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Abstract

Brain activation mapping using functional magnetic resonance imaging (fMRI) has been 

extensively studied in brain gray matter (GM), whereas in large disregarded for probing white 

matter (WM). This unbalanced treatment has been in part due to controversies in relation 

to the nature of the blood oxygenation level-dependent (BOLD) contrast in WM and its 

detectability. However, an accumulating body of studies has provided solid evidence of the 

functional significance of the BOLD signal in WM and has revealed that it exhibits anisotropic 
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spatiotemporal correlations and structure-specific fluctuations concomitant with those of the 

cortical BOLD signal. In this work, we present an anisotropic spatial filtering scheme for 

smoothing fMRI data in WM that accounts for known spatial constraints on the BOLD signal 

in WM. In particular, the spatial correlation structure of the BOLD signal in WM is highly 

anisotropic and closely linked to local axonal structure in terms of shape and orientation, 

suggesting that isotropic Gaussian filters conventionally used for smoothing fMRI data are 

inadequate for denoising the BOLD signal in WM. The fundamental element in the proposed 

method is a graph-based description of WM that encodes the underlying anisotropy observed 

across WM, derived from diffusion-weighted MRI data. Based on this representation, and 

leveraging graph signal processing principles, we design subject-specific spatial filters that adapt 

to a subject’s unique WM structure at each position in the WM that they are applied at. We use 

the proposed filters to spatially smooth fMRI data in WM, as an alternative to the conventional 

practice of using isotropic Gaussian filters. We test the proposed filtering approach on two sets 

of simulated phantoms, showcasing its greater sensitivity and specificity for the detection of 

slender anisotropic activations, compared to that achieved with isotropic Gaussian filters. We 

also present WM activation mapping results on the Human Connectome Project’s 100-unrelated 

subject dataset, across seven functional tasks, showing that the proposed method enables the 

detection of streamline-like activations within axonal bundles.
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1. Introduction

To date, reports on task-based functional magnetic resonance imaging (fMRI) activation 

mapping and resting-state functional connectivity have been overwhelmingly restricted to 

the gray matter (GM), whereas white matter (WM) functional data have been largely ignored 

or treated as a nuisance regressor. Such unbalanced treatment of fMRI data within GM and 

WM, due in part to controversies in relation to the source of the BOLD signal in WM, has 

led to a systematic underreporting of BOLD-related activity in WM (Gawryluk et al., 2014; 

Mazerolle et al., 2019).

Despite past controversies, evidence provided by an increasing body of recent studies, see 

e.g. Grajauskas et al. (2019) and Gore et al. (2019) and references therein, has led to 

more widespread acceptance of the detectability and functional relevance of the BOLD 

signal in WM. For example, Ding et al. (2013) showed that resting-state BOLD signals 

in WM exhibit structure-specific temporal correlations along WM tracts, which coincide 

with fiber patterns revealed by diffusion tensor imaging (DTI), and which, under functional 

load, become more pronounced in functionally relevant structures (Ding et al., 2016). More 

specifically, Mishra et al. (2020) showed that varying experimental task parameters results 

in a coupled modulation of the BOLD signal in the visual cortex and relevant WM tracts, 

corroborating past findings of simultaneous BOLD activations in structurally-connected 

regions of GM and WM (Mazerolle et al., 2010). More recently, it has been shown that 

functional neuroplasticity, as manifested by changes in the BOLD signal, can be detected in 
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WM (Frizzell et al., 2020). Furthermore, a growing number of recent studies have shown 

that low frequency BOLD fluctuations can be used to estimate the dynamic functioning 

of fiber tracts (Gore et al., 2019), in both health (Huang et al., 2018b; Li et al., 2020b; 

Marussich et al., 2017) and disease (Gao et al., 2020; Ji et al., 2019; Jiang et al., 2019), 

providing a powerful means to study how information is transferred and integrated between 

functionally specialized cortices.

Due to the significantly lower vascularization density in WM compared to that in GM 

(Jochimsen et al., 2010; Logothetis and Wandell, 2004), the overall magnitude of the BOLD 

signal in WM is substantially lower than that in GM (Yarkoni et al., 2009), which has 

been reported to be as low as 10% of that observed in GM and modulated as a function 

of distance from the cortical layer (Li et al., 2019b). In addition to being weak, the 

BOLD signal in WM is affected by unique confounding factors, suggesting the need for 

WM-tailored acquisition and processing schemes. Broadly speaking, the BOLD contrast and 

its detection in WM can potentially be enhanced in three ways: i) development and use of 

MRI sequences optimal for fMRI of WM (e.g. increased T2-weighting (Gawryluk et al., 

2009) or tailored field strengths (Mazerolle et al., 2013)); ii) design of temporal models that 

account for the unique hemodynamic response function (HRF) in WM, which substantially 

differs from that in GM (Erdoğan et al., 2016; Fraser et al., 2012; Yarkoni et al., 2009)); 

and iii) design of spatial models that account for the unique spatial features of the BOLD 

contrast in WM, which is highly anisotropic (Ding et al., 2013; 2016). This paper focuses 

on the third category, presenting the case for the importance of spatial filter design when 

handling fMRI data in WM, particularly in relation to the inherent differences between the 

spatial profiles of BOLD signal in WM relative to those in GM.

1.1. Spatial smoothing tailored to fMRI data in white matter

Typical fMRI analysis pipelines rely on the assumption that the BOLD signal exhibits 

isotropic spatial profiles at focal activated regions (Carp, 2012). Isotropic Gaussian kernels 

applied to functional data, which is a staple of conventional fMRI analysis, is only justified 

under this assumption, and generally trades spatial specificity for increased sensitivity. 

In particular, by virtue of the matched filter argument, spatial filters are optimal only 

for detecting activations that conform to the size and shape of the filter kernel, and can 

otherwise result in loss of information regarding the spatial extent and shape of activation 

areas (Geissler et al., 2005; Mikl et al., 2008), obliterating all non-smooth singularities in the 

data.

In order to improve on the sensitivity-specificity trade-off afforded by conventional isotropic 

spatial smoothing, multiple smoothing methods that adapt to local spatial image features 

have been proposed. These include steerable filters (Knutsson et al., 1983), which enable 

directionally-adaptive spatial smoothing (Abramian et al., 2020b; Eklund et al., 2011; 

Friman et al., 2003; Zhuang et al., 2017), wavelet transforms (Bullmore et al., 2004; 

Mallat, 1989), which try to strike a balance between localization in space and frequency 

domain (Breakspear et al., 2006; Ruttimann et al., 1998; Van De Ville et al., 2004), and 

non-linear filters (e.g. bilateral filters) that locally adapt to various features of adjacent 

voxels (Lohmann et al., 2018; Rydell et al., 2008; Smith and Brady, 1997). While such 
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methods have been successfully applied to GM, their adaptive properties rely on the spatial 

features manifested by the BOLD contrast. Given that this contrast is substantially reduced 

in WM, the effectiveness of these methods would likely be reduced when applied to fMRI 

data in WM.

Rather than adapting the smoothing operation to features present in the BOLD contrast, 

alternative adaptive smoothing approaches can be leveraged that incorporate information 

from the domain on which the data reside, typically provided by complementary anatomical 

images. One common approach is cortical surface smoothing, which has shown to provide 

increased sensitivity and specificity (Coalson et al., 2018; Jo et al., 2007). Such methods 

have also been used to formulate smoothing approaches that respect tissue boundaries 

(Behjat et al., 2019), preventing artifacts resulting from the mixing of signals from 

adjacent but differing tissue types during filtering. In both of these scenarios the anatomical 

information is provided by T1-weighted images.

An important distinguishing feature of the BOLD signal in WM is that it exhibits a spatial 

correlation structure grossly consistent with the directions of water diffusion, as measured 

by DTI (Ding et al., 2013), which is present during rest and becomes more pronounced 

under functional loading (Ding et al., 2018; Wu et al., 2017). The anatomical basis for 

this observation can be that up to half of the blood volume in WM resides in vessels 

that run in parallel to WM tracts (Doucette et al., 2019). As a consequence, conventional 

isotropic Gaussian filters may prove especially unsuited for the task of increasing the SNR 

of the BOLD signal in the highly anisotropic WM domain. Filtering methods adaptive 

to features of the BOLD signal may prove more effective, but the low BOLD contrast 

manifested in WM will potentially limit their usefulness. On the other hand, the strong 

anatomical dependence in the correlation structure of the BOLD signal in WM suggests that 

domain-informed smoothing methods can be particularly beneficial. Such methods can rely 

on T1-weighted images as well as diffusion-weighted MRI (DW-MRI) to adapt the filtering 

to the morphology and the axonal microstructure of WM, respectively. This paper presents 

the design and validation of such a filtering scheme.

1.2. Structure-informed processing of fMRI data through GSP

In the past five years, an increasing number of studies have showcased the use of principles 

from the recently emerged field of graph signal processing (GSP) within neuroimaging, in 

particular, in proposing intuitive methodologies for structure-informed processing of fMRI 

data. The fundamental idea in GSP is to analyze data recorded at a discrete set of positions 

in such way that the underlying structural relationship between those positions is accounted 

for, wherein this underlying structure can be represented in the form of a graph, i.e., a 

structure consisting of a set of vertices and edges. We refer the reader to Shuman et al. 

