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Abstract In quantitative trait locus (QTL) mapping

studies, it is mandatory that the available financial

resources are spent in such a way that the power for

detection of QTL is maximized. The objective of this study

was to optimize for three different fixed budgets the power

of QTL detection 1 - b* in recombinant inbred line (RIL)

populations derived from a nested design by varying (1) the

genetic complexity of the trait, (2) the costs for developing,

genotyping, and phenotyping RILs, (3) the total number of

RILs, and (4) the number of environments and replications

per environment used for phenotyping. Our computer

simulations were based on empirical data of 653 single

nucleotide polymorphism markers of 26 diverse maize

inbred lines which were selected on the basis of 100 simple

sequence repeat markers out of a worldwide sample of 260

maize inbreds to capture the maximum genetic diversity.

For the standard scenario of costs, the optimum number

of test environments (Eopt) ranged across the examined

total budgets from 7 to 19 in the scenarios with 25 QTL.

In comparison, the Eopt values observed for the scenarios

with 50 and 100 QTL were slightly higher. Our finding of

differences in 1 - b* estimates between experiments with

optimally and sub-optimally allocated resources illustrated

the potential to improve the power for QTL detection

without increasing the total resources necessary for a QTL

mapping experiment. Furthermore, the results of our study

indicated that also in studies using the latest genomics tools

to dissect quantitative traits, it is required to evaluate the

individuals of the mapping population in a high number

of environments with a high number of replications per

environment.

Introduction

In plant genetics, linkage analysis has been commonly

employed to detect quantitative trait loci (QTL). Such

approaches have a high power to detect QTL in genome-

wide scans (Yu and Buckler 2006). Recently, several

attempts have been made for detecting QTL using associa-

tion mapping methods (e.g., Kraakman et al. 2004;

Thornsberry et al. 2001; Vuylsteke et al. 2000) which have

the merit of providing a high resolution for QTL detection

(Remington et al. 2001). To combine the advantages of both

mapping methods, Yu et al. (2008) proposed a nested

association mapping (NAM) strategy which uses genome

sequence information of recombinant inbred line (RIL)

populations derived from several crosses of parental inbreds.

The NAM strategy is based on the idea that the genomes

of RILs are mosaics of chromosomal segments of the

parental genotypes. Consequently, within chromosomal

segments the linkage disequilibrium (LD) information

across the parental inbreds is maintained. Thus, if diverse

parental inbreds are used, LD decays within the
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chromosomal segments over a short physical distance

(Wilson et al. 2004). Therefore, the QTL mapping strategy

using linkage and LD information is expected to have not

only a high power to detect QTL in genome-wide

approaches but also a high mapping resolution when both

linkage and LD information are used.

Exploitation of the advantages of the NAM strategy

requires developing, genotyping, and phenotyping of RIL

populations from several crosses of diverse parental in-

breds. However, this necessitates large financial resources

(cf., Yu et al. 2008). Therefore, it is mandatory that the

available resources are spent in an optimum way.

Stich et al. (2007) compared RIL populations derived

from various mating designs with respect to their power for

detecting three-way epistatic interactions in maize. The

power 1 - b* is expected to be influenced not only by the

mating design from which RIL populations were derived,

but also by the number of RILs as well as the heritability

on an entry mean basis. To our knowledge, in the context

of QTL detection, no study has so far examined the opti-

mum allocation of resources with respect to the number of

RILs as well as the number of environments and replica-

tions per environment used for phenotypic evaluation.

In the present study, we used computer simulations to

optimize for three different fixed budgets the power of

QTL detection 1 - b* of RIL populations derived from a

nested design by varying (1) the genetic complexity of the

trait, (2) the costs for developing, genotyping, and pheno-

typing RILs, (3) the total number of RILs, and (4) the

number of environments and replications per environment

used for the phenotypic evaluation of RILs.

