
REVIEW
published: 10 February 2021

doi: 10.3389/fcvm.2021.597568

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 February 2021 | Volume 8 | Article 597568

Edited by:

Christos Bourantas,

Barts Health NHS Trust,

United Kingdom

Reviewed by:

Filippo Cademartiri,

IRCCS SDN, Italy

Anantharaman Ramasamy,

Barts Health NHS Trust,

United Kingdom

*Correspondence:

Jun Jiang

jiang-jun@zju.edu.cn

Dingchang Zheng

dingchang.zheng@coventry.ac.uk

†These authors share first authorship

‡ORCID:

Haipeng Liu

orcid.org/0000-0002-4212-2503

Specialty section:

This article was submitted to

Cardiovascular Imaging,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 21 August 2020

Accepted: 18 January 2021

Published: 10 February 2021

Citation:

Liu H, Wingert A, Wang J, Zhang J,

Wang X, Sun J, Chen F, Khalid SG,

Jiang J and Zheng D (2021) Extraction

of Coronary Atherosclerotic Plaques

From Computed Tomography

Imaging: A Review of Recent

Methods.

Front. Cardiovasc. Med. 8:597568.

doi: 10.3389/fcvm.2021.597568

Extraction of Coronary
Atherosclerotic Plaques From
Computed Tomography Imaging: A
Review of Recent Methods
Haipeng Liu 1,2†‡, Aleksandra Wingert 2†, Jian’an Wang 3, Jucheng Zhang 4, Xinhong Wang 5,

Jianzhong Sun 5, Fei Chen 6, Syed Ghufran Khalid 1, Jun Jiang 3* and Dingchang Zheng 1*

1 Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom, 2 Faculty of Health, Education,

Medicine, and Social Care, Anglia Ruskin University, Chelmsford, United Kingdom, 3Department of Cardiology, School of

Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China, 4Department of Clinical Engineering, School

of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China, 5Department of Radiology, School of

Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China, 6Department of Electrical and Electronic

Engineering, Southern University of Science and Technology, Shenzhen, China

Background: Atherosclerotic plaques are the major cause of coronary artery disease

(CAD). Currently, computed tomography (CT) is the most commonly applied imaging

technique in the diagnosis of CAD. However, the accurate extraction of coronary plaque

geometry from CT images is still challenging.

Summary of Review: In this review, we focused on themethods in recent studies on the

CT-based coronary plaque extraction. According to the dimension of plaque extraction

method, the studies were categorized into two-dimensional (2D) and three-dimensional

(3D) ones. In each category, the studies were analyzed in terms of data, methods,

and evaluation. We summarized the merits and limitations of current methods, as well

as the future directions for efficient and accurate extraction of coronary plaques using

CT imaging.

Conclusion: Themethodological innovations are important for more accurate CT-based

assessment of coronary plaques in clinical applications. The large-scale studies,

de-blooming algorithms, more standardized datasets, and more detailed classification

of non-calcified plaques could improve the accuracy of coronary plaque extraction

from CT images. More multidimensional geometric parameters can be derived from

the 3D geometry of coronary plaques. Additionally, machine learning and automatic

3D reconstruction could improve the efficiency of coronary plaque extraction in

future studies.

Keywords: coronary artery disease, atherosclerosis, plaque morphology, cardiac computed tomography,

three-dimensional reconstruction

INTRODUCTION

With the increasing incidence, coronary artery disease (CAD) is the most common type of heart
disease and the leading cause of death globally (1). The stenosis of coronary arteries incurred by
the growth of atherosclerotic plaques is the major cause of CAD and related cardiac events such as
acute myocardial infarctions (MI) (2). Therefore, the accurate evaluation of atherosclerotic plaques
in coronary arteries is important for the diagnosis and treatment of CAD.
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In the diagnosis of CAD, computerized tomography (CT)
imaging is the most commonly used imaging technique. Cardiac
or cardiovascular CT (CCT), also named as coronary computed
tomography angiography (CCTA, sometimes short as coronary
CTA), or CT coronary angiography (CTCA), has a high spatial
resolution to reflect the anatomic severity and morphology of
coronary plaques. The anatomic severity of coronary plaques
estimated by CT imaging was in accordance with the results
derived from intravascular ultrasound (IVUS) imaging (3). CT
imaging has a higher resolution than the cardiac magnetic
resonance imaging (MRI) (4). Compared with MRI and IVUS,
CT is low-cost, non-invasive, and available on patients with
implants (5). Furthermore, CT imaging could reflect the
morphology of plaques by differentiating various compositions.
Non-calcified, partially calcified, and calcified plaques could
be differentiated based on their x-ray attenuation values (in
Hounsfield units, or HU) which reflect the brightness of certain
areas in CT images (6).

Since the early 2000s, the development of multi-slice CT
(MSCT) technology, which refers to a special CT system
equipped with a multiple-row (4, 8, 16, and 64) detector
array that can collect a high volume of patient data in each
gantry rotation, provides the possibility of reconstructing the
three-dimensional (3D) geometry of atherosclerotic plaques in
coronary arteries (7, 8). Especially, the 64-detector CT scanners
showed better accuracy than the 4- or 8-detector ones in the
diagnosis of significant coronary arterial stenosis (diameter
stenosis >50%) (9). Based on the analysis of coronary CT
images, the diameter stenosis and calcification volume have been
widely used in the CAD-related clinical applications (10). In the
meantime, the automatic 3D reconstruction and quantification
of the non-calcified component was also achievable (11). The
standardized, quantitative analysis of coronary CTA datasets
was reproducible for the measurement of plaque geometrical
and compositional parameters (e.g., plaque length, percentage
area stenosis, and percentage of atheroma volume) in different
geometric dimensions with high intra-observer and inter-
observer agreement (12). Based on the comparison with
histological images, the MSCT images have been applied in the
analysis of coronary plaque morphology (13). Since the late
2000s, the 3D geometry of coronary plaque reconstructed from
MSCT images has been widely applied in the computational
simulation of plaque stress (14), wall shear stress (15), and
the accumulation of low-density lipoprotein (16). The accurate
extraction and reconstruction of coronary plaques from CT
images plays a key role in improving the quality of diagnosis and
treatment of CAD, as well as the pathophysiological studies of
coronary arteries.

Currently, the majority of the studies on the extraction of
coronary plaques from CT images are based on the difference
in attenuation values, which is not sufficient for the accurate
evaluation of coronary plaques. For calcified plaques, the
blooming artifact could cause the overestimation of plaque areas,
especially in the cases with significant calcification (17). For non-
calcified plaque, it is difficult to differentiate between fibrotic and
lipid plaques. Another challenge is the demarcation between the
non-calcified or mixed plaques, the outer vessel border consisting

of the tunica adventitia, and the surrounding tissues, which are
similar in intensity (18). To achieve the accurate evaluation of
coronary plaques using CT images, technical innovations are
needed to overcome these challenges.

Recently, some novel methods and algorithms have been
proposed to improve the accuracy of coronary plaque extraction
from CT images. In this review, the novel methods and
algorithms are categorized, analyzed, compared, and summarized
to disclose the future directions toward more accurate CT-based
evaluation of coronary plaques.

METHODS

The keywords for the literature search are “coronary artery” or
“coronary” combined with “atherosclerotic plaque” or “plaque,”
and “CT” or “computerized tomography”. Publications written
in English from 2015 to June 2019 were searched on PubMed,
Web of Science Core Collection, IEEE Xplore Digital Library,
and https://scholar.google.com.

Over 50 papers have been found. Based on the titles, keywords,
and abstracts, more than 20 papers were excluded which did not
propose methodological or technological innovation of coronary
plaque extraction. Finally, 31 papers were selected for the review
including 27 journal articles and 4 conference papers.

The selected publications were categorized according to
the dimension of the plaque extraction method. In the two-
dimensional (2D) methods, the coronary arteries and plaques
are directly segmented and extracted from the 2D images. In
the 3D methods, the 3D structures of coronary arteries and
plaques are reconstructed from the 2D images. At present,
the clinical diagnosis and research of CAD are based on
the CTCA images derived from the MSCT scan. The MSCT
scan provides a solid basis for 3D CTCA analysis. Whereas,
the original CT images derived from MSCT scans are still
the transverse 2D images. The 3D CTCA images and the
2D CTCA images on coronal and sagittal cross-sections are
obtained through reconstruction. As the original data, 2D CTCA
images are essentially more accurate than other reconstructed
images. Therefore, the 2D CTCA images are still widely used
in some recent studies (19). The reconstructed 2D images,
including the coronal, sagittal, and curved planar reformation
images, also play an important role in clinical diagnosis (20).
Additionally, the current diagnostic standards and guidelines
are based on the geometric parameters (especially the diameter
stenosis) derived from 2D images of coronary arteries (21).
Therefore, the 2D methods are included and analyzed in this
review while the 3D methods will be increasingly important in
future studies.

Some studies included 3D reconstruction and volumetric
measurement. However, in these studies, the 3D reconstruction
was automatically performed by software without any technical
details disclosed (22), and the aim was the comparison or
validation of 2D image processing algorithms (23–27), without
methodological innovation in 3D volumetric analysis (17).
Therefore, they were categorized as 2D methods. Some studies
used the automatic 3D reconstruction of coronary plaques, but
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volumetric measurement is a major objective (28–32), or the 2D
images were extracted from 3D CTA images (33), therefore, they
were classified as 3D studies.

In the following sections, 2D methods and 3D methods
will be separately analyzed and summarized in three aspects:
data, method, and evaluation. Regarding the data, we listed the
details of data source (in vivo, in vitro, ex vivo, or phantom),
inclusion criteria on arterial segment and plaques, numbers of
human subjects and arterial segments. Regarding the method, we
analyzed the classification of plaques (calcified and non-calcified;
calcified, lipid and fibrotic; etc.), attenuation values of different
plaques, methods of plaque extraction and reconstruction, as
well as the technical innovations. Regarding the evaluation, we
analyzed the geometric parameters in different dimensions, the
intra- and inter-observer repeatability of the results, and the
reference for the evaluation of accuracy (IVUS, histopathologic
examination, etc.).

RESULTS

2D Methods of Coronary Plaque Extraction
From CT Images
Classification of Data
We found 13 studies on 2D plaque extraction, including 12
original studies and a review paper (34). The majority (10
out of 12) of original studies used in vivo data which were
collected non-invasively (17, 22–27, 35–37). Three studies used
phantoms for data collection, in which 2 studies used phantom
data in parallel with in vivo data (17, 37) while one used
exclusively the phantom data (38). One study used ex vivo
data (39).

In terms of the medical imaging techniques, in vivo data are
the imaging data collected from living and functional organisms.
In vivo imaging data are patient-specific. In vivo CT imaging data
could be derived before and after the clinical treatment as the
baseline and the follow-up observations to evaluate the severity of
the CAD and the efficiency of treatment. Therefore, in vivo data
play a key role in the diagnosis and treatment of CAD. However,
CT scans are mainly performed on patients with CAD. In vivo
data of healthy individuals are relatively rare.

