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Abstract

Diseases with readily available therapies may eventually prevail against the spe-

cific treatment by the acquisition of resistance. The constitutively active Abl1

tyrosine kinase known to cause chronic myeloid leukemia is an example, where

patients may experience relapse after small inhibitor drug treatment. Mutations

in the Abl1 tyrosine kinase domain (Abl1-KD) are a critical source of resistance

and their emergence depends on the conformational states that have been

observed experimentally: the inactive state, the active state, and the intermediate

inactive state that resembles Src kinase. Understanding how resistant positions

and amino acid identities are determined by selection pressure during drug treat-

ment is necessary to improve future drug development or treatment decisions.

We carry out in silico site-saturation mutagenesis over the Abl1-KD structure in a

conformational context to evaluate the in situ and conformational stability energy

upon mutation. Out of the 11 studied resistant positions, we determined that 7 of

the resistant mutations favored the active conformation of Abl1-KD with respect

to the inactive state. When, instead, the sequence optimization was modeled

simultaneously at resistant positions, we recovered five known resistant muta-

tions in the active conformation. These results suggested that the Abl1 resistance

mechanism targeted substitutions that favored the active conformation. Further

sequence variability, explored by ancestral reconstruction in Abl1-KD, showed

that neutral genetic drift, with respect to amino acid variability, was specifically

diminished in the resistant positions. Since resistant mutations are susceptible to

chance with a certain probability of fixation, combining methodologies outlined

here may narrow and limit the available sequence space for resistance to emerge,

resulting in more robust therapeutic treatments over time.
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1 | INTRODUCTION

Acquisition of drug resistance is a major strategy that dis-
eases, such as cancer and pathogens, use as an escape
route against drug therapies. During the treatment, the
medical intervention kills the susceptible population,
while the resistant one continues to propagate serving as
seeds for resistant genes that explore a new landscape of
fitness mutations.1,2 It is notorious in the field of targeted
drug therapy, where the treatment of, for example, can-
cer has positively impacted survival rate in patients.3

However, the development of new drugs more robust
toward resistance mutations is inefficient due to the limi-
tations of treatment period versus the time needed for
escape mutations to appear. Better approaches are there-
fore needed that take into the account possible resistance
mutations during the initial stages of drug development.4

Loss of control mechanisms during cell growth may
lead to cancer, as in chronic myeloid leukemia (CML),
when the constitutively active BCR–Abl1 oncogene is
expressed in the stem cells of bone marrow.5,6 First line
therapy against CML uses small molecule inhibitors as
imantinib, dasatinib, nilotinib, and bosutinib that prevent
ATP binding to the kinase domain (KD) of BCR–Abl1,
leading to growth impairment followed by cell death.7

The Abl1-KD structure has been experimentally deter-
mined in three distinct conformational states (Figure 1a),
that is, inactive (PDB ID 2hyy), Src-like (PDB ID 2g1t),
and active (PDB ID 2g2i).8,9 These states have N- and C-
terminal lobes that share an interface with a highly
mobile activation loop (Figure 1a, Figure S1) that flips

~180� between inactive and active conformations.10 Each
inhibitor binds specifically to a given conformation of the
Abl1-KD, however, distinct genetic mutations located in
the Abl1-KD have been clinically found and correlated
with the relapse.11 Due to the dynamic nature of Abl1
and its ability to sample several biological relevant con-
formational states, drug resistance may emerge by syn-
ergy or consequence of many escape routes like in situ
steric hindrance, reshaping of the conformational energy
landscape, increase in free energy of inhibitor binding,
and altered dynamics.6,12–18

To expand our understanding of how drug resistance
emerges in relation to conformational energy landscape
and evolution, two approaches were investigated in paral-
lel. Our initial hypothesis assumed that the resistance
mutations may be accessible to certain extent through
neutral genetic drift, which would be confirmed by calcu-
lations on Abl1-KD. Our second assumption was that the
sequence variability in the resistant positions in the
ancestors should be more pronounced as they are not yet
specialized as the current sequences, especially with
respect to those positions not directly in contact with a
substrate. However, it is important to note that these sites
may still be under the selective pressure to keep a kinase
in a state that is less active and responsive to activation
upon mutation.19,20 To start, we evaluated the mutational
energy landscape of Abl1-KD in three known meta-stable
states: inactive, Src-like, and active.9 In each conforma-
tion, every position was sampled by 20 common amino
acids and its residue and total energy were calculated
using Rosetta macromolecular modeling program.21

FIGURE 1 (a) Conformational states of Abl1-KD: inactive (cyan), Src-like (green), and active (red) structure with positions of residues

subject to resistance mutations showed as yellow spheres (PDB ID 2hyy, 2g1t, and 2g2i, respectively). The activation loop (gray) contains the