Materials and methods

Simulations

Our computer simulations were based on empirical data of

653 single nucleotide polymorphism (SNP) markers of 26

diverse maize inbred lines, namely B73, B97, CML52,

CML69, CML103, CML228, CML247, CML277,

CML322, CML333, Hp301, IL14H, Ki3, Ki11, Ky21,

M37W, M162W, Mo18W, MS71, NC350, NC358, Oh7b,

Oh43, P39, Tx303, and Tzi8. These inbreds were selected

on the basis of 100 simple sequence repeat markers out of a

worldwide sample of 260 maize inbreds to capture the

maximum genetic diversity (Liu et al. 2003).

Mating design evaluated

In our simulations, a population of RILs was derived from

each of the NC = 25 crosses between B73 and the 25

diverse inbreds, where the total number of RILs was

N. This mating design corresponds to that applied in the

project ‘‘Molecular and Functional Diversity of the Maize

Genome’’ to establish the NAM population (Yu et al.

2008), for which seeds are now available from the Maize

Genetics Cooperation Stock Center (E. Buckler, personal

communication). The number of RILs per cross NP was

calculated as follows: in scenarios with r = N mod NC = 0,

NP = N/NC. In contrast, in scenarios with r = 0, we chose

for r populations NP = N/NC ? 1, whereas for the

remaining NC - r populations NP = N/NC.

An interesting property of the above described mating

design is that with common-parent-specific (CPS) markers

genotyped for the parental inbreds and the RILs, the

inheritance of chromosome segments nested within two

adjacent CPS markers can be inferred through linkage.

Genotyping the founders with additional high-density

markers enables the projection of genetic information,

capturing LD information, from the parental inbreds to the

RILs. This approach is expected to allow high-resolution

QTL mapping with a relatively low number of markers in

the RILs. However, this strategy is not straightforward to

implement for NAM populations, which were derived from

other mating designs than the above-described one. Thus,

the projection of genetic information based on CPS

markers was neglected in our study to facilitate conclusions

which are not restricted to the mating design proposed by

Yu et al. (2008).

Economic framework and quantitative–genetic parameters

Our simulations assumed a total budget B for (1) devel-

oping, (2) genotyping, and (3) phenotyping RILs:

B = N(Cdev ? Cgeno ? ERCfp) ? ECenv, where R is the

number of replications at each of the E environments. Cdev,

Cgeno, and Cfp are the costs for (1) developing one RIL, (2)

genotyping one RIL, and (3) testing one field plot,

respectively, and Cenv are the fixed costs for conducting a

field test in one environment. We examined B = 1.25, 2.5,

5 million $. Furthermore, we restricted our simulations to

E = 1, 4, 7,…, 19 and R = 1, 2, 3 because higher values

are unrealistic in a plant breeding context (cf., Schön et al.

2004). For the standard scenario of costs, we assumed Cdev

= 30 $, Cfp = 15 $, and Cenv = 25,000 $ (W. Schipprack,

personal communication). In view of the fast progress of

genotyping and sequencing techniques (Churchill et al.

2004, Shendure et al. 2004), we assumed in our study that

all RILs are genotyped with such a high number of markers

that each QTL has a marker which is in complete LD with

the QTL. We considered it realistic to assume that in the

near future, genotyping with such a high number of

markers will be available (Cgeno) for 1,000 $ (Shendure

et al. 2004). Eight additional cost scenarios were consid-

ered with Cdev, Cfp, Cenv being halfed and doubledas well
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as Cgeno being quartered and quadrupled (Table 2). Based

on the values assumed for E, R, Cdev, Cgeno, Cfp, and Cenv,

the total number of RILs N was calculated.

We assumed the proportions among variance compo-

nents as rg
2:rge

2 :re
2 = 1:0.5:1 (VC2), where rg

2 refers to the

genotypic variance, rge
2 to the variance of genotype 9

environment interactions, and re
2 to the error variance. This

ratio was chosen based on the analysis of variance of traits

of presumably medium genetic complexity such as grain

moisture (Melchinger et al. 1998). However, to cover with

our simulations a wide range of quantitative traits, two

additional scenarios were considered with interaction and

error variance being halved (VC1) and doubled (VC3) in

comparison with VC2. Based on E, R, and VC, heritability

on an entry mean basis h2 was calculated as

h ¼
r2

g

r2
g þ r2

ge=E þ r2
ge=ðERÞ:

