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ABSTRACT
Objective To evaluate a proposed natural language
processing (NLP) and machine-learning based automated
method to risk stratify abdominal pain patients by
analyzing the content of the electronic health record
(EHR).
Methods We analyzed the EHRs of a random sample
of 2100 pediatric emergency department (ED) patients
with abdominal pain, including all with a final diagnosis
of appendicitis. We developed an automated system to
extract relevant elements from ED physician notes and
lab values and to automatically assign a risk category for
acute appendicitis (high, equivocal, or low), based on
the Pediatric Appendicitis Score. We evaluated the
performance of the system against a manually created
gold standard (chart reviews by ED physicians) for recall,
specificity, and precision.
Results The system achieved an average F-measure of
0.867 (0.869 recall and 0.863 precision) for risk
classification, which was comparable to physician
experts. Recall/precision were 0.897/0.952 in the low-
risk category, 0.855/0.886 in the high-risk category, and
0.854/0.766 in the equivocal-risk category. The
information that the system required as input to achieve
high F-measure was available within the first 4 h of the
ED visit.
Conclusions Automated appendicitis risk
categorization based on EHR content, including
information from clinical notes, shows comparable
performance to physician chart reviewers as measured by
their inter-annotator agreement and represents a
promising new approach for computerized decision
support to promote application of evidence-based
medicine at the point of care.

OBJECTIVE
The objective of this study is to evaluate a proposed
natural language processing (NLP) and machine-
learning (ML) based automated method to risk strat-
ify abdominal pain patients by analyzing the content
of the electronic health record (EHR). Our
approach relies on both the structured data and the
narrative clinical text (physician notes) of the EHR.

BACKGROUND AND SIGNIFICANCE
Identifying the small minority of patients with
acute appendicitis among the nearly 2 million
annual pediatric emergency department (ED) visits
for abdominal pain is challenging.1 A recent study
reported that the rate of acute appendicitis was
10.6/10 000 in children (0–19 age group).2 In our
institution’s pediatric ED, the proportion of

patients with acute appendicitis among those with
abdominal pain was estimated at 12.7% in the year
2010. The use of CT in the diagnostic workup of
abdominal pain has become widespread,3 despite
the small but significant associated increase in the
lifetime risk of malignancy from ionizing radi-
ation,4 5 unclear benefit,6 and increases in costs of
care.
Patients who ultimately undergo appendectomy

theoretically represent those with the highest risk
of appendicitis based on clinical findings, and
therefore have less of a need for diagnostic imaging
(compared to patients with more equivocal clinical
findings). Therefore, limiting the use of CT to cases
where it is necessary, evidence-based, and helpful
(ie, where clinical findings are equivocal) would
improve care by decreasing variation, as well as
improving safety and value.
Clinical scoring systems, such as the validated

Pediatric Appendicitis Score (PAS)7 have been
developed to stratify patients with suspected appen-
dicitis and avoid unnecessary imaging. While the
use of scores as stand-alone diagnostic tools is con-
troversial, many studies have concluded that they
could help in the decision-making process.8–11 The
PAS is the most broadly validated tool for appendi-
citis in children12 and was used at our institution to
establish the risk stratification pathway on which
our work is based.
Clinical decision support (CDS) systems can

improve adherence to guidelines and support effi-
ciency by decreasing utilization of healthcare
resources.13 A computerized CDS tool to stratify
patients according to risk of appendicitis could help
reduce the unnecessary use of diagnostic imaging.
Automated EHR-based CDS tools extract rele-

vant information from the medical record in real
time and present recommendations as soon as pos-
sible in the encounter. In many cases, a large part
of the clinically relevant information is located in
the physician notes. Accessing this information
necessitates information extraction via NLP. Several
NLP methods have been developed for identifying
or classifying patients with a decision support
objective, and have shown promising results for a
variety of clinical conditions, including pneumonia,
tumor status, heart failure, and cervical cancer.14–20

Such NLP approaches have been knowledge-based,
using linguistic rules and lexica,14 15 18 20 and/or
ML-based.16 17 19

To our knowledge, our study is the first to inves-
tigate a method for automated appendicitis risk
stratification. It is an example of information fusion
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where structured EHR information (ie, laboratory values) and
unstructured information extracted from clinical notes via NLP
are integrated to achieve a better performance in computerized
decision support.21 22