CT imaging data could be collected from phantoms. A
major benefit of phantoms is their controllable geometry. By
presetting the geometric parameters (diameters, length, severity
of stenosis, etc.) of plaque phantoms, and comparing with the
geometry reconstructed from CT imaging, the accuracy of plaque
extraction algorithms could be quantitatively evaluated. In a
recent study, the accuracy of a vendor-specific model-based
iterative reconstruction algorithm was evaluated on phantoms
for both calcified and non-calcified plaques (37). A straight
acrylic tube (length: 50mm, diameter: 3mm) was used as the
model of coronary artery. Polystyrene, mono cast nylon, and
acrylonitrile butadiene styrene copolymer weremixed to simulate
soft, intermediate, and calcified plaques, with stenotic attenuation
value of 40, 80, and 150 HU. Two stenotic degrees of 50% and
75% were used to evaluate the accuracy of plaque extraction in
different plaques.

Using different plaque components, different anatomic
structures, and different sizes, phantoms can be used in the
comprehensive evaluation of plaque extraction methods. To
optimize the CTCA protocol for more accurate extraction of
plaques and coronary arteries, as well as early detection of the
vulnerable plaques (non-obstructive atherosclerotic plaques with
a thin fibrous cap covering fatty debris, leading to thrombus
formation and embolization when ruptured), Kashani et al.
used a phantom which contained 7 channels with different
diameters between 3 and 5mm. The channels were filled with
different materials to simulate cholesterol and adipose tissues
of the plaques, and surrounding myocardial tissues (38). The
authors suggested that CTCA imaging of lipid-rich plaques can
be optimized through using intermediate x-ray tube currents of
300 and 400mA and the adjustment of the x-ray tube potential.
To investigate the accuracy of iodine quantification with dual-
energy CT imaging of coronary arteries, Pelgrim et al. developed
an anthropomorphic phantom including artificial lungs, spine,
body fat, and a cavity at the position of the heart. The cavity
was filled with a holder carrying five separate tubes to simulate
coronary arteries. Different patient sizes were simulated using
extension rings with densities comparable to fat (40).

Another benefit of using phantoms is the avoidance of
complex operation and clinical risks of in vivo imaging on human
subjects or animals. To fully validate the results derived from
phantoms, and investigate their clinical applications, two studies
included both phantoms and in vivo data (17, 37). The first
study focused on the calcified plaques with ≥50% and ≥70%
luminal stenosis on CT images, and simulated them in phantoms
to evaluate if the de-blooming algorithm would derive more
accurate plaque extraction (17). The second study included both
calcified and non-calcified plaques with 50% and 75% stenosis in
a coronary vessel model whose length and radius were 50.0 and
3.0mm, respectively (37).

Nevertheless, the use of phantoms also has some limitations.
Firstly, phantoms have highly simplified geometry which could
not present the patient-specific anatomy. It is commonly
observed that the anatomy of human coronary arteries is highly
diverse among the population. Secondly, it is difficult to use
phantoms to simulate the mixed plaques consisting of lipid
and fibrotic components with speckled calcifications (diameter
<2mm), which are widely observed especially in the early phase
of calcification (41).

One study used ex vivo imaging data which were derived from
three ex vivo human hearts during post-mortem. Both CCTA and
IVUS imaging were performed. Coronary computed tomography
angiography and IVUS images of arterial cross-sections in 1-
mm increments were co-registered. To evaluate the accuracy
of the proposed algorithm of plaque reconstruction, the plaque
areas reconstructed from CCTA images were compared with the
plaque areas in the corresponding IVUS images (39). The ex vivo
imaging data could be desirable than in vivo data in some aspects.
Firstly, imaging is much easier to perform on ex vivo specimen
than on in vivo organ. Additionally, the ex vivo data are free from
the motion artifact which is inevitable in in-vivo data. Therefore,
ex vivo data could be used for quantitative evaluation of plaque
reconstruction from patient-specific CT images. However, ex
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vivo imaging data were rare, therefore difficult to be used in
large-scales studies.

Inclusion Criteria on Arterial Segments and Plaques
We included different types of articles covering scientific,
engineering, and clinical studies. Normal subjects and CAD
patients were recruited in different studies in which the inclusion
(or exclusion) criteria of human subject are highly diverse.
Therefore, we focused on the inclusion (or exclusion) criteria of
arterial segments and plaques.

For arterial segments, due to the limited accuracy of CT
imaging in small branches, some studies included only the
arterial segments with a radius larger than 1.5mm (22, 34). The
inclusion of only the proximal 40mm of each coronary artery
and the exclusion of left main coronary lesions were also used as
criteria (39). In three phantom studies, the first one used the inner
diameter between 3.5 and 4.5mm (17). The second one used the
length of 50.0mm and a diameter of 3.0mm for lumen (37). The
third one included lumen diameter between 3 and 5mm, wall
thickness between 1.5 and 3.5mm, with 10mm as the segment
length (38).

The severity of luminal stenosis, defined as the ratio between
lumen diameters in stenotic and normal segments, was widely
used as the inclusion criterion of plaques, especially non-calcified
plaques. In the studies on 2D plaque extraction, the severity of
luminal stenosis varies between 25% and 75% (37). In clinical
diagnosis, luminal stenosis larger than 50% is widely used as the
criterion of significant stenosis (22, 35–37).

Numbers of Human Subjects and Arterial Segments
Most of the studies on 2D plaque extraction included <100
human subjects. However, multiple arterial segments can be
extracted from the imaging data of one subject. Therefore, in
some studies, there are more arterial segments than human
subjects. As mentioned, the only study using ex vivo data
included three ex vivo human hearts (39). The following
paragraphs are focused on the studies using in vivo data.

There were 2 pilot studies, which included <10 human
subjects (27, 37). In the first study, 12 arterial segments were
extracted from the imaging data of 10 human participants (37).
In the second study, to investigate the automatic extraction of
both calcified and non-calcified plaques, three male patients with
acute myocardial infarct were included. For each subject, three
CCTA scans were performed with different imaging parameters.
In each scan, 17 coronary segments were extracted following
the coronary arterial model proposed by the American Heart
Association (AHA) (27).

Two studies included 10–50 human subjects. The first one
included 31 human participants as well as 2 phantoms, from
which 375 coronary arterial segments and 77 calcified plaques
were extracted (17). This study was focused on the reduction
of blooming artifact in extracting calcified plaques; therefore,
patients with non-calcified plaques were excluded. Another
study included 43 subjects to investigate the derivation of
coronary calcium scoring (CCS) from low-radiation-dose (24).
The analysis was based on individuals; therefore, the number of
arterial segments was not provided.

Six studies included more than 50 (range: 53–99) subjects.
Rossi et al. extracted 144 stenosed segments of coronary arteries
from 99 patients to investigate if CTCA could be used in
screening the functionally significant coronary lesions (35). To
investigate the semi-automatic coronary plaque quantification,
Øvrehus et al. collected the CTA data of 50 patients in which
627 arterial segments were confirmed as evaluable (diameter >

1.5mm, without motion artifact) by observers. Luminal stenosis
of> 70% and 50–70%was found in 1 and 4 patients, respectively.
Non-calcified and mixed plaques were found in 17 and 55
arterial segments (22). Li et al. proposed a new algorithm to
improve the accuracy of reconstructing non-calcified plaques
(36). Seventy-seven non-calcified plaques were extracted from 66
patients. The analysis was plaque-based therefore the number of
arterial segments was not disclosed (36). Similarly, two studies
investigated the reconstruction of calcified plaques based on
Agatston coronary artery calcium scoring (CAC) scoring, with
CT data collected from 63 (23) to 60 (25) subjects, respectively,
without mentioning the number of arterial segments. Another
study investigated plaque compositions divided by five ranges of
HU values. Totally 160 plaques were extracted from 53 patients,
without mentioning the number of arterial segments (26).

In addition, there is a clinical literature review which includes
over 6,000 cases (34). This large and diverse population was used
to cover a wide range of vulnerable and non-vulnerable plaques,
which differ in severity and composition.

Considering the individual differences in the geometry of
coronary arteries and plaques, recruiting large numbers of
subjects could provide enough data for reliable statistical analysis.
However, some of the presented studies have a small number of
participants as they are pilot studies or phantom-based validation
of algorithms. The extraction of multiple arterial segments from
one subject is an important method to enlarge the sample size
of arteries.

Classification of Coronary Plaques
The development of atherosclerosis starts from the filtration
of low-density lipoprotein through the endothelium, which
forms the fatty streaks in the arterial wall. The consequent
inflammatory response involves macrophages, T-cells,
and complex biochemical mechanisms, forming lipid-rich
atherosclerotic plaques which finally become calcified and
fibrous. According to the criteria proposed by AHA, the
development of atherosclerotic plaques in coronary arteries
consists of eight major stages: 1. Isolated macrophage foam cells;
2. Multiple foam cell layers formed; 3. Isolated extracellular
lipid pools added; 4. Confluent extracellular lipid core formed;
5. Fibromuscular tissue layers produced; 6. Surface defect,
hematoma, and thrombosis; 7. Calcification predominates; and
8. Fibrous tissue changes predominate (42).

Based on the AHA criteria, in grating-based phase-contrast
computed-tomography (gb-PCCT) imaging of coronary arteries,
four types of plaques could be differentiated: 1. Plaque with
lipid or necrotic core surrounded by fibrous tissue with
possible calcification; 2. Complex plaque with possible surface
defect, hemorrhage or thrombus; 3. Calcified plaque; and 4.
Fibrotic plaque without lipid core and with possible small
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TABLE 1 | Graphical representation of described examples of calcified and non-calcified plaques.

Methodology Calcified plaques Non-calcified plaques

Fibrotic Lipid

Histological sample

I: late fibro-atheroma (LFA) lesion (necrotic core

covered by a fibrous cap). II-V: consolidated

former lesions [fibrotic calcified plaque (FCP)].

Adapted from Lindeman et al. (44) © 2018 by

the authors. CC BY 4.0.

Fibrous plaque, which is fibrocellular and also

rich in proteoglycans (Elastic van Gieson, 100)

Adapted from Vaideeswar et al. (45) © 2019 by

the authors. CC BY 4.0.

Fatty plaque, comprising a large lipid-rich core

separated from the lumen by a thin fibrous cap.

The lipid material may in the form of collections

of foamy macrophages and/or extra-cellular

lipid material (HE, 100). Adapted from

Vaideeswar et al. (45) © 2019 by the authors.

CC BY 4.0.

2D plaque

reconstruction

Calcification marked with purple mask.

Adapted from Messerli et al. (25) © 2016 with

permission from The Association of

University Radiologists.

The necrotic core (35.3%, dark green)

surrounded by fibrous plaque (51.5%, light

green). Lumen and calcification (13.2%) are

marked orange and pink, respectively. Inset

shows cross-sectional images at arrows.

Adapted from Obaid et al. (46) © 2017 by the

authors. CC BY 4.0.

A lipid plaque: yellow <51 HU, red 51–100 HU,

green 101–150 HU, blue 151–350 HU, white

>350 HU.

