that analyses
the emergence of purple-blue formazan crystals by reduction
of yellow color dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) by the mitochondrial enzyme
succinate dehydrogenase. Based on the viability of cancer cells
(human squamous cell carcinoma A431 and mouse melanoma
B16F10), the effect of NPs was analyzed. In vitro results displayed
a decrease in viability of both A431 and B16F10 cells with an
increase in the concentration of BP-AgNPS after 24 h and 48 h
of treatment. After 24 h of treatment with BP-AgNPS, there was

not much decrease in cell viability at the lower concentrations of
10, 25 and 50µg/ml, but at higher concentration of 100µg/ml,
cell viability was reduced significantly by ∼50% in A431 cells
(p < 0.01) and 80% in B16F10 cancer cells (p < 0.005) in
comparison to untreated control cells. Similar results were
found after 48 h of treatment, and there was a concentration-
dependent decrease in viability of A431 and B16F10 cancer
cells. Cell viability was ∼46% in A431 cells (p < 0.01) and
23% in B16F10 cells (p < 0.01) compared to control. BP-
AgNPs showed significant cytotoxicity toward skin cancer cells
(Figures 5A,B). BP-AgNPs were found to be more effective
against B16F10 cell lines with IC50: 59.5µg/ml, rather than A431
cell line showing IC50: 96.61µg/ml after 24 h of treatment. In
earlier reports, Butea monosperma mediated Ag and AuNPs
were found to be a biocompatible vehicle for chemotherapeutic
drugs but did not exhibit cytotoxic effects against the B16F10
cell line (Patra et al., 2015). However, phytosynthesized AgNPs
using Impatiens balsamina flowers showed less cytotoxicity and
increased IC50 (196.5µg/ml) than our report against B16F10
cell line (Nalavothula et al., 2015). Likewise, several research
groups documented cytotoxic activity of metallic-NPs against
various cancer cell lines in a dose-dependent manner, however,
biocompatibility and non-toxicity against normal cells (Ribeiro
et al., 2018). In separate experiments, Balasubramani et al.
(2015) and Farah et al. (2016) observed a dose-dependent
decrease in viability of MCF-7 breast cancer cells with 217 and
257.8µg/ml IC50 when treated with Adenium obesum mediated
AgNPs andAntigonon letopusmediated AuNPs, respectively. The
definite mechanism of NPs’ anti-cancer exercise is not yet fully
presumed. However, the generation of reactive oxygen species,
up-regulation of p53 protein, and expression of caspases are
considered to be the major anti-cancer mechanisms (Barabadi
et al., 2017). According to Rai et al. (2016) nanoparticle generated
ROS promotes caspase-3 activation that is responsible for cell

Frontiers in Molecular Biosciences | www.frontiersin.org 8 January 2021 | Volume 7 | Article 593040

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Chandraker et al. Biofabrication and Applications of BP-AgNPs

TABLE 2 | Mitotic index (MI) and phase index (PI) of A. cepa root meristematic cells treated with different BP-AgNP concentrations.

Treatment Concentrations

(µg/ml)

Total no. of dividing cells P M A T (MI)

Mean ± SE

PI %

Control (DDW) for 24 h 0.0 556 380.66 84.66 64 26.66 55.6 ± 0.41 179.8

AgNO3 for 24 h 30.0 527.66 372.33 69.33 60 26 52.76 ± 1.38 189.75

BP-AgNPs for 12 h 10.0 450 308.33 68 59.66 14 45.0 ± 0.28 222.22

20.0 416.66 309 50.66 40 17 41.66 ± 0.44 240.38

30.0 399.66 305 47 34 16.33 39.96 ± 0.08 250.62

BP-AgNPs for 24 h 10.0 406.33 308.66 45.33 36.33 16 40.63 ± 0.27 246.30

20.0 387 297.33 44.33 34.33 11 38.70 ± 0.60 258.39

30.0 345.33 281.33 32.33 22.66 10.66 34.53 ± 0.26 289.85

Where P, M, A, and T are prophase, metaphase, anaphase, and telophase, respectively.

apoptosis by arresting the G2/M phase of the cancerous cell
cycle. Additionally, increased oxidative stress causes oxidation
of antioxidant glutathione to glutathione disulfide. Hence, ROS
damages not prevented in the cells (Ovais et al., 2017). Besides,
AgNPs have shown to downregulate the action of DNA-
dependent protein kinase, a damage repair enzyme. Jeyaraj
et al. (2013) reported that AgNPs mediated Bcl-2 and Bax gene
regulation, which further activates the cascade and controls the
caspases 3, 8, and 9 are responsible for the apoptosis of HeLa
cell line.