Definition of genotypic and phenotypic values

A total of 100 simulation runs was performed for each

examined scenario. For each run, three subsets of SNPs

(l = 25, 50, 100) were sampled at random without

replacement from the linkage map and were defined as

QTL. The SNP markers of our study are bi-allelic and,

thus, the 25 diverse parental inbreds carry either the same

allele as the reference parent B73 or the non-B73 allele. At

each QTL, one allele was assigned the genotypic effect

zero, whereas the genotypic effect of the other allele was

drawn randomly without replacement from the geometric

series l(1 - a)[1, a, a2, a3,..., al-1], with a = 0.90 (25

QTL), a = 0.96 (50 QTL), or a = 0.99 (100 QTL) (Lande

and Thompson 1990). Because not all of the 25 diverse

inbreds have the non-B73 allele, not every QTL segregates

in every population. Genotypic values of the inbreds were

determined by summing up the effects of the individual

alleles.

From the genotypic values of the progenies of each

cross, the genotypic variance of RILs within the cross rg
2

was calculated. For the progenies of each cross, the phe-

notypic values of the RILs were generated by adding a

realisation from a normally distributed variable

N 0; 1�h2

h2 r2
g

� �� �
to the genotypic values. The phenotypic

values calculated in this way were used for the QTL

detection procedure. All simulations were performed with

software PLABSOFT (Maurer et al. 2008).

Statistical analyses

The comparison of statistical analyses concerning the

power 1 - b* requires an equal experiment-wise error rate

a*. To meet this requirement, we applied the following two

step procedure for QTL detection. In a first step, stepwise

multiple linear regression implemented in PLABQTL (Utz

and Melchinger 1996) was used to select a set of cofactors

based on the Schwarz Bayesian Criterion (SBC) (Schwarz

1978). We described earlier that we assumed that all RILs

are genotyped with such a high number of markers that

each QTL has a marker which is in complete LD with the

QTL. Therefore, all SNPs, inclusive those treated as QTL,

were included in the QTL detection procedures.

In the second step, we calculated a P value for the

association of each marker q with the phenotypic value for

an F test with a full model against a reduced model:

y ¼ lþ bqxq þ
X
c 6¼q

bcxc þ e;

where y is the vector of the phenotypic values of all

RILs, l the intercept, bq (bc) the regression coefficient of

the qth marker locus (or cth cofactor), xq (xc) an incidence

vector of the genotypes of the RILs at the qth marker (cth

cofactor), and e the vector of residual errors.

In our study, each combination of B, Cdev, Cgeno,

Cfp, Cenv, l, and VC was designated as scenario. For each

combination of E and R within a scenario, the nominal a
level was chosen in such a way that the experiment-wise

error rate a*, which was determined using the knowledge

of where the simulated QTL were, was 0.01. Based on

this a level, the power for QTL detection (1 - b*) was

calculated as the proportion of QTL correctly identified

out of the total number of QTL l, where correctly means

that the QTL itself was identified as significant in the final

model. Subsequently, we identified for each scenario the

number of environments Eopt as well as the number of

replicates Ropt for which the maximum power for QTL

detection 1� b�opt was observed. The optimum heritability

hopt
2 as well as the optimum number of RILs Nopt arise

from Eopt, Ropt, and B.

Results

The average map distance between the 653 SNP markers

was 2.6 cM. The pairwise genetic dissimilarity among the

26 diverse inbreds ranged from 0.58 to 0.75. The average

frequency of B73 alleles in the JLAM population was

0.81.

For the standard scenario of costs, Eopt ranged across the

various examined levels of B and VC from 7 to 19 in the

scenarios with l = 25 QTL and Ropt varied between two and

three (Fig. 1; Table 1). The Eopt and Ropt values observed

for the scenarios with l = 50 and 100 QTL were slightly

higher than those observed for the corresponding scenarios

with l = 25 QTL. Across the examined levels of l, the

increase in the non-genetic variance from VC1 to VC3
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25 QTL 50 QTL 100 QTL

Fig. 1 Power to detect quantitative trait loci (QTL) (1 - b*) at an

experiment-wise error rate of 0.01 assuming B = 2.5 millon US dollar.