Adapted from Chen et al. (26) © 2016 with

permission from The Foundation

Acta Radiologica.

3D plaque

reconstruction

(Continued)
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TABLE 1 | Continued

Methodology Calcified plaques Non-calcified plaques

Fibrotic Lipid

Lumen and calcified plaque reconstructed by

semi-automatic and manual methods. Adapted

from Kigka et al. (47) © 2017 with permission

from Elsevier Ltd.

The semi-automatic analysis of a fibrotic plaque

in LAD: lipid (red), fibrous (blue) and calcified

(yellow) components.

Adapted from Cui et al. (48) © 2017 by the

authors. CC BY 4.0.

Semi-automatic segmentation of coronary

vessel: calcified (yellow), lipid (green) and

fibrotic (blue).The cross-section shows a

lipid plaque. Adapted from Infante et al. (49) ©

2019 by the authors. CC BY 4.0.

TABLE 2 | Methods of coronary plaque classification.

Plaque classification

Calcified and non-calcified Calcified, mixed, and

non-calcified

Lipid-rich, fibrous, and calcified

2D reconstruction Calcified and non-calcified plaques (22, 27, 35, 39).

Calcified and non-calcified plaques, as well as

high-risk plaques. The main CTCA features related to

high-risk plaques are: (1) positive remodeling, PR

[remodeling index (RI) ≥1.1]; (2) low-attenuation

plaque, LAP (<30 HU); (3) napkin-ring sign, NRS

(description below); and (4) spotty calcifications, SCs

(<3mm) (34).

Different plaque combinations (soft,

intermediate, and calcified), different

stenosis (50% and 75%), different

lumen densities (low and high lumen),

positive remodeling and spotty

calcium (37).

Non-calcified plaques, including

fibrous and lipid-rich ones,

components segmented using

different thresholds: <51, 51–100,

101–150, 151–350, and >350 HU

intervals (26).

3D reconstruction Calcified and non-calcified plaques (32, 47, 51, 52). Calcified plaque, non-calcified

plaque, and mixed plaque, i.e., a

plaque containing calcified and

non-calcified components (53).

Mixed (51%), non-calcified (31%), and

calcified (18%) plaques (54).

729 non-calcified plaques, 511

calcified plaques, and 546 mixed

plaques (33).

The plaque area was stratified into

<60 HU (lipid-rich plaque) and >180

HU (calcified plaque) parts (29).

Soft lipid-rich plaques, mixed

plaques, calcified plaques (55).

Lipid, fibrous, and calcified

components as < 60 HU, 60–200

HU, and > 200 HU (31).

Lipid-rich, fibrotic, and calcified

plaques (28).

Non-calcified plaque, low-density

non-calcified plaque, and calcified

plaque (56).

Low-density non-calcified plaques

(different thresholds of attenuation

values used) and calcified

plaques (30).

calcification (43). In the histological analysis, the calcified (44),
fibrotic (or fibrous), and lipid (or lipid-rich) plaques (45)
can be easily differentiated by the image features (Table 1).
In general CT imaging, atherosclerotic plaques in coronary
arteries can be classified into three categories: calcified, non-
calcified, and partially calcified (or mixed) (50). Based on
the advanced analysis of CT images, the non-calcified plaques
could be further classified as lipid and fibrotic plaques (46),
as illustrated in Table 1, which has been applied in 2D plaque
extraction (26). Different classification methods of coronary
plaques have been summarized in Table 2. Considering the
difference between studies in the resolution of CT imaging,
the accurate separation between lipid-rich and fibrotic plaques
remains challenging (50). In clinical CT imaging, calcified and
fibrotic plaques are frequently observed in fully developed
stenoses since they reflect the late stages in the progression of
atherosclerosis. Whereas, lipid-rich plaques are less commonly

observed since they mainly represent the initial stage of
atherosclerosis, when the plaque could not cause severe stenosis
and hemodynamic effects.

In the 13 studies on 2D plaque extraction, 4 studies included
only calcified plaques (17, 23–25). Two studies were mainly
focused on non-calcified coronary plaques (36, 38). Seven papers
included both calcified and non-calcified coronary plaques,
which gives us an overview of the progression of atherosclerosis
in CAD patients (22, 26, 27, 34, 35, 37, 39).

Attenuation Values of Different Plaques
The attenuation value of calcification is much higher than that of
the surrounding tissues. Therefore, the differentiation of calcified
and non-calcified plaques on CT images could be achieved by
setting thresholds of attenuation (24). The threshold for calcified
plaques varies in different studies (see Table 3). An earlier study
in 2011 used the ranges of 30–70 HU for non-calcified plaques
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TABLE 3 | Comparison of attenuation values used in selected studies.

Study Year Dimension of

reconstruction

Attenuation values (in HU units)

Calcified plaques Non-calcified plaques

Li et al. (36) 2019 2 N/A <60 for low-attenuation plaques

<200 for high-attenuation rim with an inner

hypo-attenuation area (<130)

Li et al. (17) 2018 2 1097–2910 N/A

Funama et al. (37) 2017 2 150 40 for soft plaques

80 for intermediate plaques

Braber et al. (24) 2016 2 >130 for Agatston Scores >351

and >600 for

plaque reclassification

N/A

Messerli et al. (25) 2016 2 >130 N/A

Rodriguez-Granillo et al. (34) 2016 2 >130 <30 for low-attenuation plaques

Matsumoto et al. (30) 2019 3 >500 < 150 for non-calcified plaques

<30 and <45 for lipid-rich plaques

Kigka et al. (47) 2018 3 >400 <50

Wang et al. (31) 2017 3 >200 < 60 for lipid plaques

60–200 for fibrotic plaques

You et al. (28) 2016 3 ≥130 0–49 for lipid plaques

50–129 for fibrotic plaques

Puchner et al. (29) 2015 3 >180 <60

and >70 HU for calcified plaques (57). Another study in 2014
used the ranges of−10–69, 70–129, and>400HU to differentiate
lipid, fibrotic, and calcified plaques (58).

Attenuation scale has been used to differentiate non-calcified
coronary plaques (59). However, the differentiation of non-
calcified plaques is difficult due to the limited contrast between
the fibrotic and lipid tissues in attenuation value (Table 3).
Additionally, the attenuation values of a non-calcified plaque
and its neighboring tissues are not significantly different around
the boundary. Therefore, it is difficult to develop the fully
automatic methods to reconstruct the non-calcified plaques and
differentiate the components of non-calcified plaques.

For calcified plaques, Agatston CAC scoring is widely used as
an estimation of the total amount of calcium for the prediction of
adverse cardiovascular events in people with CAD. It is calculated
using high calcium area slice of the CT image, multiplied by
the maximal attenuation of the calcification in individual case
(60). The attenuation value qualitatively reflects the different
types (calcified and non-calcified) of plaques whereas the
Agatston score quantitatively represents the calcification in
coronary arteries.

Methods of Plaque Extraction and Reconstruction
The methods of 2D plaque extraction can be categorized as semi-
automatic and automatic. During extraction, manual interaction
is indispensable in semi-automatic methods but is infrequent
in automatic methods. The manual interactions include: setting
the boundaries of areas for analysis such as the start and end
points of arterial segments and plaques, adjusting the automatic
segmentation and extraction results to revise the geometric
errors, and using the manual extraction results to train or
validate new algorithms. Other manual interactions include

setting parameters in image processing and selecting CT images
for analysis. The details are listed in Table 4.

Messerli et al. proposed a semi-automatic method to evaluate
CAC on software (syngo.via CT CaScoring, Siemens Healthcare)
(25). Firstly, coronary lesions with attenuation >130 HU were
automatically color-coded. Then the calcified coronary structures
were manually selected. Finally, the software automatically
calculated the Agatston score, CAC volume (mm3), and CAC
mass (mg/cm3). Similarly, Szilveszter et al. (23) used software
to identify the coronary artery plaques with area ≥1 mm2 and
density >130 HU. Coronary plaques were selected manually to
enable the semi-automatic software to calculate CAC scores.

The manual segmentation by tracing the proximal and
distal plaque boundaries (26), and the visual examination
and manual adjustment (24) were common in semi-automatic
methods. Øvrehus et al. used manual interactions in imaging
reconstruction and plaque segmentation (22). In multiplanar
reformats of CTA images, a circular region of interest was placed
in the aorta to define the “normal reference bloodpool.” The
proximal and distal boundaries of each lesion were identified
and marked by the reader. The software then automatically
tracked the centerline of the coronary artery and quantitatively
analyzed the plaques. Rossi et al. proposed a semi-automatic
method to compare the visual and quantitative evaluations of
plaques in CTCA images, in which various manual interactions
were involved (35). Firstly, the CTCA data sets were evaluated
visually, and the coronary lesion was graded as non-obstructive
(<50% lumen narrowing), moderate (50% ≤ lumen narrowing
<70%), and severe (≥70% lumen narrowing). Afterwards,
the proximal and distal endpoints of coronary vessels with
lumen diameter reduction ≥30% were manually marked. The
lumen and vessel borders were generated automatically and
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TABLE 4 | Manual manipulations in automatic and semi-automatic methods of plaque extraction.

Study With manual manipulation

Set the boundary

of analysis

Adjust the result

when needed

Generate results

to train the

algorithm

Generate results

to validate the

algorithm

Others

2D

reconstruction

Semi-automatic Messerli et al. (25)
√

Rossi et al. (35)
√ √ √

Precht et al. (27)
√ √

Øvrehus et al. (22)
√

Window level and width of

image reconstruction were

adjusted for optimal

visualization at the

discretion of the observer.

Szilveszter et al. (23)
√

Chen et al. (26)
√

Braber et al. (24)
√

Automatic Li et al. (17)
√

Optimal cardiac phase

with the least motion

artifact was selected

manually by the operator.

Li et al. (36)
√

Funama et al. (37) (not

explicitly pointed out as

automatic)

√

Kashani et al. (38) (not

explicitly pointed out as

automatic)

√

Puchner et al. (39)

(comparison between

automatic and

semi-automatic algorithms)

√

3D

reconstruction

Semi-automatic Kigka et al. (47)
√

Matsumoto et al. (30)
√ √

(extract IVUS

images)

Co-registration of IVUS

and CTA images

Sakellarios et al. (52)
√

Gaur et al. (56)
√

Puchner et al. (29)
√

Wang et al. (31)
√

You et al. (28)
√

Sun et al. (61)
√

Athanasiou et al. (62)
√ √

Co-registration of IVUS

and CTA images

Wei et al. (63)
√ √ √

Automatic Jawaid et al. (64)
√

Ghanem et al. (55)
√

Károlyi et al. (32)
√

Zhao et al. (33)
√ √

Using Rotterdam

Coronary Artery

Evaluation Dataset

Zreik et al. (53)
√ √

Kang et al. (51)
√ √

Park et al. (54) (comparison

between automatic and

semi-automatic algorithms)

√ √
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adjusted by an experienced observer. The quantitative analysis
of plaques was automatically completed by software. Precht
et al. adopted similar semi-automatic method to estimate plaque
volume in low-dose CCTA (27). The centerlines of the coronary
arteries were automatically extracted and manually corrected
when needed. The extracted arteries were manually partitioned
according to the AHA 17-segment model. For each artery, the
contours of lumen and outer vessel wall were automatically
detected and manually fine-tuned by two independent observers
with more than 7 years of experience. The manual fine-tuning of
the automatic contour detection only showed a 0–7.3% deviation
which did not significantly influence the final results. Puchner
et al.’s compared the automatic and semi-automatic methods in
generating vessel wall boundaries (39). The boundaries of vessel
wall (inner, outer, or both) were manually corrected.