(2013) for an introduction to GSP and to Ortega et al. (2018) and Stanković et al., 2020 for 

an overview of recent developments, challenges, and applications.

An increasing number of studies have proposed the use of region of interest (ROI) based 

structural connectomes (Sporns et al., 2005), derived from tractography data, as underlying 

backbones for interpreting fMRI data (Abdelnour et al., 2018; Atasoy et al., 2016; Huang 

et al., 2018). When structural connectomes are interpreted as graphs, a number of their 
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Laplacian eigenvectors manifest spatial patterns that are reminiscent of well-established 

functional networks, as shown by Atasoy et al. (2016). Under this framework, methods 

have been proposed for spatio-temporal deconvolution of fMRI data (Bolton et al., 2019), 

quantification of the coupling strength of resting-state fMRI data with underlying structure 

(Medaglia et al., 2018; Preti and Van De Ville, 2019), implementation of neural field models 

(Aqil et al., 2021), prediction of brain disorders (Itani and Thanou, 2020) or behaviorally 

relevant scores (Bolton and van De Ville, 2020), and for characterization of functional 

connectivity dynamics in health (Huang et al., 2018b), and its changes, for instance, due to 

concussion (Sihag et al., 2020), and under hallucinogenic drugs (Atasoy et al., 2017).

As alternatives to macro-scale ROI-based graphs, a number of voxel-wise brain graph 

designs have been proposed for analysis of fMRI data. Graphs encoding GM morphology 

have been proposed for enhanced activation mapping in GM, for both group-level (Behjat 

et al., 2015) and subject-level (Behjat et al., 2014; 2013) analyses, and for discriminative 

characterization of fMRI data across functional tasks (Behjat and Larsson, 2020). A closely 

related work to that presented here is by Tarun et al. (2020), in which DW-MRI data were 

used to encode the WM fiber structure, for the task of visualizing WM fiber pathways based 

on the functional activity observed at the cortical layer.

1.3. Aim and overview

To the best of our knowledge, no method has to date been presented to specifically account 

for the spatial features of the BOLD contrast in WM when it comes to spatial processing 

of fMRI data. The main objective of this work is to present the case for the importance of 

spatial filter design when handling fMRI data in WM, particularly, in relation to the inherent 

difference between the spatial profiles of BOLD signal in WM relative to those in GM.

In this paper, we develop an adaptive spatial smoothing method tailored to the processing 

of fMRI data in WM. Using diffusion orientation distribution functions (ODF) obtained 

from high angular resolution diffusion imaging (HARDI) data, we construct subject-specific 

voxel-wise WM graphs. A spectral heat kernel filter is then defined on the spectrum of 

the resulting graphs, and implemented in a computationally efficient way for the task of 

fMRI data filtering, using principles from GSP. When instantiated at any position within the 

WM, the proposed filters adapt to the local axonal orientation, becoming consistent with the 

spatial correlation structure of the BOLD signal in WM.

The remainder of this paper is organized as follows: in Section 2, we review relevant GSP 

principles and describe our proposed graph and filter designs, as well as the construction of 

phantoms. In Section 3, we examine the smoothing filters produced by the proposed design 

and evaluate their performance on phantoms of two types and on real task fMRI data. We 

conclude the paper in Section 4 with a discussion on design considerations, limitations and 

future work.
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2. Materials and methods

2.1. Data and preprocessing

Data used in the preparation of this work were obtained from the WU-Minn Human 

Connectome Project (HCP) (Van Essen et al., 2013) database1. We use the 100 unrelated 

adult subject sub-group (54% female, mean age = 29.11 ± 3.67, age range = 22–36), which 

we denote as the HCP100 subject set. Five of the subjects were excluded due to incomplete 

WM coverage of the DW-MRI data, leaving a total of 95 subjects. The HCP data acquisition 

study was approved by the Washington University Institutional Review Board and informed 

consent was obtained from all subjects. We used the minimally preprocessed structural, task 

fMRI, and DW-MRI data. Task fMRI data for each subject consist of 1940 time frames 

across seven functional tasks: Emotion, Gambling, Language, Motor, Relational, Social, and 

Working Memory, comprising 23 experimental conditions in total. The method proposed in 

this paper heavily relies on the accurate co-registration between the structural and functional 

data, as provided by the minimally processed HCP data. The imaging parameters and 

image preprocessing steps have been thoroughly described by Glasser et al. (2013). All data 

processing in this work was done using the MATLAB software and the SPM12 toolbox 
2. Diffusion ODFs were generated using the method presented by Yeh et al. (2010) and 

implemented in the DSI Studio software packagee3.

The HCP preprocessed data are provided in a mixture of three spatial resolutions within 

two neurological spaces (ACPC, i.e., native subject space, and MNI): 0.7 mm isotropic 

ACPC for the structural data, 1.25 mm isotropic ACPC for the DW-MRI data, and 2 mm 

isotropic MNI for the fMRI data. A fundamental necessity for the proposed methodology 

is to reconcile the three datasets into a single set of working parameters. However, the 

resampling process and the nonlinear conversion between ACPC and MNI spaces have the 

potential of negatively affecting the data quality. The number of voxels is also a relevant 

parameter, as it determines to a great extent the memory usage and computation time of 

the various processing steps. Given the importance of axonal orientation information to the 

proposed method, we prioritized minimizing the manipulations applied to the DW-MRI data.

Based on these considerations, we chose the ACPC space at the resolution of the diffusion 

data, i.e., 1.25 mm isotropic, as the working space. As such, the HCP preprocessed fMRI 

volumes were warped back into ACPC space and upsampled to the voxel resolution of 

the diffusion data. This mapping was done by leveraging the mni2acpc.nii displacement 

maps provided with the HCP preprocessed data, using first order splines as the basis for 

interpolation. In addition, the segmentation volume aparc+aseg.nii, computed via FreeSurfer 

(Fischl, 2012) and provided with the HCP data, was downsampled to the working resolution, 

from which voxels associated to WM were extracted.

1 https://ida.loni.usc.edu/login.jsp 
2 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ 
3 http://dsi-studio.labsolver.org 
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2.2. GSP preliminaries

The fundamental idea in GSP is the application of signal processing procedures to data 

residing on the vertices of a graph, wherein the graph defines the underlying irregular 

domain of the data. Let G = (V, ℰ, A) denote an undirected, connected, weighted graph, 

defined by a vertex set V of size Ng, denoting the size of the graph, an edge set ℰ consisting 

of connecting pairs (i, j) of vertices, and a symmetric adjacency matrix A whose nonzero 

elements ai,j represent the weight of edges (i, j) ∈ ℰ. Let ℓ2 (G) denote the Hilbert space of 

all square-integrable graph signals f :V ℝ defined on the vertex set V. A graph signal 

f ∈ ℓ2 (G) is in essence an Ng ×1 vector, whose n-th component represents the signal value 

at the n-th vertex of G.

The graph spectral domain, analogous to the Euclidean Fourier domain, can be defined using 

a graph’s Laplacian matrix. In particular, the normalized Laplacian matrix of G is defined 

as L = I – D−1/2AD−1/2, where D denotes the graph’s degree matrix, which is diagonal with 

elements defined as di, i = ∑jai, j. Given that L is real, symmetric, diagonally dominant, and 

with non-negative diagonal entries, it is positive semi-definite; i.e., all its Ng eigenvalues are 

real and non-negative, and they are also no larger than 2 due to the normalization used in the 

definition of L. This set of eigenvalues defines the spectrum of G (Chung, 1997), denoted as 

Λ = 0 = λ1 ≤ λ2… ≤ λNg =def λmax ≤ 2 . The associated eigenvectors, denoted ul l = 1, …, Ng, 

form an orthonormal basis spanning the ℓ2 (G) space.

In classical Fourier analysis, complex exponentials of varying frequencies are used to 

obtain spectral representations of signals, with larger frequencies corresponding to greater 

variability—per region or unit of time. It can be shown that, in the graph setting, the 

eigenvalues and eigenvectors of L fulfill a corresponding role to the frequencies and 

complex exponentials of the classical domain, respectively. In particular, larger eigenvalues 

of L are similarly associated to eigenvectors with greater spatial variability; we refer the 

interested reader to Appendix A for a more detailed presentation of this point. Given this 

analogy between the classical and graph settings, the eigenvectors of L can be used to obtain 

spectral representations of graph signals. Specifically, a graph signal f can be transformed 

into a spectral representation through the use of the Laplacian eigenvectors as

f[l] = ∑
n = 1

Ng
ul[n]f[n] (1)

= ul
Tf, l = 1, …, Ng . (2)

This spectral representation possesses a perfect reconstruction, that is, the signal can be 

recovered as f = ∑l = 1
Ng f[l]ul.

In contrast to filters in classical signal processing, graph filters are shift-variant, adapting 

their shape to the underlying graph structure when localized at any given vertex. 
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Consequently, individual filters defined in the spectral domain of a graph will become 

spatially-adaptive by the nature of GSP. This valuable property of graph filters enables the 

proposed methodology, but it also prevents the implementation of filtering operations as 

straightforward convolutions. Instead, in analogy to frequency-domain filtering in classical 

signal processing, graph signal filtering can be conveniently defined in the graph spectral 

domain. Given the spectral profile of a desired filter, k(λ): [0, 2] ℝ, a graph signal f can be 

filtered with k(λ) as

f = ∑
l = 1

Ng
k λl f[l]ul (3)

=(2) ∑
l = 1

Ng
k λl ul

Tful . (4)

However, implementing (4) requires the Laplacian eigenvectors, i.e., a full diagonalization 

of L, which is impractical for large graphs, such as those presented in this work. An efficient 

alternative approach is to implement the filtering using a polynomial approximation of k(λ) 

(Hammond et al., 2011). We refer the interested reader to Appendix B for details on the 

implementation.