The costs for (1) establishing one RIL (Cdev), (2) genotyping one RIL

(Cgeno), and (3) testing one field plot (Cfp), and the fixed costs for each

environment (Cenv) were 30, 1,000, 15, and 25,000 $, respectively.

R is the number of replicates at each of the E environments and VC is

the ratio of variance components assumed. For a detailed definition of

the examined parameters see ‘‘Materials and methods’’

556 Theor Appl Genet (2010) 120:553–561

123



resulted in an increase of Eopt and Ropt. Increasing the

budget B from 1.25 to 5 million $ had no influence on Eopt

and Ropt across the examined levels of l and VC.

For the examined levels of B and VC, an increase of l

from 25 to 100 reduced 1� b�opt up to 5% of the initial

value (Table 1). The increase in the non-genetic variance

from VC1 to VC3 decreased 1� b�opt less pronounced than

that observed for the increase of l. Increasing the budget B

from 1.25 to 5 million $ resulted in an increase of 1� b�opt

for all examined levels of l.

For budgets B of 1.25 and 5 million $, the increase of

Cdev resulted in an increase of Eopt (Table 2). The increase

of Cgeno resulted for all examined budgets B in an increase

of Eopt and/or Ropt. For all examined budgets B, the

increase of Cfp resulted in a decrease of Eopt, where the

increase of Cenv resulted in a decrease of Eopt and an

increase of Ropt.

Across all examined levels of B, the increase of Cdev

from 15 to 60 $ did not alter 1� b�opt (Table 2). In contrast,

a medium decrease of 1� b�opt was observed for an

increase of Cgeno from 200 to 5,000 $, whereas the

decreases of 1� b�opt were of small size upon alteration of

Cfp and Cenv from the low to the high level.

Discussion

Assumptions underlying the simulations

We assumed that all RILs are genotyped with such a

high number of markers that each QTL has a marker

which is in complete LD with the QTL. Empirical

studies based on a NAM population of maize, how-

ever,might require a higher number of marker than was

used in our study. In this case, it might be necessary to

choose a significance threshold that is lower than that of

the current study, which in turn reduces 1 - b*. How-

ever, this reduction of power estimates is expected to be

of similar size for all scenario and, thus, no influence on

Eopt and Ropt is expected.

Table 1 Number of

environments (Eopt) and number

of replications per environment

(Ropt) maximizing the power of

QTL detection ð1� b�optÞ at an

experiment-wise error rate of

0.01

Nopt the optimum number of

recombinant inbred lines, hopt
2

the optimum heritability on an

entry mean basis, B the total

budget in million $, l the

number of quantitative trait loci,

VC the ratio of variance

components

The costs for (1) establishing

one RIL (Cdev), (2) genotyping

one RIL (Cgeno), and (3) testing

one field plot (Cfp), and the

fixed costs for each environment

(Cenv) were 30, 1,000, 15, and

25,000 $, respectively. For a

detailed definition of the

examined parameters see

‘‘Materials and methods’’

Assumptions Optimum allocation 1� b�opt (SE)

B l VC Eopt Ropt Nopt hopt
2

1.25 25 1 7 3 799 0.944 0.995 (0.0016)

2 13 3 573 0.940 0.993 (0.0017)

3 16 3 486 0.906 0.982 (0.0026)

50 1 10 2 752 0.952 0.996 (0.0009)

2 16 2 563 0.941 0.992 (0.0014)

3 19 3 411 0.919 0.970 (0.0026)

100 1 10 2 752 0.952 0.996 (0.0006)

2 13 3 573 0.940 0.990 (0.0011)

3 19 2 484 0.905 0.938 (0.0035)

2.5 25 1 16 1 1,654 0.955 0.999 (0.0007)

2 16 1 1,654 0.914 0.998 (0.0010)

3 16 2 1,391 0.889 0.996 (0.0013)

50 1 10 2 1,692 0.952 0.999 (0.0005)

2 10 2 1,692 0.909 0.998 (0.0007)

3 19 3 1,074 0.919 0.995 (0.0010)