The manual segmentation results play an important role
in the validation of automatic algorithms. Li et al. developed
an automatic algorithm for CT image processing (36). For
validation, two experienced radiologists independently identified
plaque characteristics on the images reconstructed with different
algorithms. Similarly, Funama et al. used the consensus of two
CT image reviewers in plaque evaluation to compare different
image processing algorithms (37). The reconstructed CT images
were manually classified into four levels of quality, in vessel
and plaque areas, respectively. Li et al. proposed an automatic
de-blooming algorithm (17). Coronary computed tomography
angiography images of phantoms were manually selected by
the operator to find the images at the optimal cardiac phase
with the least motion artifact. For in vivo CCTA images, an
experienced reader independently reviewed all data sets, noted
coronary calcification, and measured the volume of calcified
plaques, coronary diameter stenosis (%), as well as the coronary
area stenosis (%) on software as the reference for validation.
Kashani et al. optimized the parameters of CCTA by comparing
the quality of images derived by different parameter values (38).
The contrast-to-noise ratio (CNR) was measured manually by
prescribing a 0.018–0.021 cm2 region of interest in the center of
the plaque and pericoronary fat in 8 different locations.

For 2D plaque extraction, there are more semi-automatic
methods than automatic methods. Automatic methods are
efficient and convenient for the large-scale extraction of coronary
arteries and plaques from the CT images. However, the plaque
size is often over- or underestimated when using automatic
software. Hence, the manual interactions including editing and
analysis are useful to improve the accuracy of 2D plaque
extraction (22).

Technical Innovations
Filtered back projection (FBP) is a traditional type of algorithm
that can indicate an attenuation value to each pixel (65) on
CTA images. Filtered back projection reconstruction assumes
that each pixel accurately indicates the attenuation. In 2D
coronary plaque reconstruction, FBP is widely used to derive the
reference values for the validation of new algorithms. Iterative
reconstruction (IR) algorithms have the potential to improve the
quality of CT image by reducing image noises and blooming
artifacts when comparedwith FBP. IR algorithms are themajority

of new algorithms in 2D coronary plaque reconstruction. In
the following paragraphs, the algorithmic innovations will be
summarized in terms of the improvement of accuracy in
extracting different types of plaques.

Calcified Plaques
Calcified plaques are easy to extract from CT images due to
their high attenuation values. Nevertheless, the brightness of a
calcified plaque could affect its neighboring pixels by increasing
their attenuation values. Consequently, the overestimation of the
calcification size is common. Li et al. developed a de-blooming
algorithm and applied it on CCTA images of 31 patients
(17). They found that the de-blooming algorithm reduced the
calcification volume and the stenosis in diameter by 48.1± 10.3%
52.4± 24.2%, respectively. However, the details of this algorithm
were not disclosed (17).

Szilveszter et al. investigated the impact of iterative model
reconstruction (IMR) on coronary artery calcium quantification
as compared with the standard FBP and hybrid iterative
reconstruction (HIR) algorithms (23). CT images of 63
individuals were reconstructed with FBP, HIR, and IMR. HIR and
IMR resulted in lower CAC scores as compared with FBP (both
p < 0.001). There was no difference between HIR and IMR (p
= 0.855). The authors concluded that the utilization of IMR for
CAC scoring can reduce the measured calcium quantity (23).

Braber et al. investigated the quantification of calcification
in low-dose CCTA images using IR (24). Coronary artery
calcium was quantified with Agatston scores on the CCS images
using a semi-automatic software package (HeartBeat-CS; Philips
Healthcare, Best, the Netherlands). For Agatston scoring, CAC
was defined as regions with ≥130 HU within coronary arteries.
All regions with density higher than 130 HU were automatically
indicated by the software package. Calcification volumes were
derived with a semi-automatic software package (QAngio CT v2;
Medis Medical Imaging Systems, Leiden, the Netherlands) (24).

However, it was also suggested that IR could underestimate
the calcification. Messerli et al. evaluated the influence of
advanced modeled iterative reconstruction (ADMIRE) on the
coronary artery calcium (CAC) scores, with FBP algorithm as
the reference (25). CT images of 60 patients were reconstructed
with FBP and ADMIRE at incremental strength levels of 1, 2,
3, 4, and 5, resulting in a total of 6 datasets. In four patients
with low calcium burden, the use of ADMIRE 2 or higher
resulted in the disappearance of calcium that was detectable using
FBP. The authors concluded that ADMIRE causes a substantial
reduction of the CAC scores measured by cardiac CT, which
leads to an underestimation of cardiovascular risk scores in some
patients (25).

Non-calcified Plaques
As to non-calcified plaques, the contrast in grayscale values
between plaques, arterial walls, and surrounding tissues is
low in CT images. The attenuation values or CAC/Agatston
scales could not reflect the exact geometry of non-calcified
plaques. To accurately separate the non-calcified plaques
from the surrounding tissues, the morphological properties of
non-calcified plaques need to be considered. Therefore, new
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algorithms based on IR (23) have been proposed to improve
the quality of CT image in order to find the morphological and
geometrical properties of the boundary between non-calcified
plaques and surrounding tissues (17).

Li et al. assessed the effects of IMR algorithm on image
quality in demonstrating the characteristics of high-risk non-
calcified plaques in coronary arteries, in comparison with the
HIR algorithm (36). The 256-slice CT images were derived from
66 patients with 77 non-calcified plaques. Paired CT image sets
were reconstructed by HIR and IMR, respectively, on which
plaque characteristics were compared. The signal-to-noise ratio
(SNR) and CNR of the images, as well as the CNR between the
plaque and adjacent adipose tissue, were also compared between
the two reformatted methods. The napkin-ring sign appeared in
40 and 19 plaques reconstructed with IMR and HIR, respectively,
which are significantly different (p < 0.001). Compared with
HIR, IMR derived lower image noise (10 ± 2 HU vs. 12 ± 2
HU; p < 0.01), higher SNR and CNR, and especially higher
CNR between plaques and surrounding adipose tissues (p <

0.01). The authors concluded that IMR can significantly improve
image quality compared with HIR for the demonstration of
atherosclerotic plaques in coronary arteries (36).

Furthermore, Chen at al. applied IR algorithm in the
assessment of plaque vulnerability (26). They compared coronary
plaque volume and low attenuation (lipid-rich) component
derived by IR and FBP, respectively, from CTA images of 53
patients. Coronary plaques were identified by a board-certified
radiologist (14 years of experience in cardiac CT). Then post-
processing was performed by a research assistant trained in
plaque volumetric analysis. The analysis was done in multiplanar
reformat (MPR) using a semi-automated software (Aquarius
iNtuition 4.4.6, TeraRecon Inc., Foster City, CA, USA). Proximal
and distal plaque boundaries were traced manually. Total plaque
volume was then obtained automatically. Plaque composition
was assessed using attenuation (HU) intervals. It was found that
IR significantly decreased the noise and increased SNR and CNR
compared with FBP. Plaque characterization was performed in
41 patients for a total of 125 plaques. Regarding the total plaque
volume and the low attenuation plaque component, there was
no statistically significant difference between all IR levels and
FBP. The authors concluded that no significant impact on plaque
vulnerability assessment should be expected when using IR vs.
FBP for plaque reconstruction from CTA images (26).

Different Plaques
Puchner et al. applied IR algorithm in semi-automated extraction
of different plaques (fibrous, fatty, or fibrofatty, and the
presence of calcification) (39). Coronary computed tomography
angiography and IVUS images of seven coronary arteries were
acquired ex vivo. Images of 173 cross-sections of coronary arteries
were coregistered between CCTA and IVUS in 1-mm increments.
Coronary computed tomography angiography images were
reconstructed using FBP with adaptive statistical (ASIR), and
model-based (MBIR) iterative reconstruction algorithms. Fully
automated (without manual corrections) and semi-automated
(allowing manual corrections of vessel wall boundaries) plaque
burden assessments were performed for each reconstruction

algorithm. Agreement between CCTA results and IVUS was
evaluated with Pearson correlation. It was found that manual
correction of the semi-automated assessments improved plaque
burden correlation with the IVUS assessment independently
of reconstruction algorithm (p < 0.0001). Furthermore, MBIR
was superior to FBP and ASIR in semi-automated and fully
automated plaque extraction (all p < 0.001). It was concluded
that MBIR with semi-automated assessment could improve the
accuracy of plaque burden assessment in CCTA images (39).

Overall Plaque Burden
Precht et al. compared ASIR and MBIR reconstruction
algorithms on quantitative measurements of plaque volumes
and intensities in coronary arteries (27). Dose-reduced CCTA
were derived from 3 patients and reconstructed with 30% ASIR
(CTDIvol at 6.7 mGy), 60% ASIR (CTDIvol 4.3 mGy) and
MBIR (CTDIvol at 1.9 mGy). Quantitative coronary plaque
analysis was performed. Centerlines of the coronary arteries were
automatically extracted and manually corrected. The extracted
vessels were manually partitioned according to the AHA 17-
segment model. The contours of lumen and outer vessel wall
were automatically detected andmanually fine-tuned. The plaque
burden was calculated as the ratio between total plaque volume
and total vessel volume. It was found that plaque volume and
plaque burden show a decreasing tendency from ASIR to MBIR.
The lumen and vessel volume decrease slightly from 30% ASIR
to 60% ASIR. The intensities did not change overall between the
ASIR and MBIR reconstructions for either lumen or plaque (27).

Funama et al. investigated the effect of contrast enhancement
on the stabilities of plaque attenuation, using FBP and IR
algorithms in imaging reconstruction (37). 320-detector volume
scanning was performed on phantoms of vessel tubes with
stenosis and a tube without stenosis using three types of plaque
attenuation values. CTA images were reconstructed with FBP
and two types of IR [AIDR3D and FIRST (forward-projected
model-based iterative reconstruction solution)], with stenotic
attenuation value of ∼40, 80, and 150 HU, respectively. In each
case, the tubing of the coronary vessel was filled with diluted
contrast material and distilled water to reach the target lumen
attenuation values of ∼350, 450, and 0 HU, respectively. It was
found that at 50% stenosis, the plaque attenuation value with
contrast enhancement increased for FBP and AIDR3D, and the
difference in the plaque attenuation value with and without
contrast enhancement was 15–44 HU for FBP and 10–31 HU
for AIDR3D. However, the plaque attenuation value for FIRST
had a smaller variation and the difference with and without
contrast enhancement was −12–8 HU. The validation study was
performed on CT images of 10 patients where FIRST derived
the highest CNR in vessels and plaques. The authors concluded
that the FIRST method improves the visualization of coronary
plaques in coronary CT angiography (37).