H396 mutation (XI); αC-helix is marked with the orange ellipse. (b) Native residues at the resistant positions; the Cα R.M.S.D. (Å) for 2hyy

and 2g2i conformation relative to 2g1t structure as reference
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Here, we specifically tracked 11 positions in Abl1–KD
known to give rise to clinically relevant resistant muta-
tions M244V, G250E, Q252H, Y253H, E255(K,M,V),
V299L, F311I, T315(I,M), F317L, F359(V,C), H396(P,R)
(Figure 1b), and compound (double) substitutions that
arise concurrently with the gatekeeper mutation, T315
(I,M). Substitutions in these positions are found in clini-
cal CML-patients before and during treatment22,23 and
they confer resistance to a certain kinase inhibitor, for
example, imatinib-resistant (E255, Y253, T315),24,25

dasatinib-resistant (V299, T315, F317),26 nilotinib-
resistant (M244, Y253, E255, T315, F359)6,27 in addition
to compound mutants with the pan-resistant T315I that
confer resistance against the highly potent Abl1 inhibitor,
ponatinib.6,11,14,28 Next, we investigate the evolutionary
history of the Abl1-KD to determine the residue variabil-
ity at resistant positions in modeled ancestrals. This was
accomplished by inferring the maximum likelihood
sequence of ancestors and extracting their residue proba-
bilities per position. Expression and characterization of
four ancestral sequences benchmarked our reconstruc-
tion to support the theoretical investigation.

The results indicated that mutations in resistant posi-
tions could reshape the conformational energy landscape
by favoring either the active conformation or the inactive
conformation, suggesting that resistance mechanism in
these cases may not entirely rely on conformational stabi-
lization. The ancestral reconstruction revealed that resis-
tance positions were less sampled over the course of
natural selection, if compared to positions where neutral
genetic drift had taken place. Overall, the resistant muta-
tions were predominantly selected to favor the active
state and their positions were subjected to restrictions
based on evolutionary constraints. This agrees with the
correlation that increases in higher specific activity con-
fers a potential advantage during growth and selection
upon treatment.

2 | RESULTS

2.1 | Evaluation of the state-specific
conformational energy

The native state of a protein is described by the average
of an ensemble of biologically relevant meta-stable states
or conformations which are sampled according to their
relative free energy. To build a more detailed understand-
ing of the accessible Abl1-KD conformational energy
landscape, we determined, for the three most relevant
conformations: active, Src-like, and inactive, the energy
distribution for the native sequence using Rosetta struc-
tural refinement protocol.29,30 The total energy

distribution of 9,240 trajectories for each of the three
main conformations (Figure 2a) showed that the Src-like
structure has a substantially lower energy followed by the
inactive and then active states. The inactive conformation
was about 4.4 ± 2.2 Rosetta energy units (REU) lower
than the active one (t-test, p-value < .05) and the Src-like
structure was lower by additional 46.0 ± 2.3 REU com-
pared to the inactive state (t test, p-value < .05). Despite
the statistically significant difference in total energy for
native sequences, the individual wild type residues have
energy interactions that correlate well across positions
(Figure 2b). Src-like and active conformations scored the
poorest per residue energy correlation (R2 = .66) and had
the most dispersed energy at resistant positions
(Figure 2b), while Src-like and inactive conformations
correlated better (R2 = .77). The substantial contribution
to the energetic stabilization in Src-like structure com-
pared to the inactive and active states (under cutoff of �4
REU, Figure 2c) came from seven residues: Y253 (resis-
tant position), D276, M278, G383, L387, T389, and D421.
Although these residues are situated in regions critical
for ATP binding and kinase regulation (P-loop, αC-loop,
and the activation loop; Figure 2d),10 their lower energies
in the Src-like structure are explained by the many con-
tacts surrounding them (Figure S3). Other explanation
for the lower energy of the Src-like state may be a neces-
sary compensation to offset destabilizing interactions
upon solvent rearrangement (to solubilize the αC-helix,
Figure 1a) as well as the possible entropic cost involved
in the rearrangement of water molecules (not explicitly
modeled). Because our method strongly preferred the
Src-like state, we focused the evaluation between the
inactive and active state where the “small” difference
(4.4 ± 2.2 REU) was ideal to compare the effects of single
mutations. The mutations change the total energy
between 0 and 6 REU, allowing fair comparison between
inactive and active state. These findings indicated that
the native Abl1-KD is energetically stable with respect to
the enthalpy of the system in nonactive states and
suggested that resistant positions in the modeled struc-
tures have a substantial energy to impact the transition
from inactive to Src-like conformations towards the
active state.

2.2 | Computational site-saturation
mutagenesis for each amino acid position
in Abl1-KD

Here we evaluated how single mutations affect the rela-
tive conformational energy landscape of Abl1-KD to cate-
gorize positions and residues that may have the strongest
impact on the equilibrium balance between the
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conformations. All 20 amino acids per position were sam-
pled in the Abl1-KD with Rosetta in the three conforma-
tions outlined in Figure 1. Residue energies were
converged, R2 = .99, while total energy showed lower cor-
relation, R2 = .78, according to the independent test runs
(Figure S2). Comparisons with total energy between
mutants can thus give general trends, as it was only par-
tially converged due to sampling limitation, while the
residues energies were accurate enough to evaluate the
mutational effect in situ. Therefore, it is more relevant to
focus on investigating the relative differences in residue
energies.