2.3. WM graph design

In order to take advantage of GSP tools, it is necessary to define graphs that encode 

relevant information in their vertices, edges, and weights. For the purpose of allowing 

diffusion-informed smoothing of the BOLD signal in WM, we require graphs capable of 

encoding the subject’s axonal microstructure. Filters defined on the spectral domain of such 

graphs will become locally adapted to this microstructure due to the shift-variant nature of 

graph filters.

We define a WM graph as a graph whose vertex set V consists of all WM voxels, resulting 

in graphs with 240k ±60 k vertices on the HCP100 subject set. The graph’s edge set ℰ is 

defined on the basis of voxel adjacency, with pairs of vertices being connected to each other 

whenever their associated voxels are spatially neighboring. Two neighborhood definitions 

are considered, corresponding to cubic lattices of sizes 3 ×3 ×3 (henceforth 3-conn) and 5 

×5 ×5 (henceforth 5-conn), where the focal voxel is located in the center of the lattice. The 

3-conn lattice specifies 26 voxels in the neighborhood of the focal voxel, whereas for the 

5-conn lattice, voxels in the outer layer that fall in parallel to the voxels within the inner 

layer are excluded, resulting in 98 voxels in the neighborhood; see Fig. 1.

The encoding of axonal microstructure by the graph is principally achieved through the 

edge-weighting scheme, inspired by the work of Iturria-Medina et al. (2007). The weights 

provide a discretization of the diffusion ODF at each point, and include information on the 

coherence of diffusion orientation among neighboring voxels. Let Oi(r) denote the ODF 

associated to voxel vi, with its coordinate origin at the voxel’s center, and with r  denoting 

the unit direction vector. Let r i, j, denote the unit vector pointing from the center of voxel vj 
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to the center of neighboring voxel vj. A discretization of the ODF along direction r i, j, can be 

obtained as

p i, r i, j = ∫Ωi, j
Oi(r)dΩ . (5)

where Ωi,j denotes the solid angle of 4π/26 (for 3-conn) or 4π/98 (for 5-conn) around r i, j
and dΩ denotes the infinitesimal solid angle element.

This measure can be approximated by taking Nt samples of the ODF within the solid angle 

Ωi,j as

p i, r i, j ≈ p i, r i, j = 1
Nt

∑
k = 1

Nt
Oi r i, j

k , (6)

where r i, j
k  denotes the k-th sampling direction within Ωi,j. Details of the sampling process 

are given in Appendix C. Furthermore, we normalize this metric as

qi, j = p i, r i, j
2maxj p i, r i, j ∣ (i, j) ∈ ℰ , (7)

which bounds it in the [0, 0.5] range. The maximum value of 0.5 is reached if the ODF at vi 

shows its maximal diffusion along r i, j, whereas otherwise qi,j < 0.5.

The measure defined in (7) constitutes a normalized discretization of the diffusion ODF at 

voxel vi. However, it does not guarantee symmetry, i.e., generally qi,j ≠ qi,j, which makes 

it unsuitable for the edge weights in an undirected graph. Nevertheless, we can obtain a 

symmetric weight by considering a bidirectional measure of diffusion given by

wi, j = wj, i = qi, j + qj, i, (8)

which is constrained to the [0,1] range. Consequently, we define the graph’s edge weights as

ai, j = aj, i = ℎ wi, j , (9)

where h(·) : [0, 1] → [0, 1] is a tunable sigmoid function (Granlund and Knutsson, 1994) 

defined as

ℎ(x) = ((1 − α)x)β

((1 − α)x)β + ((1 − x)α)β ∈ [0, 1], (10)

where parameters α ∈ (0, 1) and β > 0 control the threshold level and the steepness of the 

transition from 0 to 1, respectively; see Fig. 2. Given that diffusion ODFs generally manifest 

non-zero magnitudes in all directions, with little contrast between directions of strong and 

weak diffusion, the thresholding step enables associating weights only to the main directions 

of diffusion, without the need to use sharpened ODFs as presented in our preliminary work 

(Abramian et al., 2020a). The choice of the sigmoid function over a Heaviside step ensures 
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retaining a single connected structure in the graph; that is, any non-zero value is mapped to 

a non-zero value. In this work we use a fixed value of β = 50, but study the effect of varying 

the threshold point, in particular, for values α = 0.85, 0.9 and 0.95.

The expression for the edge weight between a pair of voxels (9) integrates information 

about the extent of diffusion along r i, j, from both vi and vj, amounting to a measure of 

orientational coherence of the diffusion ODFs at these voxels. In addition, the α parameter 

of the thresholding function provides added flexibility to this representation.

2.4. Spectral graph heat kernel filters

We design spatial smoothing filters with a heat kernel profile in the graph spectral domain, 

defined by

k(λ) = e−τλ, ∀λ ∈ 0, λmax , (11)

where τ is a free parameter determining the spatial extent of the filter. Fig. 3 shows several 

realizations of the heat kernel over a range of τ. When instantiated in the vertex domain, 

such filters are roughly similar in shape to the Gaussian filters typically used for fMRI 

analysis; however, given the irregular domain represented by the graph, there is no direct 

equivalence between the two filters.

The filtering is implemented using the polynomial approximation scheme described in 

Appendix B. The polynomial order required to obtain a suitable approximation of the heat 

kernel varies depending on the choice of τ. For the range of τ investigated in this study, we 

used polynomial approximations of order 15, resulting in negligible approximation error in 

representing the filters.

2.5. Circular phantom construction

Due to the discrete nature of graphs, the set of orientations that can be perfectly captured 

by edges between voxels is limited by the neighborhood definition used. To evaluate the 

influence of angular resolution on denoising performance, we tested the 3-conn and 5-conn 

neighborhood definitions on a set of simulated circular phantoms of various orientations 

and radii. These phantoms aim to simulate a wide range of streamline orientations and 

curvatures, which could be encountered in practice.

Each phantom consisted of an activation profile in the shape of a circular streamline, 

accompanied by an ODF map oriented along its tangent, representing strong diffusion along 

the circle. The phantoms were constructed in 93 different orientations in 3D space, selected 

in a roughly uniform way by subdividing the faces of an icosahedron three times, and from 

the resulting polyhedron, selecting its subset of vertices that fall in the spherical sector of 

0 ≤ θ, ϕ ≤ π/2; see Fig. 4 (a). Due to symmetries in the phantoms and the neighborhood 

definitions, this set of phantom orientations provides a relatively exhaustive sampling of 

the effects of streamline orientation on smoothing performance. Additionally, to study the 

effects of curvature, we created the phantoms with three different radii for each orientation: 

10, 20, and 30 voxels at 1.25 mm isotropic resolution.
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2.6. Streamline-based phantom construction

Given that the correlation structure of the BOLD signal in WM is highly anisotropic 

and resemblant of the diffusion tensor (see Section 1.1), activation patterns in this tissue 

are likely to have elongated shapes which locally follow the direction of diffusion. To 

validate the performance of the proposed filtering scheme at detecting such activation 

patterns, we performed tests on a set of simulated semi-synthetic phantoms that simulate 

streamline-shaped activations. We denote the phantoms as semi-synthetic, as the spatial 

activation patterns were derived from real diffusion data from the HCP100 dataset. Each 

phantom consisted of a set of non-uniformly spread activation patterns diffusing along WM 

streamlines obtained through deterministic tractography of the HCP100 subject set; see Figs. 

4 (b) and (c). Details of the construction of the phantoms are given in Appendix D.

Time-series versions of the streamline-based phantoms were also generated in order to 

evaluate the performance of the proposed method in the context of a typical fMRI general 

linear model (GLM) analysis. These were created by using each streamline-based phantom 

as the underlying ground-truth activity in a 100-volume fMRI time series, with a block 

design alternating 20 volume stretches of rest and activity in an off-on-off-on-off paradigm.

3. Results

We validated the performance of the proposed diffusion-informed spatial smoothing (DSS) 

method relative to isotropic Gaussian spatial smoothing (GSS) through a series of tests on 

synthetic phantoms—circular and streamline-based—and produced proof-of-concept results 

on real data from the HCP100 subject set.

3.1. Diffusion-informed filters
4 The adaptive properties of DSS filters are illustrated in Fig. 5. The three filters shown 

were generated using identical parameters (α = 0.9, τ = 7), and differ only in the location 

within the WM where they were instantiated. The filters closely follow the local diffusion 

orientation in WM described by the diffusion ODFs. For highly anisotropic WM regions this 

results in slender and strongly oriented filters—see first two columns, whereas for regions of 

low anisotropy it results in filters that are more isotropic in shape. Particularly, at crossing 

fiber regions, DSS filters are not constrained to follow any single axonal pathway, and 

instead spatially extend along all directions of high diffusion—see third column. This avoids 

the uncertainty inherent in resolving the orientation of individual crossing fibers, while 

still resulting in more spatially-constrained filters than would be achieved with isotropic 

Gaussian filtering

The shape of DSS filters can be controlled by setting the τ parameter of the graph spectral 

filter kernel (see (11)) and the α parameter of the weight thresholding function (see (10)). 