Impact on Mitosis
Allium test is suggested by UNEP, IPCS (International
Programme on Chemical Safety), IPPB (International
Programme on Plant Bioassay), and WHO as a typical test
in cytogenetic monitoring of environmental hazards (Maity
et al., 2020). The experiment is also suggested to evaluate the
genotoxic effects of novel nanomaterials and considered as
a substitute to animal tests (Klančnik et al., 2011). Although
severalphysico-chemical mutagens, metal-complexes, and
Cu, CdS-NPs have been reported to induce chromosomal
(Kumbhakar et al., 2016; Sharma et al., 2018), the cytotoxic
effects of Ag-NPs are poorly reported. Root meristem of A. cepa
was used to detect the cytotoxic effect of BP-AgNPS at three
different concentrations (10, 20, and 30µg/mL). The present
investigation showed that BP-AgNPs decrease the mitotic index
(MI) (Table 2) and induce significant alterations in the treated
roots relative to the control samples (DDW and AgNO3 treated
roots). BP-AgNPs might have been prompted cytotoxicity in
treated roots of meristematic cells, causing DNA damage or
cell death (Lateef et al., 2016). The values of MI for BP-AgNPs
were found 45.0 ± 0.28, 41.66 ± 0.44, and 39.96 ± 0.08 after
12 h which significantly decreased to 40.63 ± 0.27, 38.70 ±
0.60, and 34.53 ± 0.26 after 24 h at 10, 20, and 30µg/ml,
respectively. However, in the control set and AgNO3 solution
(30µg/ml), the MI was found to be 55.6 ± 0.4 and 52.76 ± 1.38,
respectively. The experiment demonstrated that the cell division
was inversely proportional to the BP-AgNP concentrations. The
findings were statistically significant (p < 0.05) in all the treated
concentrations as compared to the control. Chromosomal
abnormalities were severely observed in treated meristematic

cells with C-metaphase, anaphase with lagging chromosome,
stickiness telophase, vagrants chromosomes, anaphase with
chromosome bridge, anaphase with lagging chromosome, sticky
metaphase, etc. (Figure 6). Our observations are supported
by earlier findings where NPs decrease MI with the increase
in mitotic anomalies in Allium cepa (Nagaonkar et al., 2015;
Kumbhakar et al., 2016). Few reports advocate that AgNPs
might interfere with the normal cycle of mitotic cells causing
decreased gene expression encoding cyclin-dependent kinase
2, slower advancement of cells to S—phase, and blockage of
G2—phase, leading to cell death. AgNPs are found to alter
cytoplasm viscosity which leads to atypical behavior of the
spindle causing chromosomal abnormalities and formation of
micronuclei (Daphedar and Taranath, 2018; Fouad and Hafez,
2018). NPs are also responsible for the breakage and reunion
of chromosomal material resulting in structural and numerical
changes in chromosomes (Chromosomal abbreviations).

DNA Interaction Study
TheUV-vis spectroscopy is one of themost significant techniques
for determining the efficiency of the compounds to interact
with DNA. Before the addition of BP-AgNP, the purity and
sustainability of CT-DNA were tested at room temperature
showing a high absorption peak at 264 nm. The concentration of
BP-AgNPs was made constant and CT-DNAwas added gradually
for the study. Figure 7 displayed a decrease in the absorption
of NPs (i.e., hypochromic) with a minor bathochromic or red-
shift in spectra (420–424 nm) preferably indicating intercalation
of BP-AgNPs with the corresponding DNA (Komal and Kaushik,
2019). The absorption spectra of CT-DNA demonstrated a
minor blue shift or hypsochromic effect (264–260 nm) with
the isosbestic point showing a strong interaction of NPs with
CT-DNA. There are a few reports which have mentioned
such kind of interaction between nanostructures and DNA as
providing such an interactive feature. Three possible modes for
these interactions are electrostatic linking, groove linking, and
intercalation (Ribeiro et al., 2018).