MATERIAL AND METHODS
PAS and risk-stratification pathway
Risk stratification was defined using an evidence-based clinical
pathway created at our institution through collaboration among
the divisions of emergency medicine, surgery, and radiology and
based on the validated PAS, a 10-point scale that assesses appen-
dicitis risk based on history, physical exam, and lab findings.7

Variables used to calculate this score are presented in table 1.
The risk stratification pathway defines pediatric patients, aged

3–21, as:
▸ High-risk for acute appendicitis with a PAS ≥7
▸ Equivocal-risk with a PAS of 3–6
▸ Low-risk with a PAS ≤2

Clinical data selection and creation of a gold standard
This is a retrospective observational study (conducted under an
approved IRB protocol) using patient records from a pediatric
ED in an urban, quaternary care children’s hospital. The ED
serves approximately 120 000 visits per year and has 24-h radi-
ology (including ultrasound) and subspecialty services available.

We selected our study sample from the 6500 patient–phys-
ician encounters for abdominal pain in all age groups that
occurred during a 12-month period ( January 1, 2010–
December 31, 2010). We included all patients who had append-
ectomy as a consequence of the ED visit (534 patients), and we
added a random sample of 1566 patients from the remainder of
the abdominal pain patients, to have a total of 2100 patient
records (1000 per annotator pair, with 100 extra records
common to all annotators). Each record included all ED phys-
ician and nursing notes as well as structured entries correspond-
ing to relevant labs and vital signs (complete blood counts with
differential values and temperature recordings). Other non-ED
notes (such as surgical consultation or admission notes) were
excluded, to avoid capturing information that would not be
available during the decision-making portion of the ED visit.

Records were reviewed and manually double-annotated by
four senior pediatric emergency medicine fellows. For each
record, elements needed to calculate the PAS were manually
tagged in the clinical notes. Annotators were instructed to mark
all mentions of these elements (separate categories were created
for negated elements, eg, a ‘no fever’ category to catch nega-
tions such as ‘negative for fever’). After reviewing a record, the
physicians computed the PAS (from 0 to 10) based on the ele-
ments they found in the notes, the labs, and vital sign entries.
Then they assigned a risk class (low, equivocal, or high) to the
patient according to the pathway. Records were presented to the

annotators without showing surgery or pathology notes, to
avoid introducing bias. Annotators (A1 through A4) were paired
up for the study; A1 was paired with A2 and A3 with A4. Each
pair was given 1000 records to review, plus 100 records
common to all four annotators (the ‘common sample’) to
measure inter-annotator agreement across all annotators.
Additionally, each annotator was given a random sample of 100
records to annotate a second time (the ‘repeat sample’), to
measure intra-annotator agreement. Annotation was supervised
by a medical informatics researcher (LD) with text annotation
experience and by two faculty physicians (a pediatric emergency
medicine specialist (HB) and a pediatric hospitalist (EK)).

Automated risk-stratification
Our approach consists of two steps (summarized in figure 1):
1. Information extraction: identifying the PAS elements in the

clinical notes.
2. Risk stratification: assigning a PAS and a risk class to each

record using the elements identified in step 1.

Table 1 Variables of the Pediatric Appendicitis Score

Pain with cough, percussion or hopping 2 points
Right lower quadrant tenderness 2 points
Anorexia 1 point
Fever >38°C 1 point
Nausea/vomiting 1 point

Migration of pain 1 point
Leukocytosis: >10 000 white blood cells per μL 1 point
Left shift: absolute neutrophil count >6750 1 point

Figure 1 Description of the risk stratification system (cTAKES=clinical
Text Analysis and Knowledge Extraction System; POS, part-of-speech;
UMLS, Unified Medical Language System; CUI, concept unique
identifier; PAS, Pediatric Appendicitis Score).
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Information extraction
We extracted PAS elements from clinical notes based on a
hybrid NLP approach using an ML core algorithm (conditional
random fields (CRF),23 as implemented in the MALLET
toolkit24) with post-processing rules.

Before training the CRF model, we performed linguistic pre-
processing of the notes, using the clinical Text Analysis and
Knowledge Extraction System (cTAKES) toolkit,25 which
included tokenization, stemming, and part-of-speech tagging.
cTAKES also contains a lexicon lookup component, matching
the text against concepts from the Unified ML System (UMLS)
metathesaurus26 and assigning concept unique identifiers (CUIs)
to the matched text tokens. We utilized this semantic informa-
tion in our CRF model. The feature set is detailed in box 1.