Geometric Parameters in Measurement
In 2D reconstruction, some geometric parameters could be
directly measured from the 2D images, including cross-sectional
area, lesion length, minimal area diameter, and mean vessel size
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for the affected blood vessels (39). These parameters reflect the
size of plaques and affected arterial segments.

The extent of coronary plaque could also be quantitatively
evaluated by plaque burden, which is defined as the percentage
of plaque in cross-section area: PB = (ACN-ACS)/ACS, where
PB denotes plaque burden while ACN and ACS denote the
cross-section areas in normal and stenotic arterial segments,
respectively (39, 66).

Intra- and Inter-Observer Repeatability
Intra-observer and inter-observer repeatability reflect the
consistency between repeated measurements performed by one
observer and different observers, respectively. The expertise in
coronary CT imaging and diagnosis can improve the intra- and
inter-observer repeatability (67). Acquiring expertise in CTA
interpretation may take more than a year. It has been reported
that, for coronary CT imaging, the intra- and inter-observer
repeatability on plaque volume estimation depends on the size
of plaque (68). Furthermore, the repeatability results indicated
that the percentage of plaque composition is more reliable than
plaque volume (69). Therefore, the estimation of intra- and
inter-observer repeatability is important to validate the reliability
of plaque extraction methods.

In the 13 studies on 2D plaque extraction, the intra-observer
repeatability was evaluated in five studies (22–24, 26, 38). Inter-
observer repeatability was evaluated in 7 studies, (17, 22, 23,
26, 27, 36, 37). Six studies reported that the measurements
were repeated by at least one expert with more than 5 years of
experience (17, 26, 27, 36, 37). Comparatively, the experience of
expert was between 1 and 5 years in other two studies (22, 23).

Reference of Accuracy
To evaluate the accuracy of plaque extraction algorithms, the
reconstructed coronary plaques from 2D CT images were often
compared with the results derived from invasive coronary
angiography (ICA) (35), IVUS (39), or pre-defined geometric
parameters in phantoms (38). Compared with CT imaging, the
ICA and IVUS are more accurate in reflecting the geometric
details of lumen, therefore have been widely used as the reference
in related studies (70, 71).

3D Methods of Coronary Plaque Extraction
From CT Images
Classification of Data
We found 17 papers focused on the 3D methods of coronary
plaques extraction and reconstruction, including 16 original
studies (28–33, 47, 51–56, 61, 62, 64), and a review paper (72).
The same method was adopted in Athanasiou et al. (73) and
Sakellarios et al. (52). The imaging data used in 3D plaque
extraction include phantom, ex vivo, in vitro, and in vivo data.

A study used 17 plaque phantoms in three different types of
attenuation, to investigate the reliability of low radiation dose
CT imaging in representing the 3D geometry of plaques. By
using phantoms, the accuracy of plaque extraction could be
quantitatively evaluated in volume (31).

In 3D plaque extraction, ex vivo imaging data enable the
researchers to perform accurate 3D geometric measurements

(29). The results of plaque extraction could be compared with
the histopathological measurement as the ground truth (29).
Nevertheless, the lumen of an ex vivo artery is hollow whereas
the lumen of the corresponding in vivo artery is filled with blood
which has cyclic changes in pressure, velocity, and wall shear
stress. Consequently, considering the effects of cyclic fluctuations
of blood flow on the deformation and mechanical properties
of arterial walls, the geometry of ex vivo arteries could be
different from in vivo ones, which is a major limitation of ex vivo
data (74).

In vitro data, here defined as the imaging data derived
from patient-specific models of coronary arteries, could provide
patient-specific geometry parameters of plaques and affected
arteries. Compared with in vivo and ex vivo data, in vitro
data could accurately reflect the geometry of arteries without
motion artifact. Sun et al. used in vitro data of calcified plaques
with different severities from three subjects to investigate the
effect of slice thickness and beam energy on the accuracy of
synchrotron radiation CT imaging. The in vitro arterial models
were generated from the original high-resolution CCTA images
using 3D printing technique. The plaques reconstructed from
the synchrotron radiation CT images of the in vitro models
were compared with those reconstructed from the origin CCTA
images (61). Using in vitro data, the accuracy of plaque extraction
could be quantitatively evaluated in anatomical details of patient-
specific geometry. However, the high-resolution images for
in vitro model reconstruction, the materials and devices for
3D printing, as well as the multiple imaging operations for
comparison, limited the further application of in vitro data in
clinical diagnosis.

In vivo data were used in the majority (14 out of
17) of the original studies on 3D plaque extraction (28,
30, 32, 33, 47, 51–56, 62, 64) and was mentioned in the
review paper [(63) in (72)]. With 3D reconstruction, the
diversity in the geometry and composition of plaques could
be fully disclosed and represented not only on cross-sections
but also in the longitudinal direction along the vessel, as
well as in volume. Therefore, in vivo data play a key
role in investigating the 3D geometry and composition of
coronary plaques.

Inclusion Criteria on Arterial Segments and Plaques
The inclusion criteria in 3D plaque extraction studies are more
diverse compared with 2D studies. In 3D reconstruction, the
geometric details in different dimensions and the combination
with plaque composition generated more detailed inclusion
criteria for arterial segments and plaques compared with
2D reconstruction.

For arterial segments, the diameter (28) [as summarized
in (72)] and length of segment (56, 64) were widely used as
in 2D reconstruction studies. In a study on the prediction of
all-cause mortality in CAD patients based on CCTA images
(55), 16 arterial segments were extracted and 3D reconstructed
according to a 16-segment model of coronary arterial tree (75).
In another study, to investigate the difference between proximal
and distal segments of the main coronary arteries [anterior
descending artery (LAD), left circumflex artery (LCX), right
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TABLE 5 | Characters of data in the studies of 3D coronary plaque analysis.

Study Year Type of

data

Number of

subjects

Number of stenosis or sections Standards of inclusion or exclusion of artery

segment (length of diameter)

Gaur et al. (56) 2016 in vivo 254 484 vessels Coronary segments ≥2mm with plaque were

analyzed. Spotty calcification was visually identified

as calcifications comprising <90◦ of the vessel

circumference and <3mm in length

Jawaid et al. (64) 2018 in-vivo 8 13 non-calcified segments Maximum arterial segment length of 6mm used for

segmentation

Sakellarios et al. (52)

Athanasiou et al. (73)

2016 in-vivo 20 20 N/A

You et al. (28) 2016 in-vivo 87 N/A diameter >2.0 mm

Ghanem et al. (55) 2019 in-vivo 41 122 plaques 16 arterial segments in each case, according to a

modified coronary arterial tree model (75).

Wei et al. (63) as

summarized in the

review by Jawaid

et al. (72)

2018 in-vivo 83 120 soft plaques Radius <3mm to ensure that whole arterial

cross-section is covered since 2.5mm is the

maximum radius of coronary arteries

Athanasiou et al. (62) 2016 in-vivo 10 8 calcified plaques deposits N/A

Park et al. (54) 2015 in-vivo 142 150 coronary artery segments 11 segments excluded due to the insufficient IVUS

or CT image quality (seven segments) caused by

severe calcification or motion artifacts

Kigka et al. (47) 2018 in-vivo 12 12 arteries N/A

Károlyi et al. (32) 2017 in-vivo 52 468 segments, with 41 calcified or partially

calcified plaques identified

proximal and distal coronary segments, with middle

coronary segments and side branches excluded

Zhao et al. (33) 2019 in-vivo 48 1,786 cross-sections: 729 non-calcified

plaques, 511 calcified plaques, and 546

mixed plaques

N/A

Matsumoto et al.

(30)

2019 in-vivo 77 118 plaques without extensive calcifications 4 plaques excluded due to extensive echo

attenuation on IVUS

Wang et al. (31) 2018 In-vitro N/A 17 N/A

Puchner et al. (29) 2015 ex-vivo 3 26 and 67 cross-sections of lipid-core and

calcified plaques

Lipid-core plaque was included and defined as any

fibroatheroma with a lipid core >60◦ in

circumferential extent, with a core width of

>200µm and a cap thickness of <450 µm

Sun et al. (61) 2018 In-vitro 3 3 N/A

Kang et al. (51) 2015 In-vivo 42 252 segments of 126 arteries in total, 45

lesions with stenosis ≥25%

N/A

Zreik et al. (53) 2019 In-vivo 163 1,259 segments of 534 arteries, 37

non-calcified, 161 mixed and 317 calcified

plaques

N/A

coronary artery (RCA)], the middle segments and side branches
were excluded (32). In some studies, arterial segments especially
distal branches were excluded due to low quality of images
(30, 54).

Regarding the coronary plaques, the severity of included
stenoses ranged from 25% to more than 90% (47, 51). More
detailed inclusion criteria have been proposed based on
the analysis of plaque geometry in different dimensions.
Gaur et al. investigated the difference between calcified
and non-calcified plaques in FFR, where the criterion
of spotty calcification was defined as visually identified
calcifications comprising <90◦ of the vessel circumference
and <3mm in length (56). Similarly, in another study
which investigated the accuracy of 3D reconstruction of
lipid-core plaques, a lipid-core plaque was defined as any

fibroatheroma with a lipid core >60◦ in circumferential extent,
with a core width of >200µm and a cap thickness of <450
µm (29).

Numbers of Human Subjects and Arterial Segments
The number of human subjects covers a wide range (3–254)
in different studies on 3D reconstruction of coronary plaques.
Firstly, only three human subjects were included in the two
pilot studies using exclusively ex vivo and in vitro data (29, 61).
In contrast, the studies using in vivo data included at least 8
human subjects (Table 5). Secondly, regarding the studies using
in vivo data, those included <30 human subjects were focused
on algorithmic development with limited validation (52, 64) or
initial validation (47, 62, 73). In contrast, the studies including
more than 80 subjects were aimed for the full validation of
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existing algorithm (63), the pathological indication of results
(28), and clinical applications (54, 56).

In many large-scale studies, the inclusion (or exclusion)
criteria and information of subjects are provided in details. To
investigate the effects of plaque properties (severity, volume,
length, etc.) on the occurrence of myocardial ischemia, a
clinical study included 484 coronary arteries extracted from 254
participants. The plaques were categorized according to their
severity: 0, 1–29, 30–50, 51–70, 71–90, 91–99, or 100% (56).
For machine learning algorithms, it is significant to generate
a large-scale dataset for training and validation. Kang et al.
investigated the differentiation between obstructive and non-
obstructive plaques using machine learning, where CTA data
were collected from 42 patients in which 45 stenotic coronary
lesions with ≥25% luminal stenosis were extracted from 21
patients (51). Zreik et al. used deep learning to classify coronary
plaques (no plaque, non-calcified, mixed, and calcified), where
CCTA data of 98 and 65 patients were used for the training
and validation of algorithm, respectively. In total, 1,259 arterial
segments were extracted from 534 arteries (53). In large-
scale studies, the diversity and individual difference in plaque
geometry could be comprehensively investigated. However, the
data collection for large-scale studies could be time-consuming
and expensive.