While the former controls the spatial extent of the filter in a manner akin to the full width at 

half maximum (FWHM) of isotropic Gaussian filters, the latter controls the minimum edge 

weights retained by the graph, which in turn, constrains filters to follow main directions of 

4 https://www.nitrc.org/projects/csaodf-hough 
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diffusion. Fig. 6 presents a range of different filter shapes that can be achieved by varying 

these two parameters. High values of α result in very narrow, streamline-like filters that are 

highly constrained relative to the underlying diffusion map, whereas lower values result in 

less constrained filters. In particular, low enough values of α negate the diffusion-adaptive 

properties of DSS, with the resulting filters adapting solely to the morphology of the WM 

domain (see Supplementary Figure S1).

The choice of neighborhood definition plays a significant role in the shape of the resulting 

filters. In combination with the 5-conn neighborhood definition, higher α values can result 

in non-local averaging filters when the ODFs are oriented along a neighborhood direction in 

the outer shell of the neighborhood (see Fig. 5 middle left, Fig. 6 bottom row). This effect 

is not present in filters created using the 3-conn neighborhood definition (see Figure S2), 

which additionally show a more limited capacity to represent orientation due to the reduced 

angular resolution of the neighborhood definition. More exhaustive results for both 5-conn 

and 3-conn filters are presented in Supplementary Figures S1-S6.

3.2. Validations on circular phantoms

Circular phantoms of 93 different orientations and 3 different radii were created as described 

in Section 2.5. Each phantom was corrupted with 10 realizations of additive white Gaussian 

noise of standard deviation 1, and subsequently denoised by spatial filtering with GSS and 

DSS over a range of parameters. The FWHM of GSS and the τ parameter of DSS were 

varied over a range from 1 to 8 in unit steps. Both the 3-conn and 5-conn neighborhood 

definitions were tested for DSS, which we will refer to as DSS3 and DSS5, respectively. The 

α parameter of DSS was set to 0.9 throughout.

To assess the denoising performance of GSS, DSS3 and DSS5, we performed receiver 

operating characteristic (ROC) analyses. The filtered phantom volumes were each 

thresholded at 300 uniformly-spaced consecutive levels spanning the minimum and 

maximum value in each filtered volume. The resulting detections for each threshold level 

were compared with the ground truth of the phantom, yielding true positive rates (TPR) 

and false positive rates (FPR) that were collected in ROC curves. The area under the 

curve (AUC) of the ROC curves was then computed, resulting in an overall measure of 

performance.

Figs. 7 (a) and (b) show the overall performance of DSS3, DSS5 and GSS as characterized 

by the AUCs. Due to the lack of equivalence between DSS and GSS filters, there is no direct 

correspondence between individual values of FWHM and τ. However, it can be noted that 

the performance of GSS peaks at 2 mm FWHM, and diminishes for larger filter sizes. On 

the other hand, both DSS3 and DSS5 achieve substantially higher maximum performances, 

which are not negatively affected by increased filter size in the range of τ tested.

The median AUC of DSS5 consistently falls above that of DSS3 for τ ≥ 2 and all three 

phantom radii. The performance gap between DSS5 and DSS3 increases for larger τ, and 

slightly increases on circular phantoms with larger radii, i.e., smaller curvatures. These 

results corroborate the improvements in detection performance thanks to the increased 

angular resolution of the 5-conn neighborhood definition. This is further illustrated by Fig. 7 
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(c), which shows the performance improvement of DSS5 over DSS3 for individual phantoms 

orientations. The wide range of performance gains is representative of the varying difficulty 

of representing specific spatial orientations in the discrete domain of graphs, highlighting the 

importance of angular resolution for the proposed filters.

Given the overall superior performance of DSS5 over DSS3, in the following, DSS results 

are only presented for graphs using the 5-conn neighborhood definition.

3.3. Validations on streamline-based phantoms

A similar analysis was performed on streamline-based phantoms. A single phantom with Ns 

= 50, 100 and 200 streamline activations was created for each of the 95 subjects as described 

in Section 2.6. As in the analysis on circular phantoms, each phantom was corrupted with 

10 realizations of additive white Gaussian noise of standard deviation 1, and denoised by 

spatial filtering with GSS and DSS over the same range of parameters. The α parameter of 

DSS was set to 0.9, whereas values of 0.85 and 0.95 were also tested on the 100-streamline 

phantoms. The denoising performance of both methods was assessed by applying the same 

ROC/AUC analysis described in Section 3.2.

Figs. 8 (a) and (b) show AUC results on all three types of phantoms for DSS and GSS, 

respectively. Due to the substantial amount of noise present in the phantoms, spatial 

smoothing using either GSS or DSS generally leads to better performance compared to 

no smoothing. DSS outperforms GSS across the range of τ and FWHM values tested, and 

across the different settings. As with the circular phantoms, the performance of GSS peaks at 

2 mm FWHM, with increased size negatively affecting performance beyond that value. DSS 

shows a similar pattern, with peak performance achieved for τ of 3 and 4 for α = 0.9. Both 

GSS and DSS show better performance on phantoms with a greater number of streamlines. 

Additional results show that DSS outperforms GSS in both sensitivity and specificity (see 

Supplementary Figure S7(a)), and across a range of SNR values (see Supplementary Figure 

S7(b)).

To assess the performance of DSS and GSS in combination with temporal modeling, i.e., 

as used within fMRI activation mapping studies, time-series version of the streamline-based 

phantoms were generated as described in Section 2.6. The phantoms were corrupted with 

additive white Gaussian noise of standard deviation 1 and subsequently spatially filtered 

with GSS and DSS with the same range of parameters used previously. The smoothed 

phantoms were subjected to a standard single-subject analysis in SPM, and the resulting 

t-maps were used in the ROC/AUC analysis.

Figs. 8 (c) and (d) show AUC results from the time-series phantoms. Due to the increased 

detection power afforded by temporal modeling, AUCs are higher for all scenarios in 

the time-series analysis compared to those in the single-volume analysis. Similarly to 

the single-volume phantom results, GSS achieves its best performance for 2 mm filters, 

and considerably deteriorates beyond that size. Notably, GSS only provides a distinct 

improvement over no smoothing for 2 mm filters. DSS results also show a negative 

correlation between filter size and performance for τ > 2, but the overall performance is 

superior to GSS and provides a benefit over no smoothing in most tested cases, with best 
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results achieved for τ between 2 and 4. After subjecting the t-maps to activation mapping 

with false discovery rate (FDR) correction at 5% (Genovese et al., 2002), the detection maps 

resulting from DSS showed substantially higher sensitivity and specificity than those from 

GSS (see Supplementary Figures S8-S10). These results also illustrate that the diminished 

performance of both methods on phantoms with a greater number of streamline activations is 

a consequence of increased FPR when using large filters.

Figs. 8 (a) and (c) also illustrate the effects of varying the α parameter of DSS in single­

volume and time-series phantoms, respectively. For both types of phantoms higher values of 

α generally resulted in better performance. In the case of single-volume phantoms, filters 

with α = 0.9 outperformed the others for small filter sizes, while α = 0.95 is superior for 

larger filter sizes and across all sizes for time-series phantoms. In addition, filters with α 
= 0.95 show minimal decay in performance as filter size increases for both versions of the 

phantoms. Filters with α = 0.85 consistently performed worse than the others.

3.4. Single-subject task fMRI results

In order to explore the effects of the proposed smoothing method on real task fMRI data, we 

used SPM12 to perform activation mapping on the HCP100 task fMRI data, comprising 23 

experimental conditions across 7 tasks. Each GLM analysis included 12 motion regressors 

(raw and temporal derivative) in addition to regressors for 2 to 8 experimental conditions 

associated with each task. The canonical HRF model, corresponding to a double gamma, 

was used —although such a temporal model is not tailored to the WM BOLD signal, it 

affects GSS and DSS equally, and should have no discernible influence on spatial filtering 

comparisons. Temporal noise modeling was done using a global AR(1) model. The fMRI 

data were smoothed using GSS and DSS with the same parameters used previously. For 

GSS, each fMRI volume was first multiplied with the WM mask, to avoid introducing signal 

from GM. This step is not required for DSS, as the method by its nature functions only 

in WM. The resulting t-maps were then thresholded to determine significant active voxels 

after FDR correction at 5%. Our choice of FDR as the correction method was due to it 

only assuming the p-values to be uniformly distributed under the null hypothesis. Correction 

methods based on assumptions about the smoothness of the data, such as those based 

on Gaussian random field theory, would be difficult to justify for an adaptive smoothing 

approach.

The sheer number of detection maps generated by this analysis—37,145 maps (95 subjects 

× 23 conditions × 17 filter settings)—renders exhaustive visual examination of them 

impracticable. Therefore, in our presentation, we focus on representative results that 

highlight the differences in maps generated by GSS and DSS. The full set of unthresholded 

t-maps is made available at NeuroVault 5.