Based on error analysis of the development set, we defined
regular expression rules to improve the output of the CRF. For
instance, we checked that elements containing numerical values
were tagged appropriately (eg, that phrases such as ‘temp of
101’ were tagged as ‘fever’ and not mistakenly tagged as ‘no
fever’).

Risk stratification
We used a rule-based approach for risk stratifying the patients.
This method consisted of gathering all the different PAS ele-
ments found during step 1 in the clinical notes as well as those

contained in the labs and vitals entries, calculating their total
number of points (per the PAS scoring system) to generate a
PAS score. We then assigned a high-, equivocal-, or low-risk
class, based on the computed score.

We also implemented a baseline system by computing the PAS
and risk class based on variables obtained from the structured
data of the EHR only. This allows us to measure the benefit of
using information from the narrative text of the EHR.

Experiments
Evaluation metrics
We used recall, precision, and specificity to evaluate the per-
formance of our system.27 For one of our experiments, we also
report the F-measure (the weighted harmonic mean of precision
and recall).28

Additionally, we computed the F-measure for the intra-
annotator and inter-annotator agreements.

Annotator agreement
We assessed the reliability of the gold standard by computing
agreement for the risk classification and the annotation of the
PAS elements in the clinical notes. For each level, we measured
agreement between the paired annotators on the sets of 1000
records and among all four annotators on the common sample
of 100 records. We also tested intra-annotator agreement to
measure agreement between each annotator’s earlier and subse-
quent annotation of the same charts on the repeat sample of
100 records.

Performance of the automated system
Performance of the risk classification
We measured the performance (recall, precision, specificity) of
the main step of our system, that is, risk classification, by compar-
ing the system’s classifications against the gold standard, in a
subset of 1890 patients (randomly selected, 90% of the total).
The 1890 records were kept unseen during development and
were used to train and evaluate the system in a 10-fold cross-
validation setting. Metrics were computed for each risk class, as
well as their average on all classes, for both our system and the
baseline. To rule out the possibility that the performance differ-
ence between the system and the baseline was due to chance, we
tested statistical significance, using approximate randomization.29

We performed an error analysis of the risk classification on
the remaining 210 patient records.

Performance of the detection of PAS elements in notes
We also assessed the performance (recall, precision, F-measure)
of the first step of our system (the detection of PAS elements in
clinical notes).

Timestamp experiment
A real-time production system is most efficient if the informa-
tion is recorded in the EHR in real-time (ie, when it is useful
for decision making). Consequently, we evaluated the algo-
rithm’s risk classification performance using information avail-
able at different points of the 48-h study window. More
precisely, we ran our algorithm consecutively 48 times using
cumulative data available after each hour of a 48-h study
window of the ED visit. The purpose of this experiment was to
assess the point in time of the ED encounter when high per-
formance could be reached, that is, when enough data were
present in the EHR for the algorithm to perform well.
Additionally, we also evaluated performance up to the time

Box 1 Feature set for the conditional random fields
algorithm

Properties of the current token
Token itself
Lower-case version of the token
Stem of token
Character length of the token
POS of the token
Whether the token is a punctuation
Whether the token contains a digit
Whether the token is a number
Whether the token is alpha-numeric
Whether the token is capitalized
Whether the token is upper-case only
Whether the token contains upper-case and lower-case
letters
Two-character suffix and prefix of the token
UMLS CUI(s) of the token (if any)

Contextual features
Two tokens before
Two tokens after
Bigram of the current token and token after
Bigram of the two tokens before
Trigram of the current token and two tokens after
Trigram of the three tokens before
POS of the two tokens before and two tokens after
Whether the token before is capitalized
Whether the token after is capitalized
Note section where the token is appearing (eg, history of
present illness, physical exam, etc.)
Whether a negation phrase (eg, ‘negative for’) occurs in the
sentence containing the token
(POS, part-of-speech; UMLS, Unified Medical Language
System).
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patients were sent for an abdominal CT scan, to see if the algo-
rithm could prevent unnecessary CT scans.

RESULTS
Annotator agreement
Table 2 shows inter-annotator agreement results on the
1000-record sets from the two annotator pairs (A1/A2 and A3/
A4), as well as on the common sample annotated by all four
annotators. Agreement was strong for the risk classification
(above 0.86 in most cases) and slightly lower for the PAS ele-
ments (from 0.75 to 0.85). The last three columns detail inter-
annotator agreement for each risk class. Agreement was highest
for the low-risk class and lowest for the equivocal-risk class.