Next, the total energy for all single mutants and their
individual residue energies were compared among the

conformational states, to identify the structural influ-
ences upon mutation. A weak linear tendency between
different conformations was observed for the total energy
(Figure S4): R2 = .45 Src-like vs. inactive, R2 = .39 inac-
tive vs. active, and R2 = .38 Src-like vs. active, indicating
the possibility to shift conformational ensemble upon
mutation. Interestingly, mutants at resistant positions
had an even lower correlation of total energy between
conformations (Figure S4), where the correlation
between the inactive and active states was affected the
most (R2 = .08).

The correlation of residue energies between Src-like
and active conformations resulted in the most divergent
energy per position (R2 = .48, Figure S5B), while between

FIGURE 2 Total energy of

native Abl1-KD and residue

energy pair comparison between

conformations. (a) Histogram of

the total energy; dashed lines are

the mean for the Src-like

conformation (green; �860 ± 1

REU), inactive conformation

(blue; �814 ± 2 REU) and active

conformation (red; �810 ± 1

REU). (b) Correlation plots for

each pair of residue energies

between conformations; solid

line, x = y; blue line is the best

linear fit with standard error of

estimate as dashed lines; yellow

dots are resistant positions

analyzed in this study.

(c) Residue energy difference

between Src-like and inactive

(blue) and Src-like and active

(red); a dashed grey line cutoff

the most stabilizing residues in

the Src-like compared to active

and inactive structure. (d) Gray

spheres highlight in the Src-like

structure for which residues the

energy difference is most

negative compared to inactive

and active conformations (c.f. in

Figure S3). REU, Rosetta energy

units
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inactive and active (Figure 3a, R2 = .66), mutations kept
similar energetic correlation as seen with wild type resi-
dues (Figure 2b). Apart from the overall behavior of the
energy-specific conformational states for single residue
substitutions, we assessed residue substitution effects for
the resistant positions (Figure 3b, Figure S5). Overall, the
correlation of residue energy was similar between the
conformations with a slightly lower correlation between
inactive and active conformation (Figure 3b, R2 = .53).
We note also that the gatekeeper position (T315) was sub-
stantially stable (energetically favorable in terms of calcu-
lated Rosetta energy units with respect to the compared
state), as both native and resistant residue (energy for the
corresponding amino acid is less than �5.0 REU) in all
three conformational states. A cluster of six resistant
mutants, G250E, Q252H, E255M, E255V, F359C, and
F359V were close to destabilizing (residue energy ~0
REU) in the inactive conformation compared to both
active and Src-like states (Figure 3B, Figure S5A).

2.3 | Effect of residue substitution on
resistant positions

To investigate mutational susceptibility of the resistant
positions, we plotted the total energy, residue energy, and
relative conformation-specific energy of each mutant
(Figure 4 and Figure S6). The difference in conforma-
tional (total) energy for these positions showed that Src-
like state was still more stable than the other two states
(Figure S6C,E). Change in residue energy after resistant

mutation, were more stable in the Src-like compared to
the inactive state for residues G250E, Q252H, E255V,
T315(I,M), F359(C,V), and H396R; comparison between
Src-like to the active state showed residue energy in T315
(I,M), F317L, F359V and H396R to be more stable in the
Src-like conformation while residues G250E, Y253H,
V299L, and H396P became more stable in the active con-
formation (Figure S6D,F). Despite the fact that resistant
residue energy of the gatekeeper is more stable in the
Src-like conformation, the total energy of mutants
T315I,M remained close to the native (Figure S6A,C,E).
More importantly, the relative residue energy between
inactive and active states for resistant mutants (as seen in
the Figure 4f, red arrows) revealed that the resistant sub-
stitutions G250E, Q252H, Y253H, E255V, V299L, F359
(C,V), and H396P became more favorable in the active
conformation. Because the Src-like structure is so low in
energy, evaluation will focus on the relative energy
between inactive and active state, otherwise, mutants
would need to greatly stabilize the active state relative to
Src-like state to be meaningful, additionally the canonical
inactive and active structures have been historically used
to design kinase inhibitors8,25,28,31,32 and therefore are
more appealing to understand inhibition resistance in
Abl1-KD.

The change in residue energy (or relative residue
energy) between conformations showed that we can iden-
tify in situ energy changes that reshape the energy land-
scape of the states. The mutations at the gatekeeper
position did not produce a substantial change in the total
and residue energy in either of the inactive and active

FIGURE 3 Correlation plot of sampled 20 amino acid residue energies per position in inactive and active Abl1-KD calculated for all

positions in the structure (a) and plotted only for resistant positions (b). Dots in blue are energies from wild type residues in those positions;

in yellow are the studied resistant mutations; in green, orange and red are T315, T315M, and T315I, respectively. Grey denotes

experimentally not determined (n.d.) mutations to be resistant. Reference line (x = y) was drawn only for the right box (b). All plots show

the best linear fit with standard error of estimate as dashed lines (p-value < .05)
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states, both wild type and its resistant substitutions
(T315I and T315M) are highly stable (<�5 REU;
Figure 4a–d). The effects of substitutions on Thr315 resi-
due, are probably best explained in the context of

inhibitor (imatinib) either due to direct contacts or by
induce fit events.8,12,33,34 Otherwise, to see the substitu-
tion effects on the inactive conformation, a structure has
to be chosen in which such destabilizing effects have the

FIGURE 4 Site saturation mutagenesis for total (left graphs) and residue (right graphs) energies for resistant positions of