Fig. 9 shows representative t-maps and detections from two subjects generated by DSS and 

GSS, with unmasked (i.e., full brain) GSS results included for reference.6 Visual inspection 

5 https://identifiers.org/neurovault.collection:9494 
6In our default analysis setting, regions outside the WM are masked out of fMRI volumes prior to GSS smoothing. This prevents the 
introduction of spurious signal, particularly from gray matter, while ensuring an unbiased comparison with DSS. Such considerations 
are not adhered to when implementing full brain GSS, and these results are therefore provided only for reference. Furthermore, due 

Abramian et al. Page 14

Neuroimage. Author manuscript; available in PMC 2021 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://identifiers.org/neurovault.collection:9494


of the t-maps reveals that GSS results in generally round features with little oriented 

structure, with very little visible structure remaining for larger Gaussian filters. In contrast, 

t-maps obtained using DSS present notable spatial detail, with linear features in the shape of 

streamlines discernible across filter sizes. These differences are also present in the detection 

maps from both methods. While GSS detections are generally large and rounded—with very 

few detections present for smaller filters—DSS manifests detection maps with pronounced 

subtle spatial details—with considerable detections even for small filter sizes. The detections 

presented in Fig. 9 (a) highlight the capability of DSS in identifying separate streamline­

shaped activations in two contiguous parallel axonal bundles (orange arrow), which remain 

distinct across the tested filter sizes. On the other hand, with GSS, these activations are 

combined into a single active region when large filters are used, and are not present when 

small filters are used. Notably, the case of FWHM = 3 mm shows activation foci being 

combined across rather than along axonal bundles, suggesting that these activations may 

not be separable with GSS. In Fig. 9 (b), DSS activation maps manifest an elongated, 

clearly resolved streamline-shaped activation that spans the corpus callosum (orange arrow), 

which is mostly undetected in GSS activation maps. In addition, the activations seen around 

the edges of the WM mask deserve notice. Although these activations may be attributed 

to interpolation artifacts or partial volume effect, due to them consistently being found in 

positions adjacent to active GM regions, it is important to note that both GSS and DSS 

produce these activations solely on the basis of signal from WM. DSS generally manifests 

more such activations, especially for small filter sizes. Additional activation mapping results 

are presented in Supplementary Figures S11 and S12.

In order to quantitatively investigate the degree to which spatial structure is present in 

t-maps obtained using the two smoothing methods, we analyzed the t-maps using structure 
tensor methods (Knutsson, 1989). While a thorough introduction to such methods falls 

outside the scope of this work, it is sufficient for our purposes to point out that the 

eigenvalues and eigenvectors of the structure tensor provide information on the presence 

and orientation of spatial structure, in the form of lines and edges, at a given point in an 

image or volume.

For each t-map, we constructed a quantitative structure map by computing the sum of the 

structure tensor eigenvalues at every voxel (a measure of the amount of spatial structure 

in each voxel). The mean value of each structure map provides a global measure of the 

presence of spatial structure in the corresponding t-map. Fig. 10(a) shows a comparison of 

this global structure measure for DSS and GSS. For both methods the amount of structure 

present in the t-maps diminishes as the filter size increases, which is consistent with the loss 

of spatial detail resulting from smoothing the data. This effect is very pronounced for GSS, 

while t-maps generated using DSS exhibit a more consistent amount of spatial structure 

across the tested filter sizes.

To determine the extent to which the structure present in the t-maps is influenced by the 

diffusion information introduced by DSS, we computed Pearson’s correlation coefficient 

to the differences in FDR thresholding, there is no expectation of WM detections of either GSS method being a subset of those of the 
other.
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between the quantitative structure maps and the quantitative anisotropy (QA) map (Yeh et 

al., 2013) of the associated subject; see Fig. 10(b). For DSS, this correlation is close to zero 

at τ = 1, and steadily increases for increased filter sizes. In contrast, the structure manifested 

in t-maps obtained through GSS shows a slightly negative correlation with QA, which 

stays nearly constant across all filter sizes. These results suggest that DSS is successful at 

informing the smoothing process with the local diffusion properties of the underlying WM, 

with larger values of τ resulting in stronger diffusion encoding.

Fig. 11 compares the number of detections obtained from DSS and GSS. To prevent bias 

due to differences in brain size, we present the fraction of each subject’s WM mask being 

declared as active. Overall, the detection rates for both methods increase as a function of 

filter size, with DSS exhibiting a more linear increase than GSS. While the number of 

detections on t-maps obtained from volumes smoothed with DSS and GSS is comparable for 

large filters, DSS generally produces substantially more detections with smaller filter sizes, 

as manifested by comparing the median detection numbers of corresponding tasks.

In the absence of ground truth, it is not possible to make definitive statements on the 

relationship between differences in the number of voxels deemed active by each method 

and potential differences in their sensitivity and specificity. However, it can be insightful 

to quantify the difference between the detection maps generated with DSS and GSS. To 

quantify the similarity between a pair of detection maps we computed the Dice coefficient 

between them, defined as

dτ, fwhm = 2 Mτ ∩ Mfwhm
Mτ + Mfwhm

, (12)

Where Mτ denotes the set of detected voxels using DSS with a given τ, Mfwhm denotes the 

set of detected voxels using GSS with a given FWHM, and | | denotes set cardinality. The 

Dice coefficient is constrained to the [0,1] range, where a value of 1 signifies perfect overlap 

between the detection maps and a value of 0 represents no overlap.

For every subject and experimental condition we calculated Dice coefficients between 

detection maps obtained with GSS and DSS of all filter sizes, and arranged them into 

8 ×8 Dice matrices. Additionally, we calculated the maximum Dice coefficient between 

each DSS filter size and every GSS filter size for each subject and condition. Fig. 12 

shows Dice results for several representative experimental conditions. The overall similarity 

between the detection maps obtained with DSS and GSS is relatively low. The highest 

ensemble Dice is achieved for τ = 7 and FWHM = 8 mm, where it reaches a value of 

0.65, with other combinations achieving values close to this one (see ensemble Dice matrix). 

The relationship between the τ and FWHM values that result in the highest similarity 

in the detection maps is also shown to be nonlinear, tracing a particular curve across 

the Dice matrices that is generally similar across experimental conditions. The similarity 

between the detection maps also shows considerable variation across tasks and individual 

experimental conditions (see results for all experimental conditions in Supplementary Figure 

S13), with below-average similarity in the Language and Motor tasks and above-average in 

the Gambling and Relational tasks.
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In order to determine whether the detections generated by either method are a subset of 

the detections from the other, we examined the number of common and unique detections 

produced by DSS and GSS. For all subjects and experimental conditions, the detection maps 

produced by DSS were compared with the most similar maps produced by GSS. Fig. 12, 

bottom right, shows the average number of voxel detections common to both methods, as 

well as those unique to each method, for the tested values of τ. These results show that, 

across filter sizes, both DSS and GSS produce a considerable number of detections that are 

not produced by the other method. This observation, together with the generally low Dice 

similarities, suggests the presence of substantial differences in the localization and spatial 

extent of activations detected using DSS and GSS.

3.5. Group task fMRI results

We performed random-effects group analysis based on the single-subject results for each of 

the 23 experimental conditions across the seven tasks. The estimated regressor weights of 

each experimental condition were taken to MNI space using the displacement maps provided 

with the HCP data—the inverse of those used to map the preprocessed fMRI data to ACPC 

space—and a GLM was fitted to them to create group t-maps. These group maps were then 

thresholded to determine significant active voxels after Bonferroni correction at 5%.

Fig. 13 shows representative results for one condition of the Gambling task. Overall, spatial 

patterns in the t-maps are more clearly visible than in the single-subject analysis, remaining 

more defined in the DSS results than in those of GSS. Interestingly, both methods show 

large WM regions in the shape of axonal bundles that are strongly anticorrelated with the 

experimental conditions.

The activation maps in Fig. 13 show similar patterns to the single-subject activation maps. 

While DSS is capable of producing elongated, streamline-like detections, those of GSS 

are generally round. In addition, DSS reveals considerable detections for small filter sizes. 

Additional group activation mapping results are shown in Supplementary Figures S14-S16.

In order to study the consistency of the results obtained by each method, we investigated the 

test-retest reliability of GSS and DSS through a Monte Carlo experiment. The 95 subjects 

were repeatedly split into two groups, after which a random-effects model was fitted to 

each group, and the resulting t-maps and detection maps were compared. This process was 

repeated 30 times, and the similarities of the resulting t-maps and detection maps were 

quantified using Pearson correlation and Dice similarity, respectively. Fig. 14 shows results 

of this analysis for a representative subset of experimental conditions. Correlation and Dice 

scores show an increasing trend with respect to the filter size, for both GSS and DSS. The 

values produced by both methods are roughly comparable, being slightly higher overall for 

DSS, particularly for small filter sizes. Full comparisons for all experimental conditions are 

presented in Supplemetary Figure S17.

3.6. Processing time

Although the proposed methodology requires additional MRI scanning time for the 

acquisition of DW-MRI data, it does not impose a dramatic increase in processing time over 

conventional approaches. Using a workstation with an Intel Core i7–7700K processor and 64 
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GB of RAM, the generation of diffusion ODFs from DW-MRI data required approximately 

90 seconds. The graph and its Laplacian matrix could then be calculated from the ODFs in 

under 15 seconds. Both of these operations need only be performed once per subject.