Intra-annotator agreement measured between each annota-
tor’s earlier and subsequent annotation on the repeat sample
showed similar values to inter-annotator agreement values
(bottom of table 2), except for the high-risk class, which had
the lowest intra-annotator agreement.

Descriptive statistics
The final gold standard (after resolution of disagreements) con-
sisted of 31 478 PAS element annotations (see online
supplementary table for statistics per category), 1039 low-risk
patients, 637 equivocal-risk patients, and 424 high-risk patients.
Figure 2 depicts the distribution of cases in the gold standard
(figure 2A) and in the predictions of the system (figure 2B)
between the three risk classes for all patients. Compared to the
annotators, the system classified more patients as equivocal-risk
(34% in the system output vs 30% in the gold standard).

Automated risk stratification
Performance of the risk classification
The system obtained average recall of 0.869 and precision of
0.868 (table 3). It shows best performance at classifying low-risk
patients (0.897 recall; 0.952 precision) and has the lowest per-
formance in the equivocal-risk class (0.854 recall; 0.766 preci-
sion). The baseline system (using only structured data) obtained
much lower performance (average recall and precision of 0.353
and 0.385, respectively), and is unable to correctly classify any
high-risk patients. The difference between our system and the
baseline was statistically significant (last column, p<0.05).

Performance of the detection of PAS elements in notes
The first step of our system achieved 0.853 recall and 0.878 pre-
cision against the gold standard. Detailed performances are
given in figure 3.

Timestamp experiment
Figure 4A shows risk classification performance (F-measure) for
each class and on average at different points in time (from 1 to
48 h after presentation to the ED, in 1-h time intervals). We can
see that performance curves are high after 2–3 h and approach
the plateau after 4 h, which means that approximately 4 h of
data is enough to achieve optimal performance. Figure 4B gives
a closer look at the first 4 h, showing F-measures for each risk
class. While the low-risk class has good performance from the
start, the high- and equivocal-risk classes start having reasonably
good performance at 3 h.

Figure 5 shows how classification changes over time compared
to the eventual system’s predictions. For each eventual risk class,
we report the predictions at each hour (how many patients are
assigned a different risk class than the eventual one and how
many have their eventual risk class). Percentages in the graphs
show the proportion of patients with a classification identical to
the eventual prediction. Figure 5A shows that not all eventual
high-risk patients are identified from the start (many are classified
as low-risk and equivocal-risk), but a high proportion is reached
at 3 h (80.4%) with only a small number classified as low-risk.
A similar tendency is observed for eventual equivocal-risk
patients with a majority identified at 3 h (figure 5B). Eventual
low-risk patients are almost all identified from the start (figure
5C). We can also observe from the low-risk and equivocal-risk
graphs that patients classified as high-risk never end up as
low-risk and almost never as equivocal-risk, which means a high-
risk prediction is final from the start.

Figure 6 displays the CT time distribution for patients who
had a CT scan (267). Average time is 241 min after ED arrival,
with the median at 239 min. Half the CT scans happened more
than 4 h after ED arrival. At 3 h, 42% patients have been sent
to CT.

DISCUSSION
The main goal of our work was to automatically assign the
appropriate appendicitis risk classification (high-, equivocal- or
low-risk) to pediatric abdominal pain patients. The risk classifi-
cation system performed very well overall, achieving only 3%
percent lower performance than the average inter-annotator

Table 2 Inter-annotator agreement (F-measure) on the 1000-record sets and on the (100-record) common sample and intra-annotator
agreement on the repeat sample

Record set Annotator(s) Risk class PAS elements High-risk Equivocal-risk Low-risk

1000-record sets (inter-annotator agreement) Pair 1 (A1/A2) 0.896 0.830 0.898 0.841 0.938
Pair 2 (A3/A4) 0.897 0.783 0.906 0.845 0.927

Common 100-record sample (Inter-annotator agreement) A1/A2 0.900 0.855 0.947 0.833 0.918
A3/A4 0.864 0.789 0.829 0.812 0.921
A1/A3 0.861 0.814 0.821 0.818 0.903
A1/A4 0.836 0.748 0.895 0.769 0.851
A2/A3 0.889 0.836 0.878 0.813 0.946
A2/A4 0.843 0.765 0.900 0.762 0.872