100 1 7 2 1,875 0.933 0.998 (0.0005)

2 16 1 1,654 0.914 0.997 (0.0005)

3 19 3 1,074 0.919 0.993 (0.0004)

5 25 1 7 2 3,891 0.933 1.000 (0.0004)

2 16 3 2,629 0.950 1.000 (0.0004)

3 19 2 2,828 0.905 0.999 (0.0006)

50 1 7 3 3,587 0.944 1.000 (0.0003)

2 10 2 3,571 0.909 0.999 (0.0005)

3 19 3 2,401 0.919 0.999 (0.0005)

100 1 10 3 3,209 0.960 1.000 (0.0001)

2 10 2 3,571 0.909 0.999 (0.0004)

3 16 2 3,046 0.889 0.997 (0.0005)
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On the genome-wide level, the most common poly-

morphisms such as SNPs and insertion/deletions are

biallelic (e.g., Cho et al. 1999). Therefore, it is also

expected that functional polymorphisms are predominantly

biallelic. However, several, tightly linked, biallelic poly-

morphisms can build up multiple alleles present at QTL

(e.g., Harjes et al. 2008). Because such information was

not available for the maize inbreds used in our study, we

neglected this possibility and assumed the presence of only

two alleles at each QTLacross the entire set of maize in-

breds. This assumption is expected to increase 1 - b*

compared to a scenario with multiple QTL alleles. How-

ever, preliminary simulations (data not shown) suggested

no or only marginal effects on Eopt and Ropt.

Power to detect QTL

For scenarios with similar l and h, the power 1 - b*

observed in our study was considerably higher than that of

Yu et al. (2008). This difference is most likely due to the

fact that in our study the phenotypic values were simulated

based on population-based heritability estimates. In con-

trast, in the study of Yu et al. (2008) phenotypic values

used for the QTL detection procedure were simulated

based on one heritability estimate across all 25 populations.

In the latter case, the large difference between the means of

the different populations will lead to a low population-

based heritability which furthermore reduces 1 - b*. The

above-described difference in an assumption leads to the

Table 2 Number of environments (Eopt) and number of replications per environment (Ropt) maximizing the power of QTL detection ð1� b�optÞ
at an experiment-wise error rate of 0.01

Assumptions Optimum allocation 1� b�opt (SE)

B Cdev Cgeno Cfp Cenv Eopt Ropt Nopt hopt
2

1.25 30 1,000 15 25,000 16 2 563 0.941 0.992 (0.0014)

15 1,000 15 25,000 16 2 569 0.941 0.992 (0.0014)

60 1,000 15 25,000 19 2 457 0.950 0.992 (0.0014)

30 200 15 25,000 16 1 1,809 0.914 0.998 (0.0006)

30 5,000 15 25,000 10 3 182 0.923 0.620 (0.0153)

30 1,000 7.5 25,000 19 2 589 0.950 0.994 (0.0011)

30 1,000 30 25,000 16 2 427 0.941 0.987 (0.0019)

30 1,000 15 12,500 13 2 766 0.929 0.993 (0.0012)

30 1,000 15 50,000 10 3 507 0.923 0.985 (0.0018)

2.5 30 1,000 15 25,000 10 2 1,692 0.909 0.998 (0.0007)

15 1,000 15 25,000 13 2 1,548 0.929 0.998 (0.0007)

60 1,000 15 25,000 10 3 1,490 0.923 0.998 (0.0008)

30 200 15 25,000 19 2 2,531 0.950 1.000 (0.0003)

30 5,000 15 25,000 19 3 344 0.958 0.989 (0.0014)

30 1,000 7.5 25,000 19 3 1,389 0.958 0.999 (0.0005)

30 1,000 30 25,000 13 2 1,202 0.929 0.996 (0.0008)

30 1,000 15 12,500 13 2 1,646 0.929 0.998 (0.0006)

30 1,000 15 50,000 10 3 1,351 0.923 0.997 (0.0008)

5 30 1,000 15 25,000 10 2 3,571 0.909 0.999 (0.0005)

15 1,000 15 25,000 7 3 3,628 0.894 0.999 (0.0005)