In our implementation, the average filtering time of a single volume with GSS was 10.3 

ms using the imgaussfilt3 MATLAB function (the same operation required about 450 ms 

when using the smoothing implemented in SPM). On the other hand, DSS filtering scales 

efficiently with the number of filter kernels used. Average single-volume DSS filtering 

times for a single kernel were 115 ms for the 5-conn neighborhood and 56 ms for 3-conn, 

and became reduced to 17.7 ms and 11.0 ms, respectively, when using 8 filter kernels at 

once. With worst case performance, the proposed method gave filtering times of around 45 

seconds for a 405-volume series (the longest of those available in HCP data, corresponding 

to the Working Memory task).

4. Discussion

4.1. Interpretation of results from simulated data

Previous implementations of voxel-wise graphs on GM (Behjat and Larsson, 2020; Behjat 

et al., 2015; Maghsadhagh et al., 2019) have used the 3-conn neighborhood in defining 

graph edges. However, given the different nature of the proposed encoding for WM 

graphs—representing axonal orientations rather than GM morphology, we considered the 

potential advantages of using a larger neighborhood definition. To this end, we compared 

the denoising performance obtained with graphs using the 3-conn and 5-conn neighborhood 

definitions on circular phantoms of multiple orientations and radii. Such phantoms were 

used because, barring discretization artifacts, they offer an exhaustive sampling of all 

possible orientations in which data can appear in three dimensions. The results show a 

clear improvement from using the larger neighborhood definition (see Figs. 7 (a) and (c)), 

which can be attributed to its superior angular resolution of 98 neighborhood directions, 

against the 26 of the 3-conn definition. Furthermore, comparing performances obtained on 

phantoms of different radii shows that the larger neighborhood definition provides more 

stable performance across spatial curvatures than the smaller neighborhood, which performs 

worse for smaller curvatures, particularly for larger filters. Compared to isotropic Gaussian 

smoothing (see Fig. 7 (b)), both the 3-conn and 5-conn neighborhood definitions used in 

DSS showed enhanced denoising performance on circular phantoms. In particular, while the 

performance of GSS deteriorates for larger filter sizes, the performance of DSS reaches a 

plateau instead, suggesting that the diffusion-informed nature of DSS filters is capable of 

minimizing the introduction of spurious signal even for larger filter sizes.

To better mimic spatial activation patterns manifested as BOLD contrast in WM, we 

designed and studied semi-synthetic streamline-based phantoms, whose diffuse activation 

patterns are representative of WM fiber structures, along which correlated BOLD activity 

is expected (Ding et al., 2013; 2016). The phantoms were studied in two settings. In the 

first setting, the denoising performance was studied in the absence of temporal modeling, 

wherein both methods provided an improvement over no smoothing, but DSS outperformed 

GSS for all tested filter sizes (Fig. 8 (a)). In the second setting, the phantoms were studied 

within the context of GLM activation mapping, i.e. with temporal modeling, wherein GSS 

Abramian et al. Page 18

Neuroimage. Author manuscript; available in PMC 2021 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



provided only minimal improvements over no smoothing, whereas DSS provided a notable 

improvement (Fig. 8 (b)). In addition, when the time-series phantoms were subjected 

to activation mapping with FDR correction, activation maps from GSS showed reduced 

sensitivity and specificity when compared to those of DSS (see Supplementary Figures 

S8-S10). The phantoms were also used to study the influence of the α parameter of DSS, 

which sets a lower bound on the weight of connections allowed in the WM graph. Due to the 

narrower and more directional filters resulting from higher α values (Fig. 5, Supplementary 

Figures S1-S6), the increased performance on the streamline-based phantoms would be 

expected (Figs. 8 (a) and (c)). However, this result may not be readily extensible to real 

fMRI data, as the spread of real activation patterns is not known.

4.2. Interpretation of results from real data

We compared single-subject activation mapping results from DSS and GSS on task fMRI 

data from the HCP100 subject set. Structure tensor analysis of the resulting t-maps revealed 

that the overall amount of structure present diminished for larger filter sizes, an effect that 

is more pronounced for GSS (Fig. 10(a)). Such results reflect the loss of spatial details that 

happens as a result of lowpass filtering. However, due to the highly anisotropic shapes that 

DSS filters take within the WM (Fig. 5), features in the shape of lines and edges can be 

present in t-maps even for larger filter sizes (Fig. 9). In addition, the spatial structure present 

in the t-maps obtained with DSS is correlated with regions of high diffusion anisotropy 

(Fig. 10(b)), indicating that DSS successfully adapts its smoothing to the underlying WM 

microstructure.

Due to the differences in their definitions, as well as the adaptive nature of DSS, there is no 

direct correspondence between GSS and DSS filters. This is corroborated by the relatively 

low Dice coefficients between detection maps resulting from both methods (see Dice 

matrices in Fig. 12). The overall number of detections is comparable for GSS and DSS, with 

a considerable and roughly equal number of activations being unique to each method (see 

bar chart in Fig. 12, bottom right). On the other hand, example detection maps corroborate 

that DSS is capable of resolving subtle, slender activation patterns along axonal pathways 

across multiple filter sizes by leveraging information about the spatial correlation structure 

of the BOLD signal in WM. Fig. 9(a) exemplifies the increased resolution from DSS, 

presenting a case where it is capable of resolving two parallel streamline-like activations that 

GSS is incapable of identifying as separate. Fig. 9(b) illustrates a similar case, with DSS 

detecting a highly resolved streamline-like activation through the corpus callosum that is left 

largely undetected by GSS. Supplementary Figures S11 and S12 present additional detection 

map comparisons highlighting the increased sensitivity and specificity of the proposed 

methodology over conventional GSS.

We also compared group activation mapping results from DSS and GSS. Similarly to the 

single-subject results, group t-maps obtained with DSS manifested intricate spatial structures 

across filter sizes, while t-maps generated with GSS presented mostly smooth, round 

features (Fig. 13). The same patterns extended to the activation maps produced by both 

methods, where DSS has shown greater specificity and an increased number of detections 

in multiple instances (Supplementary Figures S14-S16). Although group WM activations 
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obtained with GSS and DSS are often contained within those obtained with full brain GSS, 

it is important to note that while the latter rely mostly on signal from the GM, the former 

rely solely on signal from the WM, and result in much greater specificity in the detected 

activations.

In order to evaluate the consistency of the statistical maps generated by both methods, 

we performed a test-retest analysis of group activation mapping. While the performances 

of DSS and GSS were comparable for the upper range of filter sizes tested, DSS showed 

a marked improvement for small filter sizes (Fig. 14), altogether suggesting that DSS is 

capable of yielding equally or more consistent results than GSS is.

4.3. Limitations

We used a sigmoid function, see (10), as a means of boosting orientation encoding, allowing 

diffusion only along main directions of diffusion coherence. We studied three threshold 

values, α = 0.85, 0.9 and 0.95, all of which yielded better performance than GSS on 

phantom data, with noticeable variations in performance among the three values. However, 

the general choice of the thresholding function and its associated parameters is rather 

ad-hoc, which is a complication of similar nature as that encountered in connectomic studies 

(Rubinov and Sporns, 2010). Future work should consider a more rigorous validation of the 

thresholding scheme for obtaining optimal performance, especially on real fMRI data.

Accurate co-registration of functional, structural, and diffusion MRI data is a cornerstone 

of the proposed methodology. Within this study, we used preprocessed HCP data, which 

have been diligently motion-corrected, distortion-corrected, and co-registered (Glasser et al., 

2013). However, conducting solid preprocessing steps may not be possible in some datasets, 

and if so, results obtained using the proposed method on such datasets should be interpreted 

with care.

A number of recent studies have highlighted substantial differences between the HRF in 

WM and that in GM (Choi et al., 2020; Li et al., 2019b; Wang et al., 2020b), which 

corroborate similar sporadic observations from earlier studies that showed evidence for 

delayed and subdued hemodynamic responses compared to that in GM (Fraser et al., 2012; 

Yarkoni et al., 2009), and in particular, in the corpus callosum (Courtemanche et al., 2018; 

Tae et al., 2014). The recent evidence for the unique features of HRF in WM is indeed 

insightful, but given the ongoing nature of this research, we decided to use the standard 

HRF model that is conventionally used in fMRI activation mapping in the present work. 

Given that our work is comparative, the choice of the HRF model affects both DSS and GSS 

equally, and as such, we do not believe that our conclusions would be substantially affected 

by the use of a more precise model. Nevertheless, future work aimed at investigating the 

BOLD signal in WM can most likely benefit from combining a more appropriate HRF 

model with adaptive smoothing of the BOLD signal by DSS.

4.4. Outlook; potential extensions and other applications

Due to the limited degree to which diffusion ODFs can differentiate fiber orientation (Jones 

et al., 2013), we boost orientation encoding by means of a weight thresholding scheme. 

Alternatively, the proposed design can be extended to leverage standard fiber orientation 
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distribution (FOD) functions estimated from either the diffusion ODFs (Descoteaux et al., 

2008) or the raw diffusion data (Tournier et al., 2007), or asymmetric FODs (Bastiani et 

al., 2017), to obviate the need for thresholding. In the absence of HARDI data but presence 

of DTI data, the proposed method can be readily extended to leverage diffusion tensors 

instead of diffusion ODFs, e.g. as in Tarun et al. (2019), which can be of particular interest 

for reanalyzing the vast extent of currently available fMRI datasets that are accompanied 

by DTI data. It is also worth noting that DSS can be extended to work on a graph that 

represents a discretized version of a tractogram, enabling spatial filtering in a manner 

that would resemble leveraging principles from super-resolution track-weighted imaging 

(Calamante et al., 2012).