Abl1-KD. Total and residue energy, respectively, of inactive (a,b), and active (c,d) states. Relative total energy (e) and relative per residue

energy (f) in resistant positions between inactive and active states. Red arrows show the change in energy that stabilize the active

conformation after mutation to a resistant residue. Red bars (e) are the relative energy average between the 20 amino acids substitutions per

position and blue lines are the average energy of inactive and active with native sequence (same in Figure 2a). Dots in blue, mean total

energy of native structure (left graphs) or residue energy from wild type residue in that position (right graphs). In yellow are from resistant

mutations, in orange and red are T315M and T315I, respectively; grey indicates experimentally not determined (n.d.) whether substitutions

are resistant. Size of the dots is proportional to the standard deviation
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possibility to occur. The modeled inactive state here
(PDB ID 2hyy) is originally the holo-form with imatinib.
In this complex, the residue sidechain of Thr315 points
towards the inhibitor; removing the inhibitor leaves a
space that can be filled with different residue side chains,
quite favorably according to our calculations. We also
tested the effect of two compound mutants w.r.t. the gate-
keeper mutation: G250E/T315I and Y253H/T315I. These
inverted the relative total energy in favor to the active
conformation (Figure S7C,D) and in a greater extent than
the compound mutant G250E/V299L.

Evaluation of amino acid changes in resistant posi-
tions that shifted the conformational equilibrium towards
the active state, that is, with the most pronounced residue
energy difference between the active conformation in
comparison to the inactive (excluding native or resistant
identities studied in this work) were M244P, G250I,
Q252P, Y253K, V299Y, and F359W (Figure S8A); and the
mutants that contribute most to the total energy of the
active conformation in comparison to the inactive were
G250V, Q252P, Y253K, E255W, V299R, F311W, T315H,
F317Y, and F359W (Figure S8B).

Together the results show that known resistant posi-
tions greatly impact and reshape the relative conforma-
tional energy of Abl1–KD. One reason may be from
inherent instability of a given conformation, but the over-
all trend in Figure 3 showed that sampled mutations in
resistant positions are about 53% energetically correlated
between conformations, thus roughly half of all possible
mutations in these positions will have different residue
stability according to the state and can impact the total
conformational energy. The known resistant mutation
that produced the highest stabilization to the active con-
formation was the H396P (total energy difference = 6.5 ±

1.7 REU, residue energy difference = 2.5 ± 0.5 REU,
Figure 4a,d–f) and agrees with previous structural obser-
vations where this variant makes the active conformation
more available by destabilizing the inactive conforma-
tion.33,34 Substitution that does not change its stability
regarding a residue energy in different conformation, such
as in M244V (Figure 4f), still may lead to changes in rela-
tive total energy between the conformations (Figure 4e)
and highlights a possible allosteric stabilization over the
structure. Resistant mutations in the gatekeeper position
(T315) did not compromise conformational stability and
this position was found to be quite tolerable for substitu-
tions (Figure 4f).

2.4 | Designing Abl1-KD in resistant
positions

The refinement of the different Abl1-KD conformations
was converged for residue interaction energies, while total
energy showed potential for better convergence
(Figure S2). To thoroughly sample the total conforma-
tional energy of mutants in resistant positions we carried
out more extensive Rosetta sampling to characterize the
optimal sequence for each conformation by allowing
design to all 20 residues in the 11 investigated resistant
positions. The energetically most favorable residues that
were sampled for each conformation are presented in
Table 1. The energetically lowest active conformations
sampled preferentially five identical resistant residues dur-
ing the sequence optimization process and five chemically
similar ones. In contrast, in the inactive conformation the
designed sequence corresponded to only a single identical
resistant residue and four chemically similar ones.

TABLE 1 Sequence optimization of Abl1-KD resistant positions w.r.t. studied conformations

WT Resistant mutation Design inactive 2hyy Design Src-like 2g1t Design active 2g2i

M244 M244V M244I M244F M244P

G250 G250E G250N WT G250E, G250N

Q252 Q252H Q252K WT Q252K, Q252D, WT

Y253 Y253H Y253L WT Y253D

E255 E255V, E255M, E255K E255A WT WT, E255Q, E255K

V299 V299L V299L WT V299Q

F311 F311I F311L WT F311M

T315 T315I, T315M WT T315M T315L, T315M

F317 F317L F317Y WT F317M

F359 F359V, F359C F359K WT F359V

H396 H396P, H396R H396N H396S H396P

Note: Residues in italic are chemically similar to the known resistant residue; bold marks the recovered resistant residues. Ten lowest energy sequences were