Repeat sample (intra-annotator agreement) A1 0.901 0.811 0.800 0.862 0.946
A2 0.895 0.844 0.880 0.841 0.933
A3 0.929 0.858 0.857 0.899 0.962
A4 0.890 0.783 0.818 0.844 0.930

PAS, Pediatric Appendicitis Score; Risk class, low or equivocal or high risk for appendicitis; PAS elements, PAS terminology annotated in the text (eg, ‘fever’).
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agreement for the annotators. The system had a higher perform-
ance for overall risk strata than four of the six physician pairs
on the common 100 charts. In addition, the system achieved
only 2% lower performance than two of the physicians, 3%
lower than one of the physicians, and 5% lower than the fourth
physician—measured by their intra-annotator agreement on
repeat chart reviews. From a practical point of view, the system
behaved as a fifth physician and its performance was not distin-
guishable from the four experts.

In this type of task, the tradeoff among recall, precision, and
specificity is an important issue. In order to be useful to physi-
cians, one would expect a system to be able to identify patients
in the low-risk and high-risk category with a high precision;
patients can then, with certainty, either avoid a CT scan for the
low-risk class or proceed to surgical consultation (thus poten-
tially bypassing imaging) for the high-risk class. However, recall
should also be reasonably high (enough patients should be clas-
sified as high- and low-risk), otherwise the system will identify
too few cases to be of any use. For the low-risk class, our system
has high specificity and precision (respectively, 0.956 and
0.952), and a recall that is lower, but still high (0.897). For the
high-risk class, it has a very high specificity (0.972), and good
precision and recall (0.889 and 0.855, respectively), although
there is room for improvement. However, the system had com-
parable results to human annotators.

Error analysis on the 210-record development set showed that
all misclassified low-risk patients (11) and high-risk patients (4)
were classified as equivocal, while misclassified equivocal patients
(6) were classified as low-risk in some cases and as high-risk in
others. The equivocal category is the most challenging,

particularly for patients with a PAS corresponding to the lower
bound (PAS=3) and upper bound (PAS=6) of the class. The
error analysis revealed that misclassification occurred most often
when the difference between the gold standard PAS and the PAS
computed by the system was only one (4 cases) or two (12 cases)
points. Thus, in most cases, errors are due to only one or two
PAS element categories being missed or erroneously detected at
the first step (identification of PAS elements). The analysis also
showed that none of the patients misclassified as low-risk actually
had an appendectomy as a result of their ED visit, which is a very
promising finding for our algorithm.

The large difference in performance between relying solely
on structured data (eg, temperature and lab values) and add-
itionally incorporating clinical variables via NLP demonstrates
the importance of using information extracted from clinician
notes. Clinical notes relay important medical information
needed for risk stratification as well as communicating clinical
care. The ability to capitalize on this information using NLP to
impact real-time decision-making and clinician behavior (in lieu
of a plethora of check boxes) is a critical step for
information-enabled solutions to improve healthcare. In clinical
scenarios such as suspected appendicitis, use of structured data
alone (such as can be extracted via traditional EHR-based deci-
sion support methodologies) is helpful but not sufficient to
support diagnostic decision making.

The timestamp experiment showed that the data required for
optimal performance of our risk stratification system was
entered in the EHR within 4 h of the patient’s arrival at the ED,
on average, when evaluating all of the patient’s data in aggre-
gate. In general, the time between ED arrival and evaluation by

Figure 2 Distribution of cases in the
gold standard (A) and system output (B).
Correct cases are determined against the
gold standard of Pediatric Appendicitis
Score-based risk classification.
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a clinician is approximately 1 h. In a teaching institution, the
diagnostic evaluation begins after this time period and may be
delayed additionally in the event that residents are involved in
care. Accounting for a lab turnaround time of 30–60 min, it
makes sense that the data is most complete and prediction most
accurate approximately 4 h after ED arrival. The average length
of stay in our ED (door to disposition) for patients with appen-
dicitis is 257 min (4.28 h); thus, maximal performance of the
system at 3–4 h from ED arrival would enable the system to
provide risk stratification to clinicians in real time as decisions
are being made.