60 1,000 15 25,000 19 2 2,776 0.950 0.999 (0.0003)

30 200 15 25,000 10 1 12,500 0.870 1.000 (0.0003)

30 5,000 15 25,000 16 3 800 0.950 0.997 (0.0008)

30 1,000 7.5 25,000 16 2 3,622 0.941 1.000 (0.0002)

30 1,000 30 25,000 10 3 2,461 0.923 0.999 (0.0005)

30 1,000 15 12,500 13 2 3,407 0.929 1.000 (0.0003)

30 1,000 15 50,000 10 3 3,041 0.923 0.999 (0.0005)

Nopt the optimum number of recombinant inbred lines, hopt
2 the optimum heritability on an entry mean basis, B the total budget in million $, Cdev,

Cgeno, and Cfp the costs for (1) establishing one RIL, (2) genotyping one RIL, and (3) one field plot, respectively, Cenv the fixed costs for each

environment

The number of quantitative trait loci was 50 and the second ratio of variance components (VC2) was used. For a detailed definition of the

examined parameters see ‘‘Materials and methods’’
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fact that the power estimates of our study and that of Yu

et al. (2008) cannot directly be compared although the

scenarios seem to be similar with respect to l and h. Fur-

thermore, the different criteria and/or thresholds applied for

QTL detection might further contribute to this difference in

power estimates.

Mating designs for establishing RIL populations

The results of Stich et al. (2007) revealed considerable

differences between RIL populations derived from diallel

and different partial diallel designs with respect to the

power for detection of three-way epistatic interactions. Due

to the high computational burden, however, the simulations

of the current study had to be restricted to one mating

design. We examined RIL populations derived from a

nested design, because this design was used in maize to

develop the NAM population (McMullen et al. 2009).

Nevertheless, preliminary simulations indicated that the

findings of our study are not restricted to RIL populations

derived from specific mating designs.

Optimum allocation of resources for NAM

In studies using the latest genomics tools for dissection

of quantitative traits, phenotypic information is often

generated with low intensity (cf., Aranzana et al. 2005)

resulting in low heritabilities on an entry mean basis.

However, 1 - b* can be considerably increased by

increasing the heritability (cf., Stich et al. 2007). In

studies with a fixed budget, however, this implies a

reduction in the number of RILs which in turn reduces

1 - b*. Therefore, in studies with a fixed budget, it is an

important issue to determine the number of RILs and the

corresponding intensity of their phenotypic evaluation for

maximizing 1 - b*.

In our simulations, considerable differences were

observed between the 1 - b* estimates of experiments with

optimally and sub-optimally allocated resources (Fig. 1).

This finding is in accordance with results of Knapp and

Bridges (1990) who examined based on theoretical con-

siderations the optimum allocation of resources in a linkage

mapping context. These results illustrated the potential of

improving the QTL detection power without increasing the

total resources required for a QTL mapping experiment.

Knapp and Bridges (1990) suggested that in scenarios

with residual genetic variance, i.e. not all QTL are detec-

ted, 1 - b* is maximized by maximizing the number of

genotypes in the segregating population and using one

replicate for phenotypic evaluation. This finding, however,

is based on the assumption that one replicate is as expen-

sive as one additional genotype. Because this is not true for

most experimental situations, we discuss in the following

all factors which have the potential to influence the opti-

mum allocation of resources: (1) genetic architecture of the

trait, (2) total budget, and (3) costs for establishing, phe-

notyping, and genotyping RILs.

Genetic architecture of the trait

Our results suggest that in the scenarios with 25 QTL the

optimum number of environments Eopt as well as the

optimum number of replications Ropt were slightly lower

than those observed for the scenarios with 50 and 100 QTL

(Table 1). This finding might be explained by the fact that

in the latter scenarios the proportion of the genotypic

variance explained by single QTL is considerably lower

than in the former scenario. Detecting QTL which explain

a low proportion of the genotypic variance, however,

requires a higher heritability and consequently more

intensive phenotypic evaluation than detecting QTL which

explain a high proportion of the genotypic variance.