In the studies on 3D plaque extraction, similar as in
2D studies, the numbers of arterial segments and plaques
are generally more than the number of subjects. In some
studies, the analysis of plaques is based on the cross-sections,
where the number of cross-sections is much higher than
that of subjects (29, 32, 33). In a recent study, 1,786 cross-
sections were extracted from a CTA dataset of 48 patients
to generate enough data for the 10-fold cross-validation of
the proposed algorithm (33). The extraction of cross-sections
could enlarge the dataset for analysis. Nevertheless, only 2D
geometry is represented on cross-sections. Plaque-based analysis
is needed to comprehensively evaluate the accuracy of 3D
plaque extraction.

Classification of Coronary Plaques
The 3D structure of calcified, fibrotic (48), and lipid (49) plaques
could be reconstructed from CT images. There are 2 studies
which exclusively included non-calcified plaques (64, 72). Two
studies were focused on the manual extraction of calcified
plaques (61, 62). In these studies, the calcified or non-calcified
plaques were not further classified. In the majority of studies
on 3D plaque extraction (13 out of 17), both calcified and
non-calcified coronary plaques were included (28–33, 47, 51–
56). In these studies, we observed diverse standards in the
classification of non-calcified plaques, as shown in Table 2. The
plaques could be classified according to the main component
as soft lipid-rich plaques, mixed plaques, and calcified plaques
(55), or non-calcified plaques, low-density non-calcified plaques,
and calcified plaques (56). The volume of extracted component
heavily depends on the threshold of attenuation value applied in
the study (30).

Attenuation Values of Different Plaques
As shown in Table 3, in 3D plaque extraction, 130 HU was used
as the lower threshold of calcified plaques (28) similar as in 2D
studies, while higher attenuation values such as 400 HU (47)
and 500 HU (30) were also observed. For non-calcified plaques,
the 3D reconstruction studies provided more details on the
separation between lipid-rich and fibrous plaques. Matsumoto
et al. used different thresholds attenuation (30 and 45 HU) to
extract low-density non-calcified plaques (30), and concluded
that the upper threshold of 45 HU improved the accuracy of
lipid-rich plaque assessment from CTA.

Methods of Plaque Extraction and Reconstruction
As in 2D studies, the studies on 3D coronary plaque extraction
could be classified as automatic and semi-automatic ones.
Manual interactions are common in semi-automatic methods.
Additionally, in 3D coronary plaque extraction, there is manual
co-registration of IVUS and CTA images (30, 62) which has been
applied in detecting vulnerable plaques (76). The details are listed
in Table 4.

The boundaries of interested areas can be manually set for 3D
analysis. For example, in Gaur et al.’s study, plaque components
were quantified within the manually designated area using
adaptive algorithms (56).

Manual adjustment of the segmentation and extraction results
is common in 3D semi-automatic plaque extraction (29). In
Puchner et al.’s study, the vessel wall boundaries obtained by
the automated software were reviewed and manually adjusted
by an experienced (>5 years of experience in the field of
cardiovascular imaging) cardiovascular radiologist. Similarly,
in Wang et al.’s study (31), the software automatically traced
the plaque boundaries and determined the luminal area, then
manual adjustment of the vessel center line and boundaries
was performed. In You et al.’s study (28), the plaques were
automatically color-coded and manually adjusted. The volume of
each plaque component was then automatically measured. In Sun
et al.’s study (61), manual editing and image filtering were applied
to remove the unwanted structures and smooth the surface of
coronary artery lumen.

Manual segmentation results have been widely used in
training and validating 3D plaque extraction algorithms.
In Sakellarios et al.’s study (52), the initial parameters of
their classification mode were set by the median value of
the attenuation value of the artery. Manual Expectation-
Maximization algorithm based adaption was applied in order
to best fit the model to artery’s attenuation histogram. In Kigka
et al.’s study (47), the result derived by the proposed algorithm
was compared with the expert’s manual annotation of artery and
calcified plaques.

In some studies, multiple manual interactions were used in
the semi-automatic 3D reconstruction of coronary plaques. In
Wei et al.’s study, after the manual segmentation of arteries, the
locations of plaques were manually marked for the training and
validation of the algorithm (63). In Athanasiou et al.’s study,
the CT and IVUS images were manually co-registered, with the
results of manual plaque extraction as the reference for algorithm
training (62). InMatsumoto et al.’s study (30), the vessel (external

Frontiers in Cardiovascular Medicine | www.frontiersin.org 13 February 2021 | Volume 8 | Article 597568

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Liu et al. Cutting-Edge CT-based Coronary Plaque Analysis

elastic membrane) and lumen contours on IVUS images were
manually delineated every 1mm to calculate plaque volume.
Plaque co-registration between CTA and IVUS was performed
manually by another investigator, who was not involved in the
processing of CTA images. The proximal and distal reference
limits of the plaque were matched to IVUS using anatomical
landmarks, such as the distance from the aorto-coronary ostium,
target lesions, side branches, or calcifications.

In automatic 3D plaque extraction, manual segmentation of
the region of interest and marking of the proximal and distal
endpoints of plaques (32, 33) have been applied, while themanual
segmentation results for algorithm training and validation are
more commonly observed (33, 51, 53, 55, 64). Especially, the
Rotterdam database provided experts’ manual annotations of
plaques as the ground truth. The motive behind using Rotterdam
data is the availability of the manual ground truth in terms of
expert annotations i.e., segment- wise status (normal/abnormal)
and the precise position of non-calcified plaque for the abnormal
coronary segments. Therefore, it provides a reliable source of
reference data for the development of new plaque extraction
algorithms (33, 64).

Manual extraction is important for automatic methods based
on machine learning. In Zreik et al.’s study (53), plaque type and
anatomical significance of the stenosis were manually annotated
by an expert using custom-built software following the guidelines
of the Society of Cardiovascular Computed Tomography (SCCT)
for reporting CAD. Kang et al. used the consensus of three
experts’ visual assessment as the reference datasets for the 10-fold
cross-validation of a structured learning technique to detect all
coronary arterial lesions with stenosis ≥25% (51).

Park et al. developed an automatic 3D plaque quantification
algorithm and compared the results derived by automatic and
semi-automatic methods (54). The results of the automatic
algorithm were also compared with the IVUS results for
validation. In the semi-automatic method, the boundaries of
inner lumen and outer vessel wall were manually edited
when needed. Both experts and non-experts participated in
the manual segmentation of plaques. While both expert and
non-expert groups used automatic centerline extraction, the
experts edited the inner lumen and the outer vessel wall
contours manually, whereas, the non-expert readers used the
longitudinal contours for manual manipulation with minimal
cross-sectional editing. Lastly, the analysis was performed
on the same segments using the fully automatic contour
detection algorithm without manual editing. The automatic and
semi-automatic methods derived comparable results in plaque
quantification analysis.

Technical Innovations
For data processing and analysis, most of the 3D reconstruction
used specific algorithms whose names are disclosed while 2
studies used the algorithms embedded in the software (28, 54).

Park et al. used QAngio CT Research Edition (v2.02; Medis
medical imaging systems bv, Leiden, The Netherlands) for the
semi-automatic and automatic quantitative CT analysis (54).
The 3D reconstruction started with an automatic centerline
extraction. Based on these centerlines, straightened multiplanar

reformatted (MPR) volumes were reconstructed for the
segmentation and quantification. Longitudinal inner lumen
and outer vessel wall contours were detected by an automatic
algorithm and were segmented automatically in the transversal
images. The extracted geometry was then reviewed by experts,
and manually edited if necessary (54).

You et al. combined different novel algorithms embedded
in software in 3D plaque reconstruction (28). The 15-
segment coronary arterial model proposed by AHA was
adopted to select the arteries with diameter >2.0mm for
further analysis, with blurred segments excluded. Maximum
intensity projection, volume rendering, multiplanar reformation,
and curved multiplanar reformation results were routinely
constructed using the algorithms embedded on a commercial
workstation (EBW, Philips Medical Systems). If an abnormal
segment was identified, that coronary artery was evaluated on
an Aquarius workstation (TeraRecon, San Mateo, CA) where
non-calcified plaques were divided into lipid-rich (0–49 HU)
and fibrous (50–129 HU) plaques. The lesions on the baseline
and follow-up images were matched using adjacent anatomical
landmarks. The CAC Agatston calcium scores were calculated
using semi-automated software (EBW; Philips Medical Systems,
Best, The Netherlands), which identified the areas of at least
0.5 mm2 and a density ≥130 HU on CT images as calcification
(28). The authors concluded that the application of different
embedded algorithms could get the analysis results in a relatively
short period for clinical use.

FBP is the current standard CT image reconstruction
technique (30), therefore, it is widely used as the reference for
the validation of 3D (29, 32) and 2D (39) plaque reconstruction
algorithms. Nevertheless, FBP is sensitive to the large variations
in attenuation value between pixels caused by noises, with the
quality of reconstructed plaques affected (77).

Compared with FBP, IR algorithms are more robust in the
existence of noises. Hybrid IR could reduce the noise or artifacts
in CT images (32) and improve the quality of low-dose chest
CT images compared with FBP (77). Especially, Model-Based IR
(MBIR) uses optic parameters of the CT scanner to improve the
imaging quality, and has been applied in the reconstruction of
medical images in low radiation dose (31, 78). As in 2D studies,
the IR algorithms consist the majority of new algorithms in 3D
reconstruction of coronary plaques.

Takahashi et al. compared ASIR, MBIR, and FBP algorithms
in extracting calcified and non-calcified plaques from the CCTA
images of 352 patients (29). They found that image noise,
Agatston score, and calcium volume decreased significantly with
ASIR compared to FBP (each p < 0.001) (79). MBIR had
higher accuracy in detecting lipid-core plaques on CCTA images
compared with FBP and ASIR (p= 0.01, in 173 cases).

In Károlyi et al.’s study (32), compared with FBP and HIR,
IMR derived the highest CNR (p < 0.01), and the lowest overall
plaque volumes as well as calcified (>130 HU) volumes (p< 0.05
for all). For non-calcified plaques, compared with FBP and HIR,
IMR derived lower high-attenuation non-calcified volumes (90–
129 HU) (p < 0.05 for both), but similar intermediate- (30–89
HU) and low-attenuation (<30 HU) non-calcified volumes (p >

0.05 for all).
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Different 3D reconstruction algorithms could lead to different
hemodynamic parameter estimations. The computational fluid
dynamics (CFD) simulation on 3D-reconstructed coronary
artery models showed that the FFR values derived from the
3D coronary artery models reconstructed by FBP and iterative
reconstruction in image space (IRIS) are different but linearly
related [r = 0.74, 0.76, and 0.70 in left main coronary artery
(LMCA), LAD, and RCA] (80).