analyzed.
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The data confirms that resistant mutations are more
likely to stabilize the active conformation than the inac-
tive, that is, that the kinase native sequence has been
evolved to be minimally active, but ready to be activated.
The designed sequences for the Src-like structure sam-
pled eight identical wild type residues converging to a
minimum energy, meaning that current native sequence
was already near its lowest energy sequence. Average
total energy of designed sequences after the optimization
was Einactive = �819.0 ± 1.7 REU, ESrc-like = �869.4 ± 0.6
REU, and Eactive = �820.4 ± 1.5 REU. These energies
were lower compared to the energy of each conformation
with native Abl1 sequence shown in Figure 2. With this
approach, the resistant mutation T315M in the gate-
keeper was sampled in the Src-like and active conforma-
tions, while the inactive conformation retained the native
threonine. Moreover, positions G250, F359, E255, F359,
and H396 were designed to known resistant mutants in
the active conformation (Table 1). Thus, it seems likely
that compound mutations or combination of them in
resistant positions are steering the conformational
ensemble to stabilize the active conformation. The excep-
tions were positions Y253 and V299 that did not sample
either chemically similar resistant residue or wild type
residue in the active conformation. The resistant muta-
tion V299L was identified in the inactive design and not
in the active state during the sequence optimization step
(Table 1), which indicates a resistance mechanism where
imatinib binding may be destabilized in the inactive state.
Also, because the mutant and compounds clones with
V299L are selected after dasatinib treatment,35,36 the
kinase inhibitor that binds the Abl1-KD in the active
conformation,37,38 V299L could sterically hinder
dasatinib binding. The V299L mutation may therefor
work through a combination of resistance mechanisms
where conformational preference has a minor contribu-
tion (in accordance with our site-saturation calculations,
Figure 4f).

2.5 | Evolution of Abl1-KD and ancestral
sequence design

Since the data indicated that the investigated resistant
positions were to a certain degree sensitive to sequence
optimization, we investigated what impact evolution had
on those resistant positions. The evolutionary aspect was
assessed by building a phylogenetic tree and making
ancestral sequence reconstruction (ASR) of Abl1-KD
ancestors starting from anc0 (the common ancestor of
genes Abl1 and Abl2) to anc9 (the common ancestor of
Abl, Src, Tek, Csk, and PKA; Figure S9). Each ancestor
was derived based on amino acid probabilities for each

position (stored in the format of position specific scoring
matrix, PSSM, which contains the probability of an
amino acid type for each position in the sequence). For
instance, highly conserved structural or functional resi-
dues will have a high probability for that amino acid over
the course of evolution. The identity for the inferred
sequences compared to the current native Abl1-KD
sequence varies from ~90% identical for close relatives to
~50% identity for the most distant nodes and we could
also compare the inferred variant in this study, Abl–Src
common ancestor anc6, to a previously published
inferred sequence (Figure 5a,b).12 The sequences of anc6
variants were 66% identical to Abl1 compared over the
length of 264 amino acids (Figure 5a).

To evaluate the variability of residues in ancestral
nodes and assess their possible mutagenesis potential
during selection, we divided the sequence into three
groups: 11 functionally conserved positions, 11 resistant
positions, and the remaining ones. For each group we
evaluated the residue variability per position (Figure 5c).
As expected, the catalytic and functionally critical resi-
dues (for instance, DFG and HRD motif) were fixed over
time. Importantly, the resistant positions were sampled
at a lower rate than the remaining positions. First after
anc8 node there was a tendency even for the resistant
positions to drift on the same level as the nonconserved
positions.

To further explore the ancestral sequence variability
of Abl1-KD we sequenced optimized ancestors applying
Rosetta design strategy. Specifically, we took into the
account the specific conformations combined with the
residue variability inferred from phylogenetic PSSM.
Thus, we obtained ancestors with two designed
sequences, for the inactive and active conformations. The
consensus sequence was retrieved from 10 lowest energy
structures from each conformation, a strategy that
allowed us to merge the conformational landscape
encoded with their respective sequences. The final
designed consensus ancestral sequences (PhyML
vs. Rosetta) were compared to the current Abl1-KD
(Figure 5a,b and Figure S10) where sequence identity
and similarity to Abl1-KD decreased in designed ances-
tors similarly as inferred by the maximum likelihood
method. With this framework, relevant physical informa-
tion was incorporated with a desirable degree of sequence
conservation found during evolution.

To test the coherence of the design and reconstruction
approach, we resurrected and expressed four ancestral
genes for experimental validation: two nodes inferred by
phylogenetics (anc6 PhyML and anc8 PhyML) and their
sequence optimized variants (anc6 Rosetta and anc8
Rosetta). All resurrected ancestors were soluble
(Figure S11) and were tested experimentally for activity
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by measuring the phosphorylation rate of Abltide sub-
strate at two different substrate concentrations, 10 μM
and 75 μM, respectively. The Abl1 activity was on parity
with previous measurements where kcat and KM with
Abltide were determined to 66min�1 and 17 μM, respec-
tively.39 Previous validation of ancestors using Bayesian
phylogenetic analysis in Wilson et al.12 indicated that a
last common ancestor of Src and Abl would have similar
catalytic rates to current Abl1–KD. In our study, the
inferred common ancestor from Src and Abl, anc6

PhyML, is about three times more active than the current
Abl1-KD (Figure 5d) at the tested substrate concentra-
tions, indicating that ML based ancestral reconstruction
successfully captured functionality in kinases and sug-
gests that current Abl1 evolved toward less active kinase.
The designed anc6 Rosetta clearly impaired the gain in
activity, highlighting the dilemma between function pres-
ervation and structure-based sequence optimization for
overall stability. This became even more apparent with
the anc8 PhyML that retained similar degree of activity