Photocatalytic Activity
Two different types of dyes (thiazine: MB and azo: Rh-
B) were selected as model pollutants to study the dye
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FIGURE 6 | Chromosomal abnormalities: (a) C-metaphase, (b) Anaphase with lagging chromosome, (c) Stickiness telophase, (d) Vagrants chromosomes, (e)

Anaphase with chromosome bridge, (f) Anaphase with lagging chromosome, (g–i) Sticky metaphase, (j) Normal mitosis: (i) Prophase, (ii) Metaphase, (iii) Anaphase

and (iv) Telophase.
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FIGURE 7 | UV-Vis absorption spectra of BP-AgNPs after treatment with various concentrations of CT-DNA (20–260mL).

degradation capabilities of BP-AgNPs under solar irradiation.
Both the dyes are positively charged (basic). The distinctive
absorption maxima for MB and Rh-B were peaked at 663 and
554 nm, respectively (Figures 8A,B). MB and Rh-B are gradually
degraded which is expressed by a significant decrease in peak
strength with time increase. Until the end of the exposure
period, there was no color change in the control set of both
the dyes in the absence of BP-AgNPs (Figures 8C,D). The
efficacy of BP-AgNPs in dye degradation was determined as
follows (Alshehri et al., 2017).

Dye degradation (%) =
[

1−
Ct

C0

]

× 100

Where C0 is the initial concentration of the dye solution at
t = 0 and Ct is the concentration of the dye solution after
a specific exposure to sunlight. In the present work, it is
represented in plot that MB and Rh-B were degraded 100%
within 110 and 100min, respectively. However, in similar reports,
MB was found to be degraded significantly, after 6 and 72 h

from Cordia dichotoma and Morinda tinctoria mediated NPs,
respectively (Vanaja et al., 2014; Kumari et al., 2016). Green
synthesized NPs from Zanthoxylum armatum were also reported
for noteworthy degradation of toxic dyes Safranine-O, Methyl-
red, Methyl-orange, and MB after 24 h (Jyoti and Singh, 2016).
Thus, the biofabricated BP-AgNPs can serve as a stable and
effective green catalyst for the nano-degradation of MB and Rh-B
under visible light.

The kinetic study is among the most relevant approaches

from which reaction mechanisms are described. In Figures 8E,F,

a linear plot (with slope: −0.022 for MB and −0.033 for

Rh-B) of ln(Ct/C0) vs. time for photocatalytic degradation

of MB and Rh-B by BP-AgNPs, shows pseudo-first -order
kinetics. The rate constant value of MB degradation is
calculated 4.9 × 10−4 sec−1 and for Rh-B 4.5 × 10−4

sec−1. The regression coefficient (for MB R2 = 0.98 and
Rh-B R2 = 0.80) revealed that the degradation rate of
MB and Rh-B were following the Langmuir-Hinshelwood
kinetic model.
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FIGURE 8 | UV-Visible spectra recorded at regular intervals displaying gradual reduction of MB (A) and Rh-B (B), The changes in concentrations of MB (C) and Rh-B

(D) in presence of BP-AgNPs and sunlight, Plot of ln(Ct/C0) vs. time (min) for photocatalytic degradation of MB (E) and Rh-B (F).
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FIGURE 9 | UV-Vis absorption spectra of BP-AgNPs observed at regular interval after the addition of H2O2, [Inset: (i) Reacting solution after 14min and (ii) plot of

Ct/C0 (1- ln) versus time (min) for H2O2 sensing by BP-AgNPs].

H2O2 Sensing Capability
BP-AgNPs was evaluated with potential H2O2 sensing capacity

in the present report. The comparative spectra at regular interval

is shown in Figure 9. The brown color (vial a) constantly
diminished and finally appeared colorless (vial b) after 14min

(Figure 9ii). In the control set without H2O2, no changes in the

color and intensity of the SPR absorbance were observed. Mohan
et al. (2014) proposed that the inclusion of AgNPs to H2O2

causes the creation of reactive oxygen species, that trigger the
degeneration AgNPs. Figure 9(i) indicates a linear plot (slope:

0.021) of Ct/C0 (1-ln) vs. time for BP-AgNPs mediated H2O2

sensing, exhibiting pseudo-first-order kinetics. The sensing rate
constant value for H2O2 is estimated at 3.8 × 10–3 s−1. The

regression coefficient of H2O2, R
2 = 0.88 indicated that the

sensing capacity of BP-AgNPs has followed the kinetic model
of Langmuir—Hinshelwood.