Due to the clinical nature and evolution of appendicitis,
patients presented to the ED in varying states along that course.
Some patients may have been diagnosed before this 4 h had
elapsed (eg, a high-risk patient whose diagnosis may be
obvious), while others may be exhibiting the very beginning of
onset of symptoms. In our hospital, most patients will have had
vitals taken, blood work drawn and resulted, and likely have
had basic imaging such as an x-ray (which is usually
non-specific), but often have not yet received a surgical consult-
ation or advanced, definitive imaging (such as a CT). In our
study sample, the average time to send a patient to CTwas 4 h.
The research question was ‘at what time does our system
have the data it needs to perform well’, the answer to which is
4 h. The clinical timeliness of this mark will differ across institu-
tions, but 4 h is early enough that a fair proportion of
patients will not have had a definitive diagnosis when the
algorithm could provide the most accurate classification. It can
also be argued that the system already has a high performance
level after 3 h and might already be useful to a physician as a
CDS tool, especially to identify definite high-risk patients as
high-risk predictions are final from the start. Moreover, in our
current culture of wanting to minimize unnecessary
radiation, clinicians would likely be willing to wait for a predic-
tion before ordering a CT, since the system is predictive reason-
ably early.

The automated algorithm has several clinical advantages and
applications. First, it can be viewed as a safety and quality tool
that can be embedded within an EHR to prompt providers to
supply additional information if the algorithm is unable to
detect the appropriate data elements to classify the patient. This
check would ensure that physicians have considered all of the
appropriate signs, symptoms, and laboratory values needed for
an accurate assessment. Second, automated appendicitis CDS
could function as a second opinion of sorts, automatically risk
classifying the patient and presenting the result to a provider to
validate and be an adjunctive to their own clinical judgment and
gestalt. Third, automated risk stratification could occur ‘on the
fly’ to increase provider efficiency, providing CDS without
requiring providers to manually input PAS variable values into
an electronic spreadsheet or form.

The performance of the system is based on the manually
created gold standard, with the assumption that this standard is
reliable. High agreement was reported among the annotators
for the risk classification and is an argument in favor of the
strength of the gold standard. However, agreement was fair but
lower for the annotation of PAS elements in clinical notes,
which is a crucial intermediate step towards classification; per-
formance may be affected if the system is trained using a gold
standard with modest reliability. Previous studies have also
observed that agreement between physicians on patient history
and physical examination findings of patients with possible
appendicitis was variable.30 31 This is a limitation not only for
an automated system, but also for clinical pathways.
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Our approach is centered on a risk stratification schema based
on the PAS, and we only reported performance with regard to
this schema, which may or may not be the most accurate one. In
a future analysis, it would be interesting to use pathology-
proven appendicitis as the gold standard of outcome to train
and evaluate a similar system to predict acute appendicitis.

This study uses retrospective data and has not yet been evalu-
ated at the point-of-care and thus it is a first step towards
implementation as a CDS tool. Future work includes evaluating
the approach in a real time setting. We plan to set up a produc-
tion version of the automated system that can be launched in

the ED, after physicians have examined abdominal pain
patients, and will predict an appendicitis risk class to help phy-
sicians in their decision-making process in real time. Evaluation
of such a system is twofold: (1) assessment of the system’s per-
formance in making its predictions in real time will be neces-
sary; and (2) evaluation of the value of the system as a decision
support tool will be undertaken (answering questions such as,
‘Does it function well within ED workflow?’). In the next
stage, we will determine if the system actually helped physicians
in the diagnosis of appendicitis and in reducing unnecessary
imaging tests.

Figure 4 Risk classification
performance (F-measure) at different
points in time after admission. (A)
F-measure over time for the entire
48-hour window; (B) F-measure during
the first four hours for each risk class.

Figure 3 Performance of the
detection of Pediatric Appendicitis
Score (PAS) elements in clinical notes.
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CONCLUSION
In this work, we investigated automated methods for appendi-
citis risk stratification of patients with abdominal pain based on
the content (both structured entries and text) of the EHR. We
proposed a two-step approach by first extracting information
from clinical notes based on NLP and then using this informa-
tion together with the structured data to automatically compute
the PAS and assign a risk class (high/equivocal/low) with a rule-
based method. We obtained very good performance for the risk
classification of patients (average precision and recall of 0.869
and 0.868), comparable to those obtained by physicians

performing the same task. Automated appendicitis risk classifica-
tion based on the content of the EHR, when information from
the clinical notes is incorporated, is a promising approach to
enhance application of decision support for pediatric abdominal
pain ED patients.
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