In addition to the number of QTL l, the genetic archi-

tecture of a trait is characterized by the ratio of variance

components. Our simulations suggest that across the

examined levels of l, Eopt and Ropt increase with increasing

non-genetic variance. This finding might be due to the

higher values of E and R, which are required in a scenario

with high non-genetic variance in order to obtain a heri-

tability similar to that of a scenario with low non-genetic

variance.

In conclusion, our findings suggest that the optimum

allocation of resources differs among different traits, which

is in accordance with findings of Schön et al. (2004).

However, given the high effort to establish NAM popula-

tions, the goal is to examine traits of different genetic

complexity in the same experiment. Thus, the optimization

of the experimental design cannot be performed separately

for each trait but must take into account several traits

simultaneously.

We detected a high absolute value of the slope of the

power curve for values of E \ Eopt, whereas this value was

low for values of E [ Eopt (Fig. 1). This observation sug-

gested that it is more promising to use a number of envi-

ronments E which is higher than the optimum than using an

E value which is lower than Eopt. Furthermore, we

observed for traits of low genetic complexity smaller

values for Eopt and Ropt than for traits with high genetic

complexity. These findings suggested that it is most

promising to optimize the design of NAM populations with

respect to the trait with the highest genetic complexity.

Total budget

Our results indicated that in contrast to increasing the

genetic complexity of the trait, Eopt and/or Ropt are hardly
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affected by changes of the total budget B. This finding

might be explained by the fact that even for the low budget

B of 1.25 million $ the heritability is not the parameter

limiting the power for detection of QTL 1 - b*.

Costs for establishing, genotyping, and phenotyping RILs

Owing to the high computational burden, the influence of

altering the costs for establishing, genotyping, and pheno-

typing RILs was examined only for a trait of medium

genetic complexity

The results of our simulations suggested that the increase

of Cdev resulted in an increase of Eopt. Similarly, the increase

of Cgeno resulted for all examined budgets B in an increase of

Eopt and/or Ropt. These observations might be explained by

the fact that with the increase of these two costs the price for

each RIL increases and, therefore, the phenotyping with a

higher intensity becomes advantageous. The opposite

explanation is true for the increase of Cfp which resulted in a

decrease of Eopt. The increase of Cenv which resulted in a

decrease of Eopt and an increase of Ropt might be due to the

fact that in this situation the substitution of environments by

replications becomes advantageous. Consequently, the

results of our simulations suggest that variation of the costs

for establishing, genotyping, and phenotyping RILs in a

framework, which is realistic in a plant breeding context, has

considerable effects on Eopt and Ropt and, thus, should be

considered when planning a QTL mapping experiment.

Comparison with the optimum allocation of resources

observed for plant breeding programs

In contrast to the optimum allocation of resources in the

context of QTL detection, several studies examined the

optimum allocation of resources in plant breeding pro-

grams of various crops (e.g., Longin et al. 2006; Tomerius

et al. 2008). In such studies, the optimum number of

replications Ropt was typically one and the optimum

number of environments Eopt was mostly smaller than 10.

The observation that in our study the values for Ropt and

Eopt were substantially higher (Tables 1, 2) might be

explained by the fact that for high-resolution QTL map-

ping, a higher number of marker has to be genotyped.

Despite the fact that we assumed genotyping costs Cgeno

which might be realistic in the near future, in our study,

between one-third and one-half of the total budget is used

for genotyping which in turn makes it advantageous to

increase Eopt and Ropt. This finding indicated that also in

studies using the latest genomic tools to dissect quantitative

traits, it is required to evaluate the individuals of the

mapping population in a high number of environments with

a high number of replications per environment.

Conclusions

Our finding of differences in 1 - b* estimates between

experiments with optimally and sub-optimally allocated

resources illustrated the potential to improve the power for

QTL detection without increasing the total resources nec-

essary for a QTL mapping experiment. However, the

results of our study suggest that there is no single best

allocation for every NAM experiment, but Eopt and Ropt are

strongly influenced by the underlying values of VC, Cdev,

Cgeno, Cfp, and Cenv. In contrast, B and l have only marginal

effects on the optimum allocation of resources.
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