In the absence of any DW-MRI data, it would be possible to adapt the proposed method 

to use a structure tensor representation (Knutsson, 1989) derived from T1-weighted MRI 

images as the complementary contrast (Abramian et al., 2020b), wherein the proposed 

filtering scheme could be extended to function across the entire brain mask. The resulting 

morphology-based spatial smoothing could then be seen as a GSP-based alternative to 

non-linear filtering algorithms which enable spatial smoothing within similar anatomical 

compartments (Ding et al., 2005; Lohmann et al., 2018; Rydell et al., 2008; Smith and 

Brady, 1997; Weickert and Scharr, 2002), but will not provide adaptation to WM fiber 

orientations.

In addition to performing denoising through heat kernel smoothing (i.e., lowpass filtering), 

the proposed WM graphs can be used to implement graph-wavelet denoising, similar to that 

implemented by Behjat et al. (2015) for GM graphs, using novel data-driven GSP denoising 

schemes (de Loynes et al., 2021) in combination with computationally efficient multi-scale 

spectral graph decomposition methods (Li et al., 2019c; Shuman, 2020) that can be tractably 

implemented on large graphs.

In the present study, we only explored spatial smoothing of task-based fMRI data within 

the context of activation mapping, whereas DSS can be readily applied to WM resting­

state fMRI data, where recent studies have used Gaussian smoothing of the data as a pre­

processing step. Such research appears particularly promising in light of studies reporting 

the existence of BOLD-like response in resting-state data (Karahano ğlu and Van De Ville, 

2015; Li et al., 2021; Liu and Duyn, 2013; Petridou et al., 2013), and the current growing 

interest in exploring functional dynamics of WM at rest (Ding et al., 2018; Li et al., 2020a; 

2019a; Peer et al., 2017; Wang et al., 2020a).

It is worth noting that DSS may prove beneficial for enhancing the detection of functional 

pathways through the use of functional-correlational tensors (FCT) (Ding et al., 2013) 

or high angular resolution functional imaging (HARFI) (Schilling et al., 2019). FCT and 

HARFI provide the means to derive functional WM pathways by characterizing the spatial 

anisotropy observed in the temporal correlation in the BOLD signal at adjacent WM voxels. 

Given the lack of spatial adaptiveness of GSS, its use is likely to distort the spatial 

anisotropy in the signal, on which these methods rely. On the other hand, filtering the 

fMRI data with DSS may help boost this spatial anisotropy, thus enhancing the detection 

of spatiotemporal correlation in the local BOLD signal. Furthermore, FCTs have been 
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leveraged for improving inter-subject registration of resting-state data based on functional 

features (Zhou et al., 2018), which might also be enhanced if the data are initially filtered 

with DSS.

DSS may also be used as a method to filter tractography streamlines in a manner similar 

to SIFT (Smith et al., 2013). In particular, by applying DSS to voxelized representations 

of streamlines, the resulting filtered maps can be quantified to obtain a validity score for 

tracts—tracts that are closely aligned with the underlying diffusion map should be minimally 

deteriorated by DSS.

Another research avenue that can benefit from the proposed WM graph design is structural 

studies. The eigenvalues of cortical surface graphs as well as their eigenmodes have been 

leveraged in multiple applications, namely, quantifying cortical folding patterns (Dubois et 

al., 2019; Germanaud et al., 2012; Rabiei et al., 2016), age prediction (Masoumi et al., 2019; 

Wachinger et al., 2015), and analysis of brain asymmetry in health (Maghsadhagh et al., 

2019; Wachinger et al., 2015) and in disease (Masoumi et al., 2019; Wachinger et al., 2016a; 

2016b). Such analyses can be extended to leverage the spectra of WM graphs. Analysis on 

similarly designed graphs using DW-MRI data—covering the entire brain rather than just 

the WM—has shown that an initial subset of the graph eigenmodes provides informative 

features to distinguish between subjects (Tarun et al., 2019). Lastly, ODF-based WM graphs 

may be found beneficial in deriving structural connectivity measures that account for direct 

as well as indirect pathways, for example, similar in nature to those derived from a recently 

proposed DTI-based conductance model (Frau-Pascual et al., 2020; 2019).

5. Conclusion

The development of methods geared specifically towards WM can prove substantially 

helpful in investigating the functional significance of the BOLD signal in WM. 

Notwithstanding the repository of sophisticated smoothing techniques found in the literature, 

to date, studies on fMRI data in WM have mainly resorted to isotropic Gaussian smoothing. 

An apparent reason is the ease in implementing Gaussian smoothing and its availability 

in widely used open-access software packages, which facilitate its routine application. 

The proposed diffusion-informed spatial filtering method, in conjunction with the use of 

WM-specific HRF models and MR sequences, holds promise to aid better understanding of 

the functional role of WM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Frequency interpretation of graph Laplacian eigenvalues

In classical signal processing, in particular in the case of 1D discrete temporal signals, 

a set of complex exponentials ejwx of varying frequencies w defines a basis that can be 

used to transform a given signal to a Fourier (spectral) representation. Importantly, these 

complex exponentials are the eigenfunctions of the one-dimensional Laplacian operator, 

i.e., d2

dx2ejωx = − ω2ejωx. Given that a graph structure can be interpreted as a generalization 

of the 1D regular grid, the eigenvalues λl and eigenvectors ul of the graph Laplacian L 
can be seen as analogous to the frequencies and complex exponentials of classical signal 

processing, respectively. With this interpretation, given two eigenvalues of L such that λn 

< λm, it can be stated that the eigenvector associated with λm entails a notion of higher 

frequency—i.e., higher spatial variability—than the eigenvector associated to λn. In the 

following we will illustrate this point in two ways.

Given a graph signal f ∈ ℓ2 (G), the extent of variation of f on G can be quantified by 

introducing a measure denoted as graph signal variation (GSV), defined as

GSV (f) = fTLf = ∑
(i, j) ∈ ℰ

ai, j fi − fj
2, (A.1)

where larger values of GSV(f) represent greater variability of f on G. The eigenvectors of L 

can be equivalently seen as graph signals, and thus be quantified in relation to their extent of 

variation on G. By noting that i) the eigenvectors of L are orthonormal, i.e., ul
Tul = 1 and ii) 

Lul = λlul it follows that

GSV ul = ul
TLul = λl, (A.2)

showing that the eigenvalue λl associated to each eigenvector ul is a quantification of the 

extent of variability of ul.

The variability of eigenvectors can also be measured by examining their zero crossings—i.e., 

changes in their sign at adjacent graph vertices—using a weighted zero crossing measure 

(WZC) defined as

W ZC ul = 1
2 ∑

(i, j) ∈ ℰ
ai, jH −ul[i]ul[j] , (A.3)

where H(·) denotes the Heaviside step function. To show the link between WZC(ul) and 

λl, we calculated the WZC of an even sampling of 41 eigenvectors of L for fifty subjects—

Abramian et al. Page 23

Neuroimage. Author manuscript; available in PMC 2021 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computing the full eigendecomposition of L is impractical due to its size. Fig. A.1 shows 

the relation between λl and the WZC(ul), illustrating that larger eigenvalues entail a greater 

extent of spatial variability in their associated eigenvectors, as measured by the WZC. It 

should be noted that the monotonically increasing behavior of WZC(ul) relative to λl, which 

holds up to the very upper parts of the spectrum, stops at the higher end eigenvalues. This 

is a consequence the decrease in delocalization manifested by eigenvectors of L at the 

upper part of the spectrum—unlike the complex exponentials of classical signal processing, 

which are delocalized, eigenvectors of L can present localized patterns of spatial variability. 

Nevertheless, given the lowpass profile of the spectral kernels used in this work, the loss 

of delocalization associated to the upper end of the spectrum is of no concern for the 

application at hand. For a more comprehensive overview of the link between classical signal 

processing and GSP, the interested reader is referred to Huang et al. (2018a); Ortega et al. 

(2018); Stankovic et al. (2019).

Fig. A.1. 
WZC of a subset of eigenvectors of the WM graph Laplacian of 50 subjects.

Appendix B. Spectral graph filtering through polynomial approximation

Spectral graph filtering can be efficiently implemented using polynomial approximation 

schemes (Hammond et al., 2011; Shuman, 2020), mitigating the need to diagonalize large 

L matrices as those used in the present work. Using this approach, a spectral kernel k(λ) is 

first approximated using a polynomial of suitable order, denoted p(λ): [0, 2] ℝ, and filtering 

of signal f is then implemented as

f =(3) ∑
l = 1

Ng
p λl f[l]ul, (B.1)

where the vectorized form of (3) is invoked. Noting that Lul = λlul p(L)ul = p λl ul, (B.1) 

can be simplified as

f = p(L) ∑
l = 1

Ng
f[l]ul = p(L)f, (B.2)

where in the last equality we used f = ∑l = 1
Ng f[l]ul. Using this scheme, filtering is performed 

through a series of polynomial matrix operations on L, without the need to access 
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the Laplacian eigenvalues. In this work, we leveraged truncated Chebyshev polynomial 

approximations of spectral kernels as presented by Hammond et al. (2011), which have 

the benefit of approximating a minimax polynomial, minimizing an upper bound on the 

approximation error.