FIGURE 5 Sequence comparison and kinase activity of Abl1-KD ancestors. Percent sequence identity (a) and similarity (b) compared to

native Abl1-KD sequence as reference; sequences were ASR inferred by phylogenetics using PhyML or after optimization with Rosetta

(PhyML+ Rosetta); the sequence of the common Abl1Src ancestor (PDB ID 4csv) was added for comparison in anc6 labeled with “Bali-
Phy∗.” (c) Variability of residues per position in ancestors with positions clustered in three groups: functional (green), resistant (yellow), and

the remaining ones (blue); shaded deviation, standard error of mean (SEM). (d) Catalytic activity assay of kinases in four replicates shown as

mean ± SD. Only anc6 was significantly more active at 75 μM Abltide concentration than the native Abl1, while anc8 Rosetta had no

measurable activity at tested concentrations
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compared to the native Abl1-KD, but its designed variant
(anc8 Rosetta) was inactive at the assayed substrate con-
centrations (Figure 5d). Therefore, ML-based phyloge-
netic algorithms seem to be better at generating
functional proteins then the outlined design strategy that
optimized the total energy of the protein without includ-
ing any functionally relevant information, for example,
modeled substrates or reaction transition states.

3 | DISCUSSION

Our results showed that the active conformation as the
least stable compared to the Src-like and the inactive
states, which agreed with a tight kinase regulation keep-
ing the structural ensemble shifted away from the active
state. Src-like state was, however, found to be more stable
than the inactive conformation (Figure 2), which is on
the contrary to what would be expected from a transient
conformation between the active and inactive states.40,41

Although it has been evaluated and hypothesized that
the Src-like conformation is critical for regulation due to
the flip of the DFG motif and possibly connected with
the resistance mechanism of some resistant mutations.9

The low energy of the Src-like conformation may also be
necessary to compensate for the entropic penalty when
the αC-helix (Figure 1a) rotates outwards from the N-
terminal domain. Our calculations do not take into the
account the free energy of the whole system where the
contribution of the water molecules is probably a signifi-
cant factor. The data showed moreover that the active
state of Abl1-KD was less stable than the inactive state.
Overall, the conformational energy landscape was shifted
towards the inactive states. This also agreed with the
available experimental and molecular dynamic studies
where the inactive state of Abl1 and other kinases homo-
logues were more frequently observed.11,16,39,42,43

The high throughput mutational scan presented an
overview of the energetic variability, that is, the residue
plasticity, for Abl1-KD conformational states and tenden-
cies for energy correlation between them. Resistant posi-
tions were impacted differently in each conformation
after evaluation of residue energy for each amino acid at
every position. Evaluation of the energetic variability in a
position given a structure may show clues about the
mutational susceptibility at that position. The relative
total energy and the difference in residue energy allowed
us to conclude that single resistant mutations M244V,
G250E, Q252H, Y253H, E255V, F359VC, and H396P
energetically favored the active state (Figure 4e,f). Avail-
able NMR experimental data of Abl1-KD showed that
mutants Y253H, E255V, F359V, and H396P were respon-
sible for the shifts in the conformational assemble
towards the active state.33 Indeed we show that their

residue and conformational total energies (except the
E255V total energy) were more stable in the active con-
formation (Figure 4e,f), although the same work found
the active conformation to be the most frequent state in
the solution. Other studies demonstrated an increase in
the measured catalytic efficiency for G250E and Y253H
mutants17,39 which can be explained by the stabilization
of the active state (Figure 4c–f) leading to drug
resistance.

The same methodology was applied to the relative
conformational energy of the Src-like state and may help
to delineate more susceptible positions. For instance, the
resistant mutant H396R that has unchanged residue
energy compared to the native H396 (Figure 4f) but the
total energy favored the inactive state (Figure 4f). How-
ever, H396R total (�863.7 REU) and residue energy
(�1.9 REU) stabilized the Src-like conformation
(Figure S6A,B), necessitating the evaluation of the inter-
mediate Src-like state in study of resistance. In support of
future drug development efforts, mutants that stabilize
the active conformation and to date not experimentally
validated as resistant variants (Figure S8), could be tested
to minimize possible emergence of drug resistance.

The Abl1-KD shares structural homology with
numerous other kinases from diverse organisms differing
mainly in substrate specificity, that is, the protein target
they phosphorylate.44 Since mutations may arise in struc-
turally similar positions and sample similar residues in
homologs, there is a possibility that resistant residues in
kinases may be predicted based on evolutionary analysis.
Thus we decided to ancestrally reconstruct Abl1-KD
using homologue sequences chosen based on a
hypothesis-driven argument where current mammalian
TK regulatory mechanism was specialized since
premetazoan age.45–48 Indeed, Abl ancestors from the
premetazoan times had been biochemically character-
ized, showing unique set of enzymatic behavior that is
distinct from the current Abl1.12,45 The evolutionary vari-
ability was benchmarked here by resurrecting ancestors
with specific conformations and probabilities based on
PSSM along the ancestral nodes (Figure 5 and Figure S9).
Our ancestral reconstruction showed that the resistant
positions in Abl1-KD are more constrained during its
evolutionary course (Figure 5, Figure S10). However, to a
certain degree, protein design methodology applied here
did not account for function as expected and ended up
abolishing the enzyme activity as observed with anc8
Rosetta. To further quantify and test these assumptions it
would be necessary to perform kinetic experiments of
optimized Abl1-KD ancestors for each conformation and
to quantitatively evaluate the trade-off between function
and stability.