These results indicate that BP-AgNPs can be
used successfully to identify H2O2 concentration in
several unknown samples or environmental effluents.
Similar NPs-based H2O2 sensors were also reported

using Bacillus subtilis and Calliandra haematocephala
(Mohan et al., 2014; Raja et al., 2017).

The following mechanism shows the probable H2O2

decomposition reaction process by BP- AgNPs (Ghosh et al.,
2019).

H2O2 ⇋ 2H+ +H2O

BP− Ag0NPs ⇋ [BP− Ag1NPs]+H+

[BP− Ag1NPs]+H+ +HO−
2 ⇋ [BP− Ag1(HO2)NPs]

−

[BP− Ag1(HO2)NPs]
−
⇋ [BP− Ag0(HO∗2)NPs]−

Intermediated (active species)

[BP− Ag0(HO∗2)NPs]− ⇋ [BP− Ag0O2NPs]
−

Rate =
K1

√
K1K2K3BP− Ag0(HO ∗ 2)NPs)

[H+]

Antioxidant Activity
DPPH and ABTS assays are relatively quick and sensitive
techniques used to analyze the antioxidant activity of different
compounds. DPPH is a strong free radical that transforms into
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FIGURE 10 | DPPH (A) and ABTS (B) free radical scavenging activity of BP-AgNPs.

a diamagnetic compound (bright yellow) when counter with
electron or hydrogen molecules. The magnitude of the color
transition of DPPH from violet-blue to bright-yellow depends
on the nature and amount of the substance. Figures 10A,B are
showing dose-dependent free radical scavenging activity of BP-
AgNPs. The concentration of BP-AgNPs ranging from 31.25
to 500µg/mL showed 60.50–87.57% DPPH scavenging activity
with 89.05µg/mL IC50. However, for the ascorbic acid 75.64–
98.94% scavenging activity reported with 41.5µg/mL IC50 at
the same concentrations (Figure 10A). Similarly, ABTS free
radical scavenging was observed from 9.16 to 79.32% at 31.25–
500µg/mL BP-AgNPs with an IC50 value of 259.14µg/mL,
whereas, ascorbic acid displayed 38.39–88.09% inhibition with
173.12µg/mL IC50 (Figure 10B). Similar observations were
found with leaf extracts of Prunus japonica and Desmostachya
bipinnata showing antioxidant activity in terms of free radical
inhibition (Saravanakumar et al., 2017; Guntur et al., 2018). The
results firmly advocate the utilization of BP-AgNPs as natural
antioxidants to preserve health against oxidative stresses affiliated
with degenerative diseases.

CONCLUSIONS

Biofabrication of silver nanoparticles was successfully achieved
using BPLE in the present report. A facile, rapid, and ecofriendly
green synthesis approach was adopted to get stable and non-
aggregated BPAgNPs taking benefit of natural capping, reducing,
and stabilizing agents in the form of flavonoids, alkaloids,
terpenoids, saponins and tannins present in the plant extract.
FTIR spectra revealed the biomolecules adsorbed on the surface
of NPs which are responsible for reducing Ag+ to Ag0 in the
form of NPs. UV-visual spectroscopy, XRD, SEM, EDX, and TEM
revealed the salient SPR peak at 412 nm, face-centered cubic

structure, dispersion, elemental composition, and size of BP-
NPs, respectively. The outstanding photocatalytic degradation
of hazardous dyes (MB, RB), and H2O2 sensing abilities of
BP-AgNPs make them suitable agents for nanoremediation of
industrial effluents and reactive oxygen species. The biofabricated
BP-AgNPs have shown in-vitro antioxidant activity, in-vitro
interaction with CT-DNA, induced the chromosomal aberration
in the mitotic cells of Allium cepa, and cytotoxic activity against
A431 (squamous cell carcinoma) and B16F10 (melanoma) cell
line. In our knowledge, this is the first report on various
environmental and biological applications of B. pinnatum
mediated NPs. Our results suggest potential uses of BP-AgNPs
in cell biology. Similarly, The results described here provide
the framework for the future implementation of AgNPs in
the treatment of skin cancer. The corresponding results of the
synthesized BP-AgNPs are related to the decreased expense of
a process and the fact that it is a “friendly” biological synthesis
method. However, more research is needed tomodify the size and
shape of metallic NPs.
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