Appendix C. Uniform sampling of ODFs

We defined a spherical sampling grid using the vertices of an icosahedron with five levels 

of subdivision, which resulted in a total of 10,242 vertices on the unit sphere. Due to 

non-uniformity in the spatial spread of the vertices, the number and distribution of vertices 

that fall within the solid angles Ωi,j subtended along the 26/98 different r i, j neighborhood 

directions vary. To overcome this bias, we treated the vertices that fall within Ωi,j around 

the z-axis as a sampling template, resulting in Nt = 389 and 105 template directions for the 

3-conn and 5-conn neighborhood definitions, respectively. The sampling template was then 

rotated and centered around each neighborhood direction r i, j, resulting in a set of sampling 

directions r i, j
k ∣ k = 1, …, Nt  (see Fig. C.1 ).

Fig. C.1. 
Uniform sampling within solid angles along different orientations. (a) An icosahedron 

with five levels of subdivision, wherein the subset of its vertices that fall within the solid 

angle 4π/98 around the z-axis direction, marked with black dots, are treated as a template 

sampling pattern. (b) The template sampling pattern (black) is then rotated towards other 

neighborhood directions; two directions shown here, in red and blue. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this 

article.)

Appendix D. Streamline-based phantom construction

For each subject, 10 thousand streamlines, denoted si(x) ∈ ℝ3
i = 1…10000, were generated 

through deterministic tractography using the method presented by Yeh et al. (2013), as 

implemented in DSI Studio. A subset of S streamlines from a single subject was randomly 
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selected and used as the basis to produce a phantom. Each streamline si(x) was first 

voxelized, resulting in a vector si containing the indices of the voxels through which it 

passes. A random source point for the activation was then selected, represented by an 

indicator vector di of the same length as si, wherein a single element of the vector was set 

to 1 and the remaining elements were set to 0. An adjacency matrix Ai was then defined, 

specifying that every voxel in si is connected to itself and its neighbors within a 3 × 3 × 3 

neighborhood, with equal weights adding up to 1. The diffuse activation pattern, denoted Pi, 

was then synthesized as

pi = Ai
ndi

maxAi
ndi

, (D.1)

where the exponent n is a parameter that controls the extent of spatial spread of the 

activation. This parameter was arbitrarily set to 250 in the design of all the phantoms used in 

this work, with the goal of obtaining long and smoothly-decaying spatial activation patterns. 

Finally, the phantom was constructed by merging the various activation patterns pi i = 1…S
into a single volume.
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Fig. 1. 
(a) 26 voxels within the 3 ×3 ×3 neighborhood (gray) used to define edges to the focal 

voxel (red). (b) 98 voxels within the 5 ×5 ×5 neighborhood (gray), used to define edges 

to the focal voxel (red). (c) Scattered dots on the unit sphere specify the 98 neighborhood 

directions encoded by the 5 ×5 ×5 voxel neighborhood. Circled dots represent the subset 

of 26 directions encoded by the 3 ×3 ×3 voxel neighborhood. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 2. 
Sigmoid function used for thresholding edge weights, for three different values of α and a 

fixed value β = 50.
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Fig. 3. 
Spectral graph heat kernels, defined within the bounds of the spectrum of a normalized 

graph Laplacian matrix, i.e., [0,2].
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Fig. 4. 
Phantom construction. (a) Circular phantom construction. Left: A subset of vertices of a 3­

level subdivided icosahedron, 93 out of 642, were selected. Vectors pointing from the center 

of the sphere to these vertices constitute the normal vectors of the planes within which 

circular phantoms were realized. Right: Five representative unit circles with orientations 

corresponding to the vertices on the left of matching color. For example, the red circle falls 

within a plane that passes through the center of the sphere and has its normal vector pointing 

from the center of the sphere to the red point shown on the left. (b) Streamline-based 

phantom construction. A WM streamline constructed using tractography (shown in yellow) 

is randomly selected, a focal point along the streamline is randomly selected, and a diffused 

non-binary activation pattern is created around the focal point (shown in red). (c) Axial, 

coronal, and sagittal view of a representative streamline-based phantom with 100 streamline 

activations, overlaid on subject’s T1-weighted image.

Abramian et al. Page 36

Neuroimage. Author manuscript; available in PMC 2021 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Generation of diffusion-informed smoothing filters. Diffusion ODFs (bottom row) serve as 

the basis for the creation of a WM graph (middle row). Every WM voxel corresponds to 

a vertex in the graph, with weighted connections to neighboring voxels (middle left). The 

edge weights are determined on the basis of coherence between the directions of diffusion 

and the orientation of the graph edges (bottom left). Using this WM graph definition, graph 

filters from a single spectral profile become adaptive to the local axonal microstructure when 

instantiated in different WM regions (top row). Note that both the edges connecting voxels 

and the graph filters extend in three dimensions, whereas their 2D axial intersection centered 

at the focal voxel are shown. Graph parameters: 5-conn neighborhood, α = 0.9, β = 50; filter 

parameters: τ = 7. Filters are shown normalized to the [0,1] range. ODF interpolation and 

visualization were performed using the public CSA-ODF package4.
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Fig. 6. 
Effects of parameters τ and α on the shape of DSS filters located at red ROI shown in Fig. 

5. Graph parameters: 5-conn neighborhood, β = 50. Filters are shown normalized to the 

[0,1] range. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 7. 
Validation of spatial smoothing on circular phantoms. (a)-(b) AUC of ROC curves obtained 

from volumes spatially smoothed with DSS and GSS, respectively. The markers show the 

median AUC over 930 ROCs (93 orientations × 10 realizations), whereas the whiskers 

represent 5 − 95% percentiles. (c) Difference between AUC values for DSS5 and DSS3 for 

phantoms with 25 mm radius. The black curve shows the difference between the median 

performances shown in (a), whereas the remaining curves show the difference between the 

10-realization medians for each of the 93 phantom orientations. The five colored curves 

correspond to the phantom orientations shown in Fig. 4 (a).
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Fig. 8. 
Validation of spatial smoothing on streamline-based phantoms. (a)-(b) AUC of ROC curves 

obtained from volumes spatially smoothed with DSS and GSS, respectively. (c)-(d) AUC 

of ROC curves obtained from activation mapping t-maps of time-series streamline-based 

phantoms smoothed with DSS and GSS, respectively. The markers show the median AUC 

over 950 ROCs (95 subjects × 10 realizations), whereas the whiskers represent 5 − 95% 

percentiles.
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Fig. 9. 
Comparison of representative single-subject activation mapping results generated with GSS 

and DSS, with t-maps shown in grayscale and detections overlaid in red (FDR-corrected at 

5%). Full-brain activation maps are also shown for reference, overlaid on the subject’s T1w 

image.
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Fig. 10. 
Structural analysis of task fMRI t-maps, obtained using local structure tensor analysis 

(Knutsson, 1989) where the eigenvalues of the structure tensor denote the amount of 

spatial structure. (a) Quantification of the amount of anisotropic structure observed in 

t-maps, specified by the mean structure map value, averaged across the task’s experimental 

conditions. (b) Correlation between subjects’ QA maps and structure maps, averaged across 

each task’s experimental conditions. Markers shows the median value across the 95 subjects.
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Fig. 11. 
Fraction of voxels within WM mask detected as being significant using DSS (top left) 

and GSS (bottom left) across 7 functional tasks, over 95 subjects. Significant voxels were 

determined after FDR correction at 5%. In the plots on the left, each dot corresponds to one 

subject, whereas ■ shows the median value across the 95 subjects. The plots on the right 

show the trend of the average value as a function of filter parameters τ and FWHM for GSS 

and DSS respectively.
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Fig. 12. 
Dice similarity between detection maps generated with DSS and GSS. For each subject 

and condition, an 8 ×8 Dice matrix was computed, where each element represented 

dτ,fwhm, see (12). For a given subject, if neither DSS nor GSS led to any detections for 

a given combination of τ and FWHM, the corresponding element was excluded from 

further analysis. The schematic on top explains how the results were ensembled across 

subjects, resulting in two plots for each experimental condition; in the plots on the right, the 

mean of the scattered values is indicated by ■. Results are presented for a representative 

experimental condition in each task—see results across the 23 conditions in Supplementary 

Figure S13, as well as ensembled across 23 conditions; the ensemble plot on the left shows 

the average across conditions, whereas the one on the right shows the median and range 

of the mean maximum Dice values across conditions. The plot on the bottom right shows 

the average number of common and unique detections generated by DSS and GSS across 

all subjects and conditions, wherein every value of τ was compared with the FWHM that 

resulted in the maximum Dice coefficient.
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Fig. 13. 
Comparison of representative group activation mapping results generated with GSS and 

DSS, with t-maps shown in grayscale and detections overlaid in red (Bonferroni-corrected at 

5%). Full-brain activation maps are also shown for reference, overlaid on the MNI152 T1w 

template image.
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Fig. 14. 
Results of Monte Carlo test-retest analysis for one representative experimental condition 

from each task. Subjects were repeatedly divided into two groups and subjected to group 

analysis, and the resulting statistical maps were compared. (a) Correlation between t-maps 

of both groups. (b) Dice similarity between activation maps of both groups. The markers 

show the median value across 30 experiments, whereas the whiskers represent 5 − 95% 

percentiles.
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