Patients with CML may develop resistance against
drugs that were specially developed to target Abl1-KD8
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and any new drugs may be subjected to reduced efficacy
due to resistant mutations.4,6 Thus, there is a need to
counter drug resistance occurring during CML targeted
therapy and during any disease where the risk of resis-
tance is significant. We sought to understand Abl1 resis-
tance susceptibility with two approaches, by
systematically evaluating conformational energy plastic-
ity due to all possible substitutions in the isolated
Abl1-KD and along its evolutionary trajectory. These
approaches were hypothesized previously, where resis-
tant mutations propagate allosteric activation effect in
the kinase domain making it more active,15,19 because
substitutions in mildly conserved positions that stabilize
the inactive conformation are involved in resistance after
abrupt selective pressure. It has been shown that homo-
logue kinases in different cancers share conserved resis-
tant residues in similar positions after treatment,49

therefore, evaluation of residue variability over specific
kinase ancestors can be used as strategy to find hotspots
positions to test a surmountable number of single or com-
pound mutant variants for in vitro analysis with new
drugs. Analysis of ancestral sequences sampled by
kinases during evolution followed by evaluation of muta-
tional effects on the conformational energy landscape as
outlined here, may be a viable methodology to predict
possible drug resistance in kinases where it poses a signif-
icant risk to cancer patients.

4 | CONCLUSION

High selection pressure during cancer drug treatment
may evolve the sequence space towards regions that are
not normally accessible. In an effort to explore alternative
methods for the prediction of resistant sites and their res-
idue identities, we carried out sequence sampling at each
position to identify susceptible sites and how they
respond to the environment with respect to the three dif-
ferent conformational states. Abl1-KD has a conforma-
tional plasticity such that even a single mutation can
reshape energetics of opposing functional states, that is,
inactive versus active, to confer adequate fitness. This
property is not exclusive to resistant mutations only,
many other substitutions can reshape the conformation
energy in resistant positions but do not lead to resistance.
This results in a great sequence variability and combina-
tion of mutations that can modify the conformational
landscape. We demonstrate that the methods here can to
certain degree recover the occurring resistance muta-
tions. Ancestral reconstruction analysis revealed that
resistant positions are distinguishable from random neu-
tral drift over the natural selection course, making it pos-
sible to further investigate mutants in positions that are
mildly conserved with residues that stabilize the active

conformation. Taken together, the methodology may nar-
row down the predicted sequence space accessible for
resistant variants in the case of Abl1.

5 | METHODS

5.1 | Abl1-KD structure models

The Abl1-KD structures, with PDB IDs 2hyy, 2g1t, and
2g2i, were trimmed N- and C-terminally to start at resi-
due W235 and end at residue Q498. Structures 2hyy and
2g2i had their missing atoms modeled by Rosetta. Global,
structural fitting was made with Chimera using
Needleman-Wunsch algorithm with BLOSUM-62 matrix
to calculate R.M.S.D. between C-alfa atoms.

5.2 | Structural refinement of native and
mutated Abl1-KD

RosettaScripts29 application part of the Rosetta50 protein
modeling software was used for design, applying the
resfile methodology to specify a specific amino acid resi-
due at a certain position in the sequence.
PackRotamersMover and FastRelax30 were used with five
iterations (c.f. Rosetta example files in Supplementary
Information). All 20 amino acids were sampled per posi-
tion running 35 trajectories each, thus a total of 184,800
mutated and native sequence models were calculated per
conformation. Accordingly, the combination of muta-
tions for compound variants was evaluated. To compare
the total energy and residue energy for the site-saturation
for different conformations, each variant or modified resi-
due had its mean energy and standard deviation calcu-
lated from the five lowest values. To analyze data for
native conformations, all sampled native sequences were
used from modeling (9,240 models per conformation).
For each native residue we took the mean energy and
standard deviation from the five lowest values. In total,
264 total mean energies for each conformation were ana-
lyzed. To evaluate the minimum convergence of our cal-
culations, two independent sets of 15 trajectories were
determined for the 2hyy structure using the same
FastRelax30 protocol. As above, the total energy and indi-
vidual residue energy average from the five lowest values
were correlated to assess convergence.

5.3 | Sequence optimization of Abl1-KD

To design Abl1-KD in the inactive, Src-like, and active
conformation, a similar FastRelax protocol was used
(script in Supplementary Information), but instead of
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changing one amino acid per position, only the 11 resis-
tant positions were allowed to change to 20 canonical
amino acids during the same calculation trajectory. In
total, 750 trajectories per conformation were calculated.
The 10 lowest energy sequences of each conformation
were aligned, and their sequence identity was analyzed.
Residues in resistant positions were annotated.