In 3D plaque extraction, some automatic methods have been
proposed based on machine learning or deep learning algorithms
including convolutional neural network (CNN), Support Vector
Machine (SVM), and Gaussian Mixture Model (GMM).

CNN is the commonest architecture in cardiovascular image
analysis (81). Zreik et al. investigated the automatic detection
and classification of plaques using a multi-task recurrent
convolutional neural network (RCNN) (53). Centerlines of the
coronary arteries were extracted from CCTA images of 163
patients to reconstruct MPR images. The type (no plaque,
non-calcified, mixed, calcified) and anatomical significance (no
stenosis, non-significant, i.e., <50% luminal narrowing, and
significant, i.e., ≥50% luminal narrowing) of plaques in the
coronary arteries were manually annotated in the MPR images
as the reference. To perform an automatic analysis, a multi-task
RCNNwas applied on theMPR images of coronary arteries using
cubes of 25× 25× 25 voxels. The network was trained and tested
using the CCTA images of 98 and 65 patients, respectively. In
detecting the plaque type and anatomic significance, the method
achieved the accuracy of 0.77 and 0.80, respectively. Authors
concluded that CNN algorithm could be applied in the automatic
detection and classification of coronary artery plaques, which
could benefit the automated triage of CAD patients (53).

SVMs are supervised machine learning techniques. An SVM
achieves the classification by constructing a multidimensional
hyperplane that optimally discriminates between two classes,
by maximizing the margin between two data clusters. Support
Vector Machine has been widely used in the reconstruction
of different organs from CT images (82). Zhao et al. proposed
an automatic multi-class coronary atherosclerosis plaque
detection and classification framework based on SVM. Firstly,
the transverse cross-sections were retrieved along centerlines
in CCTA images, with the region of interest extracted by
coarse segmentation. Secondly, a random radius symmetry
(RRS) feature vector was extracted, which incorporated
multiple descriptions into a random strategy and greatly
augmented the training data. Finally, the RRS feature vector
was fed into the multi-class coronary plaque classifier. The
proposed SVM-based algorithm outperformed intensity feature
vector and the random forest classifier on the Rotterdam
Coronary Datasets which includes 729 non-calcified plaques,
511 calcified plaques, and 546 mixed plaques (average precision:
92.6%) (33).

Kang et al. developed a robust automated algorithm of plaque
detection based on SVM (51). All coronary arterial lesions with
stenosis ≥25% were detected by a structured learning technique.
The plaque detection algorithm consists of two stages: (1) two
independent base decisions indicating the existence of lesions in
each arterial segment based on SVM and formula-based analytic

method and (2) the final decision made by combining the base
decisions. The SVM algorithm extracted the geometric and shape
features from small volume patches of arterial lesions. On 42 CTA
patient datasets where 21 datasets had 45 lesions with stenosis
≥25%, the proposed method achieved high sensitivity (93%),
specificity (95%), and accuracy (94%), with consensus reading
of lesions with stenosis ≥25% by three expert readers as the
reference. Authors concluded that their SVM-based algorithm
was promising for automated detection of obstructive and non-
obstructive lesions from CTA images (51).

A GMM is a probabilistic model based on a Gaussian
distribution for expressing the presence of sub-populations/sub-
classes within an overall population/class without requiring the
identification of the sub-class of interest (observational data).
The GMM specifies the features of the clusters which indicate
different tissues, and estimates which features are likely to differ
between clusters (83).

Sakellarios et al. proposed a 3D reconstruction method based
on the Radial Intensity Projection (RIP) (52). At each equally
distant (2mm) point on the centerline, a radial image was
produced perpendicular to the centerline using the B-spline
derivatives extracted at the specific point. The centerline was
modified using an iterative radial image correction to avoid
surface intersections in highly curved segments. Lumen, calcified
plaque, and non-calcified plaque weremodeled as a 3-component
GMM. The initial parameters were set by the median value of the
HU intensity of the artery. Manual or automated Expectation-
Maximization algorithm based adaption was applied in order to
best fit the model to artery’s HU histogram. Using the GMM
model, each pixel was classified to one of the five classes: (i)
inner wall, (ii) outer wall, (iii) calcified plaque, (iv) non-calcified
plaque, and (v) background, based on the class/component
with the maximum posterior probability. The algorithms were
integrated into a tool for semi-automatic extraction of coronary
and carotid arteries (52). Similarly, in Athanasiou et al.’s work,
the Perpendicular Radial Image (RPI) was generated along the
centerline for the detection of lumen wall and potential plaque
lesion borders (62). Based on the attenuation values, the PRI
image was classified into lumen, non-calcified plaque, calcified
plaque, and background pixels using a 4-component GMM. The
parameters of the GMM were fitted to each CT dataset, based
on a set of regions (from each dataset) manually annotated
by an expert to lumen, non-calcified plaque, calcified plaque,
and background.

Jawaid et al. proposed a hybrid energy model to extract
the coronary artery tree. A tubular model and an elliptical
model were used to present the geometry of arterial segment
and cross-sections, respectively. The boundary of stenosed
segment was reconstructed from adjacent normal segments. The
reconstructed non-calcified plaques were compared with the
manually extracted lumen deformations. This automated plaque
segmentationmethod achieved the accuracy equivalent to human
experts, but a bulk of data is needed for adequate training of the
CNN (64).

The level-set model could simplify the numerical
computations of curves and surfaces in the 3D reconstruction of
plaques. Kigka et al. developed a semi-automated method using
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level sets to extract calcified and non-calcified plaques as well
as arterials walls (47). The results were in accordance with the
manual annotation by experts and the results reconstructed from
IVUS images.

Motion artifacts could cause the deformation of the
reconstructed 3D arterial geometry. To eliminate the artifact-
defective segmentation, Ghanem et al. proposed a robust
framework for the 3D reconstruction of coronary arteries. Firstly,
the initial contour of lumen inner wall was derived using Hessian
analysis and region growing. Secondly, the initial contour of
arterial outer wall was derived using mathematical morphology.
Finally, the lumen and vessel wall were segmented using level
sets. Based on the extracted geometry, the 3D meshes of lumen
and vessel wall were generated using marching cube methods.
Curved multi-planar reformation was used to modify the
geometry (55).

Geometric Parameters in Measurement
As summarized in Table 6, the 1D and 2D geometric parameters
used in 2D plaque extraction could also bemeasured in 3D plaque
extraction. The severity of stenosis and plaque burden could
therefore be calculated as in 2D reconstruction. The severity
of stenosis could be estimated by the ratio of lumen diameters
at the stenotic center (Ds) and normal segment (Dn): severity
= 1-Ds/Dn. This parameter reflects the thickening of arterial
wall due to the accumulation of adipose tissue, and is directly
related to the decrease in myocardial blood flow (53). Kang
et al. proposed a new parameter to evaluate the shape of an
arterial cross-section from its area and perimeter: circularity
= 4π ·area/perimeter2 (51). Additionally, the maximal lumen
area stenosis percentage was also used to estimate the severity
of stenosis (54). For the lipid-rich non-calcified plaques, the
percentage of the lipid core on the arterial cross-sections and cap
thickness (µm) were measured (29) to evaluate the extent of lipid
core development.

Besides aforementioned 1D and 2D parameters, some
3D geometric parameters could be measured in 3D plaque
extraction, including the volume of plaque and different
components, the length of arterial segment centerline, surface
area, and the angle between the vector of centerline and
plaque surface (62). Figure 1 illustrates the geometric parameters
commonly used in 3D plaque extraction.

Intra- and Inter-Observer Repeatability
In the 16 original studies on 3D plaque extraction, 4 included the
intra-observer repeatability (32, 33, 54, 55), and 8 included the
inter-observer repeatability (28, 30, 32, 51, 53–56).

The repeated measurements were performed by experts
including experienced radiologists or technicians (32). Most
of these studies included 2 experts on coronary imaging.
Exceptionally, a study included three expert readers of CT
images to make a consensus reading as the reference which was
compared with the reading made by a blinded reader (51). It was
suggested that intra- and inter-observer repeatability is important
for algorithm validation and has been widely used in recent
studies on 3D plaque extraction (72).

Reference of Accuracy
As in 2D studies, IVUS and ICA were used as the reference
for the evaluation of 3D plaque extraction methods (39, 64). In
addition, different types of scans such as MTCT or biplane X-ray
angiography have also been used as the reference of accuracy (47).
One study reported using 3D remodeling, which is a relatively
new method for the coronary plaque assessment (64).

DISCUSSION

Summary: Merits and Limitations of
Current Methods
In this review, we focus on the summarization of the merits and
limitations of recent studies in three aspects (data, method, and
evaluation), not the detailed analysis of algorithmic innovations.
The methods and algorithms in these studies are highly diverse
with different theoretical bases. Therefore, we introduced some
innovations in these methods and algorithms but did not list
the details.

Data
In both 2D and 3D studies, in vivo data were commonly used.
In vivo data reflect the patient-specific anatomical structures,
therefore are indispensable for the full validation of plaque
extraction algorithms. However, for in vivo data, motion artifacts
caused by cardiac movements could affect the quality of CT
images. In comparison, motion artifacts are excluded from ex
vivo data. Therefore, ex vivo data could be used to evaluate the
accuracy of algorithms in reflecting anatomic details. Regarding
in vitro and phantom data, geometric parameters could be
directly measured on the models; therefore the accuracy of
plaque extraction algorithms could be evaluated quantitatively.
For phantom data, geometric parameters such as the radius
of arterial segment, the thickness of plaque, as well as the
material components, are all adjustable for the evaluation in
different levels. Additionally, biomechanical or hemodynamic
experiments could be performed on the in vitro models and
phantoms to evaluate the plaque extraction algorithms in
different pathophysiological conditions.

Most of the reviewed studies used 1-2 types of data.
More types of data can be included for the comprehensive
evaluation of new algorithms in geometrical details. The majority
of studies included <100 human subjects. Considering the
individual difference in the anatomy of coronary arteries, multi-
center large-scale studies are necessary to validate the proposed
algorithms for clinical applications.

2D and 3D Algorithms
Themajority of 2D reconstructionmethods are based on FBP and
IR. The machine learning algorithms are widely used in the 3D
reconstruction of coronary plaques (33, 51–53, 62).

IR algorithms could reduce noises and radiation dose in
CT scanning, and improve the quality of CT images of obese
patients, coronary atherosclerotic plaques, coronary stents, and
myocardial perfusion (84). Therefore, IR algorithms have been
widely embedded in the software. Despite the benefits in dose
reduction, it is still unclear exactly which kV and mAs for a
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TABLE 6 | Geometric parameters in CT-based coronary plaque evaluation.

Study Geometric parameters

2D 3D

Gaur et al. (56) Numbers of obstructive lesions (stenosis > 50%), plaque

length (mm).

Volume of non-calcified plaques; low-density non-calcified

plaques, calcified plaques, and all plaques (mm3), aggregate

plaque volume (%).

Jawaid et al. (64) Arterial wall thickness, lumen area. N/A

Sakellarios et al. (52) Artery outer border, area of plaques on cross-sections. Centreline, volume.

You et al. (28) N/A Volume of calcified, fibrous and lipid-rich plaques (mm3)

Ghanem et al. (55) Vessel wall thickness (mm), plaque length (mm), luminal

stenosis (%),

Volume of calcified, mixed, and soft lipid-rich plaques (mm3 )

Wei et al. (63), as

summarized in the

review by Jawaid et al.

(72)

N/A Stenosis volume in % Centreline and length of vessels

Athanasiou et al. (62) N/A Volume (mm3 ), surface area (mm2 ), maximum length (mm), and

inner angle (degree) of plaques. Overlapping volume between

different objects (lumen, wall and plaque).

Park et al. (54) Minimal lumen area (mm2 ), maximal lumen diameter stenosis

percentage (%), maximal lumen area stenosis percentage (%),

mean plaque burden (%).

Volume of lumen, vessel, and plaques (mm3 )

Kigka et al. (47) Degree of stenosis (%). Minimal lumen diameter (mm).

Minimal lumen area (mm2 ). Plaque burden (%).

N/A

Károlyi et al. (32) Lesion length (mm) Plaque volume (mm3 ), lumen volume (mm3 ), vessel volume (mm3 ).

Zhao et al. (33) Estimated radius of plaque area segmented from

cross-section (mm).

N/A

Puchner et al. (29) Area of calcified and lipid-care plaques on cross-sections

(mm2), circumference, width, and cap thickness of lipid core

(µm), plaque burden (%)

N/A

Wang et al. (31) Lumen area (mm2 ) volume of plaque components (mL) and their relative values (%)

Matsumoto et al. (30) Plaque thickness (mm), plaque area (mm2 ) on cross-section,

Plaque burden (%).

Plaque composition volume (mm3) and the ratio in total plaque

volume

Sun et al. (61) Degree of lumen stenosis (%). N/A

Kang et al. (51) Degree of lumen stenosis (%). Circularity of cross-section. Location of stenosis (mm) from ostium.

Zreik et al. (53) Degree of lumen stenosis (%). N/A

given body habitus is optimal with each IR algorithm (85).
Furthermore, IR could influence many factors that are important
for the clinical risk stratification of CAD, including coronary
calcification, plaque burden and composition, as well as stenosis
severity (85). There is a lack of comprehensive evaluation of
different IR algorithms regarding diagnostic accuracy and patient
management. In most of the studies included in this review,
the results of IR algorithms were compared with the results of
standard FBP method only (see sections Technical Innovations).
Additionally, there is a lack of quantitative evaluation of IR
algorithms based on ex vivo or phantom data.

Tsompou et al. compared the 3D reconstruction methods
based on different cardiovascular images (86). It was found
that, with de-blooming algorithms, the geometric parameters
(normal and stenosed lumen diameters, severity and length of
plaque) and wall shear stress calculated from the 3D models
reconstructed from CCTA images were not significantly different
from the results derived from quantitative coronary analysis
and IVUS (86). Therefore, the accurate estimation of 3D plaque
geometry could be achieved by using CT images. However, the

majority of 3D plaque reconstruction algorithms are based on
attenuation value or diameter estimation (Table 3). There is
a lack of investigation on the 3D geometric characteristics of
coronary plaques.

Machine learning has been widely used in the analysis of
cardiac images and signals and has been proven to be effective in
predicting heart failure and other clinical events (87). Especially,
fully automated machine learning algorithms may facilitate the
processing of large-scale image datasets. For clinical application,
images from picture archiving and communication systems can
be segmented out and fed into other machine learning layers
in order to establish a diagnostic and a prognostic course
(87). For example, the risk of plaque rupture is associated
with stress concentration, which depends on the mechanical
properties and the geometry of the reconstructed plaques (88).
Thus, machine learning could assist the clinical professionals
to estimate the vulnerability of the atheroma plaque (88). In
comparison, traditional 3D finite element analysis of plaque
rupture requires huge computational resources, therefore is
not suitable for clinical use. The machine learning methods
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FIGURE 1 | 1D, 2D, and 3D geometric parameters used in 3D plaque

reconstruction. LS, length of stenosis; LC, length of centreline of arterial

segment; Vsl, volume of lumen in stenosed segment; Vnc, volume of

non-calcified components; Vc, volume of calcification; Vp, volume of plaque;

ACN, area of lumen cross-section in normal segment; ACS, area of lumen

cross-section in stenosed segment; ACc, cross-section area of calcification;

ACnc, cross-section area of non-calcified (lipid or fibrotic) components; ACp,

cross-section area of plaque. The red, yellow, and white areas illustrate the

stenosed lumen, the non-calcified components, and the calcification.

have been applied in the classification of plaque type (33,
53) and anatomic significance (51, 53, 64), whereas, there
is a lack of clinical validation and application. Additionally,
machine learning can be used in the estimation of hemodynamic
parameters of coronary arteries such as FFR from CTA images
(89). The application of machine learning in the CT-based
coronary plaque assessment deserves further investigation under
multidisciplinary collaboration.

Automatic Algorithms and Manual Interactions
As shown in Table 4, setting the boundaries and adjusting
the results are the commonest manual interactions in semi-
automatic plaque extraction methods (72). However, manual
adjustment is time-consuming and dependent on operator skills
(24). There is a high need to develop automatedmethods that can
achieve the reliable extraction of coronary plaques.

Advanced algorithms based on AI (machine learning,
deep learning, etc.) provide an important approach toward
the automation of coronary plaque extraction. For example,
Wolterink et al. have successfully developed an automatic
method to identify the calcified voxels using paired convolutional
neural networks (90). Furthermore, based on the big data and
new technologies such as radiomics, more information could be
extracted in parallel with the reconstruction of plaque geometry,
achieving the preliminary diagnosis and automatic screening of
CAD patients based on clinico-radiological information (91).

In both semi-automatic and automatic methods of plaque
extraction, the manual extraction results have been widely used
for training and validating the algorithms. In 2013, Kirisli
et al. compared 11 automatic and semi-automatic algorithms
of coronary plaque extraction on a dataset of 48 symptomatic
CAD patients (92). The authors quantitatively evaluated the

accuracy of these algorithms. They concluded that current
stenosis detection/quantification algorithms are not sufficiently
reliable to be used stand-alone in clinical practice, but that
some could be used for triage or as a second-reader. They also
suggested that automatic lumen segmentation could achieve the
precision comparable to experts’ manual segmentation. Thus,
the manual extraction results with high accuracy still play a
key role in algorithm evaluation. The standardized datasets such
as Rotterdam dataset (33, 64) provided an appropriate choice.
Nevertheless, due to the limitations in data sharing, very few
datasets are currently available.

IVUS images have high resolution, which makes them
adequate for clinical diagnosis and algorithm validation.
Additionally, to improve the accuracy of plaque extraction, IVUS
images could be used as a virtual reality tool to explore and
understand the outer and inner structure of coronary arteries
(76). Compared with manually extracted results, IVUS images
could serve as a more reliable reference for the validation of
plaque extraction algorithms. However, the validation requires
the co-registration of CT and IVUS images, which is still often
performed manually.

Geometric Parameters
The geometry of coronary arteries and plaques could influence
the development of atherosclerosis and the occurrence of
cardiovascular events (93). In the majority of 2D studies, the
geometric parameters are measured from the cross-sections or
other 2D images. In 3D studies, 1D, 2D, and 3D parameters are
all included. It has been proven that the geometric parameters
(cross-section area, area severity, etc.) of coronary plaques are
reproducible with high intra- and inter-observer agreement (94).
The severity of plaques has been estimated by the ratios in
diameter (53) and area (39, 66). Some secondary parameters
could be derived from the 3D geometry of coronary plaques.
For example, radius gradient of the plaque, which reflects
longitudinal lesion asymmetry, has been proven to be associated
with the location of plaque rupture and consequent clinical
events (95). The curvature and tortuosity of coronary arteries
might be related to the development of atherosclerosis and plaque
size (96, 97). These secondary parameters and their clinical
indication need further investigation.

Extraction and Classification of Different Plaques
As to the extraction of calcified plaques, de-blooming algorithms
(17, 86) have been proposed and proven to be effective in
reducing blooming artifacts (86). However, it was found that
the calcium density, which is directly related with blooming
artifacts, has little effect on the accuracy of CTA (98). Therefore,
other details such as the dose, individual difference, and the de-
blooming of co-existing plaques and stents (99), need further
investigation to improve the accuracy and reliability of calcified
plaque extraction.

For non-calcified plaques, we observed different classification
standards (Table 2) and attenuation thresholds (Table 3). The
most detailed classification included lipid-rich, fibrous, and
calcified plaques. In a parallel study on plaque extraction in
carotid arteries on CTA images, the components of non-calcified

Frontiers in Cardiovascular Medicine | www.frontiersin.org 18 February 2021 | Volume 8 | Article 597568

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Liu et al. Cutting-Edge CT-based Coronary Plaque Analysis

FIGURE 2 | Extraction of different components of a vulnerable plaque in

carotid artery using semi-automatic method based on different HU values. (A)

Sagittal section of carotid artery. (B) Transverse section. Adapted from Diab

et al. (100) © 2019 by the authors. CC BY 4.0.

plaques have been classified as lipid, fibrofatty, fibrotic, and
fibro-calcified (100) (Figure 2). In another study, carotid plaques
are classified as intimal lipid accumulation, lipid-rich necrotic
cores, calcification, fibrosis, and calcification (101). Lipid-rich
necrotic core is a major characteristic of high-risk vulnerable
plaques, which is an important reference for clinical diagnosis
and intervention. It has been known that lipid-rich lesions can
be separated from more fibrous ones on CT images, which could
be used to estimate the risk of plaque rupture (102). In 2013,
Obaid et al. evaluated the accuracy of a 3D plaque extraction
method in estimating different components of coronary plaques
on CT images (103). The accuracies of CT and VH-IVUS were
comparable in detecting calcified plaque (83 vs. 92%), necrotic
core (80 vs. 65%), and fibroatheroma (80 vs. 79%), with ex vivo
histology as the reference. A plaque containing large amounts
of lipid may be classified by VH-IVUS as fibro-fatty tissue but
have low attenuation, and be classified as the necrotic core on

CT images. Accurate and quantitative estimation of different
components of non-calcified plaques on CT images is still
challenging due to the limited temporal, spatial, and contrast
resolutions of current scanners (102).

Future Directions
In future studies, the application of machine learning and
automatic methods (extraction of the centerline of coronary
arteries, segmentation, quantification of calcification and other
components, etc.) could improve the efficiency of coronary
plaque extraction from CT images. More geometric parameters
could be derived from the 3D geometry of extracted plaques.
The accuracy of plaque extraction could be improved in
the following aspects: the inclusion of more data types, the
comprehensive evaluation of IR algorithms on ex vivo and in
vitro data, themulti-center large-scale studies, more standardized
datasets, the investigation on the geometric properties of
coronary plaques, further investigation and standardization of
de-blooming algorithms, and more detailed classification of non-
calcified plaques.
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