5.4 | Ancestral reconstruction of
Abl1-KD and ancestral design

The Abl1-KD sequence (UniProtKB—P00519) was the
query to find homologue tyrosine kinases (TK) in the
Uniprot database51 that are SH3-SH2-TK-family proteins
restricted to the subgroup of Abl1, Src, Tec, Csk, and two
outgroups of protein kinase A (PKA)52 and fibroblast
growth factor receptor, yielding a total of 41 sequences.
Sequences were aligned in GUIDANCE253 web-server
with default MAFFT algorithm followed by phylogenetic
tree inference using the software MEGA-X54 version
10.1.7 with the Maximum Likelihood method and substi-
tution model parameters LG+G+ I with 1,000 boot-
straps replicates. Ancestral sequences were inferred using
PhyML55 version 3.3 (c.f. Supplementary Information for
command line arguments). The position specific scoring
matrices (PSSMs), extracted with a python script from
ancestral reconstruction, were used to determine the resi-
due variability per position.

To infer the residue variability during ancestral recon-
struction, the PSSM of each ancestor node was used. The
number of residues with probability greater than zero was
counted. Three groups of positions were made: (i) a con-
served set of 11 functional positions in ancestral sequences
that do not change over time (these retained only a single
amino acid identity, consequently counted as 1); (ii) the
resistant positions, and (iii) a set without functional or
resistant positions included. Mean and standard error of
the mean of all counted residue variabilities per position
for a given group were plotted for all ancestral nodes.

Conformation-specific structures of ancestral
sequences were built with Modeller.56 Both inactive
(PDB ID 2hyy) and active (PDB ID 2g2i) conformations
were used as templates. The models were additionally
sequence optimized utilizing RosettaScripts with
FastRelax and SeqprofConsensus movers. Sequence
design was allowed in those positions where the probabil-
ity was less than 100% and sampling residues with greater
than 0% probability according to the inferred PSSMs.
Thus, even residues with small probability to occupy a
position (less than 5%) had the chance to be incorporated
in the final sequence if its energy was favorable. In total,
500 trajectories were simulated. At this stage, each ances-
tral node had distinct sequences that were optimized in

either the inactive or the active conformation. The 10 low-
est total energy sequences per conformation were aligned
and the consensus sequence was extracted as the final
Rosetta calculated ancestral sequence for a given node.
Graphical workflow of this process is outlined in
Scheme S1.

5.5 | Expression, purification, and
enzymatic assay of Abl1-KD ancestors

We selected the native Abl1-KD (UniProtKB—P00519,
residues 229–511) and two ancestor nodes, anc6 and
anc8, for heterologous expression in E. coli to validate
our phylogenetic analysis. Each ancestor node had two
corresponding sequences, one inferred by PhyML and the
other optimized by Rosetta. Each sequence of interest
was synthesized (GenScript) and cloned into pET29b(+)
containing a C-terminal hexa-histidine affinity tag.
Abl1-KD and ancestors were co-transformed with the
YopH phosphatase in pCDFDuet-1b plasmid,57 to antago-
nize Abl1-KD activity and minimize cytotoxicity of E. coli
BL21(DE3) Tuner cells. Protein expression was induced
with 1mM isopropyl-β-D-thiogalactoside (IPTG) under
shaking for 16 h at 20�C in Luria-Bertani (LB) medium
with kanamycin and streptomycin (50 μg/mL each). Cells
were harvested by centrifugation (2,300� g, 20�C, 20
min), resuspended in Lysis buffer (50 mM HEPES,
pH 7.4, 500 mM NaCl, 10 mM imidazole, 20% glycerol,
1% Triton X-100, 5 mM 2-mercaptoethanol) and lysed by
sonication followed by centrifugation (30 min centrifuga-
tion at 11,770� g) to separate cell debris. Supernatant
was applied to Co2+ affinity column (HisPur™ Cobalt
Resin, Thermo Scientific™), washed 3 times with binding
buffer (50 mM HEPES pH 7.4, 500 mM NaCl, 10 mM
imidazole, 5% glycerol, 5 mM 2-mercaptoethanol), and
eluted with elution buffer (binding buffer with 300 mM
imidazole). Traces of protein impurities and YopH phos-
phatase were further removed by ion exchange chroma-
tography using an anion exchange column (Resource Q
or HiTrap Q HP) using a linear gradient by mixing buffer
A (20 mM Tris–HCl pH 8.0, 5% glycerol, 1 mM DTT, 50
mM NaCl) and buffer B (buffer A+ 1 M NaCl). The enzy-
matic activities of the purified kinases were determined
using the ADP-Glo Kinase Assay (Promega Biotech AB),
following the manufacturer's manual. The kinases and
substrates were diluted in kinase buffer (40 mM Tris
pH 7.5, 20 mM MgCl2, 0.1 mg/mL BSA, 50 μM DTT). The
assay was performed in 20 μL of kinase buffer containing
3 ng of purified enzyme, ultra-pure 30 μM ATP, and
10 μM or 75 μM Abltide (SignalChem). Reactions in four
replicates were done in an opaque white flat bottom half
area 96-well polystyrene assay plates (Corning) at 25�C
for 1 h and luminescence was measured using TECAN
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SPARK 10 M plate reader with an integration time of 1 s.
Reaction velocities were obtained by conversion rates
(μmol of ADP min�1 determined from an ADP calibra-
tion curve of ATP–ADP conversion) divided by enzyme
concentration measured with Qubit™ (Thermo).
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